Effect of four-photon interactions on coherent population trapping in A-systems
B. A. Grishanin, V. N. Zadkov

International Laser Center, M. V. Lomonosov Moscow State University, 119899 Moscow, Russia

D. Meschede

Institut fr Angewandte Physik der UniversitBonn, Wegelerstr. 8, D-53115 Bonn, Germany
(Submitted 26 June 1997
Zh. Eksp. Teor. Fiz113 144-167(January 1998

The resonance fluorescence spectrum afsystem excited by two resonant light fields is
calculated using a Markov analysis. Analytical formulas are derived in the strong-field limit within
and beyond the rotating wave approximation. It is shown that the resonance fluorescence of

the system does not vanish during coherent population trapping. Its spectrum consists of two
multiplets which are similar to a triplet in the resonance fluorescence spectrum of a two-

level atom and lie at the electronic transition frequencies, together with two triplets located at the
frequencies of four-photon processes involving the optical excitation fields. The latter are
fundamental in character and impose limits on the lower bound of the dephasing rate for the
Raman resonance owing to the effect of radiative decay of the dipole transitions on the
dynamics of the ground state. The effect of four-photon dephasing on the absorption spectrum of
a A-system is analyzed and found to lead to a substantial reduction in the depth of a dip in

the absorption spectrum which vanishes as the laser field strength is increas&898@merican
Institute of Physicg.S1063-776(98)01001-4

1. INTRODUCTION resonance fluorescence spectrum is and how deep the dip in
the Raman absorption spectrum is. A rough estimate of the
The interaction of electromagnetic fields with atoms isintensity of resonance fluorescence in&ystem during co-
one of the most fundamental problems in quantum optics. Iherent population trapping has been made in the rotating
is known that a much wider range of effects occur in multi-wave approximatiohwhich yields zero fluorescence inten-
level atoms than in two-level atoms owing to field-inducedsity for two-level atoms. The same result can be seen in Fig.
coherence between the atomic states and quantum interfe§e of Narducciet al,* which shows a calculated fluorescence
ence. The three-level systems realizedAn E-, and V-  spectrum for a\-system. This indicates that during coherent
configurations play an important role in research on thes@opulation trapping &-system does not radiate and the dark
effects, as they are of intermediate complexity between twoline is entirely absent in its resonance fluorescence spectrum.
level and multilevel atoms. A whole series of new effects  Our calculations, presented in this paper in the
have been observed in them; coherent population trapping @symptotic limit of a strong field, show, however, that the
one of the most intriguing and has been studied intenselyresonance fluorescence of a system does not vanish during
both experimentally and theoreticall{See the reviews by coherent population trapping. Its spectrum consists of two
Agap’ev et all and Arimondd and the references cited multiplets, similar to the triplet in the resonance spectrum of
there) Coherent populating trapping shows up most clearlytwo-level atoms and located at the electronic transition fre-
in a three-level system with two close long-lived levels and aquencies, together with two triplets located at the frequencies
third level which lies far from theniA- or V-systemgthat  of four-photon processes involving the pump light fields. The
have been excited by two cw laser fields, so that the distariatter are fundamental in character and impose limits on the
level is optically coupled to the two others. Tuning the driverlower bound of the dephasing rate of the Raman resonance
fields to resonance with its dipole transitions leads to trapewing to the contribution to the dynamics of the ground state
ping of the populations of the system in a coherent superpdrom radiative decay of dipole transitions. The effect of the
sition of the two close levels. In Raman absorption spectrdour-photon dephasing mechanism on the absorption spec-
this effect shows up as a very narrow dip against the backirum of a A-system is analyzed and found to lead to a sub-
ground of an absorption line and in resonance fluorescencstantial reduction in the depth of a dip in the absorption
spectra it is observed as the absence of emission, which hapectrum that vanishes as the laser field intensity is in-
led to its being referred to as a “dark(or “coherent popu- creased.
lation trapping”) resonance. This article is organized as follows: Section 2 is devoted
In this article we study the question of how four-photonto a description of the complete Liouvillian of an atom inter-
interactions affect the coherent population trapping effect iracting with a laser radiation field. The specific features of the
a A-system excited by two cw laser fields, in particular, howexcitation of two-level atoms and A&-system are analyzed.
“dark” the coherent population trapping resonance in theln Sec. 3 the resonance fluorescence spectrumAekgstem
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is calculated in the rotating wave approximation, as well asThus, we can treat it as a universally small perturbation rela-
outside the range of validity of this approximation. The ef-tive to the resonant excitation contribution for the amplitude
fect of four-photon interactions involving the driver light of driver waves smaller than the amplitude of the intra-

fields on coherent population trapping and their role in theatomic field. In a first-order approximation with respect to

formation of the absorption resonance and in the dispersiothis parameter, the evolution superoperator has the form

of the A-system are analyzed in Secs. 4 and 5, respectively.

Most of the voluminous mathematical calculations are car- t

ried out in the Appendix. In the Conclusion we discuss an S(OI)=S(0I)Rw{l+J 0Zy(r)dr
experiment for detecting the calculated structure of the reso- 0

nance fluorescence spectrum of\ssystem.

e”l, (6)

Note that this approximation is valid if the value of the inte-
gral is less than of order unity.
We now consider the specifics features of the excitation

2. LIOUVILLIAN OF AN ATOM BEYOND THE RANGE OF of a two-level atom and &-system.

VALIDITY OF THE ROTATING WAVE APPROXIMATION;
DYNAMICAL TRANSFORMATIONS USED TO CALCULATE
THE FLUORESCENCE SPECTRUM

The complete Liouvillian of an atom, which describes 2-1 Excitation of a two-level atom
changes in the atomic variables according to the equation For a two-level atom excited by a laser field

dA/dt= #(t)A in Markov theory, has the form E, cos.t), Eq. (5) takes the form
L) = Lo+ L+ Lot LL(1). (1)

0o ., .
8L p(7) =i 7[0 exp—2iwt)

Here ¥, is the unperturbed Liouvilliani(#)[.7,,®], in- )
cluding the free precession of the atom at the laser frequen- +o” exp2iot),O], (7)
cies according to EqA4) of Appendix A.(The symbol® .
denotes a place for substituting a transformed opejatey. Where (), is the Rabi frequency and~ are the standard
and ; determine the dynamics of the atom owing, respecPauli matrices. Applying Ed7) to the complex polarization
tively, to relaxation and nonzero detuning of the frequencie@mplitudes® and using Eq(6), we find thatS(t)o* deter-
of the driver laser fields from the resonance transition fremines the structure of a triplébecause of the presence of
guencies in the atonresonance excitation is described by the termS(t)rwa) in the resonance fluorescence spectrum of
%), while Z| (t) describes the laser excitation. a two-level atom at a frequency ofs3 ,° which is analogous

In terms of the interaction representation the transformato the known triplet at the laser excitation frequefidyinte-
tion S(0t) corresponding to the Liouvilliar{l) takes the grating with respect ta in Eq. (6), we can easily show that
form the ratio of the corresponding amplitudes of the spectral

components at the frequencies of the third harmonic and the

S(O,t)=SRWA(O,t)§0(0,t)e%0t, ?) laser light is proportional to the small quantiy, /2w, .

where the superoperators

2.2. Excitation of a A-system

S oY) =exp Zrwa), Lrwa=Fst+ % +%, (3 . . .

rwA O0) = eXH Zrwa) RwA= L5t Lt Ly () Let us consider a-system consisting of three electronic

determine the system dynamics in the rotating wave approxi€Vels ~with  transition  frequencies among them of
mation (RWA) w1y w13, wo3 (Fig. 1). Two coherent field€ cos, t) and
E’ cos(,t) act, respectively, on the transitions—13 and

2+ 3. These fields interact with the complete dipole moment
(4)  of the system determined by the operatQgo s+ dys0s3,
Where&13,23 are the Pauli matrices; for the corresponding
rﬁtomic transitions. As a result, the induced dipole moment of
the system oscillates at frequencies, and *+ o) .

As opposed to the case of two-level atoms, where both
driver fields interact with one and the same atomic transition,
during excitation of a\-system each field interacts with two
transitions. Thus, the Liouvillian corresponding to bihar-
monic laser excitation with a frequency detuning
né:“’i_“’L takes(according to Eq(B3)) the form

Sy(0t)=T exp[ fotazp(f)dr

is the evolution superoperator for the dynamics of the syste
owing to the nonresonant excitation component, and

8L y(t)=e 0 7 (e “ot— )

is the deviation from the average valtg, of the Liouvillian
for the laser excitation.The symbol T used in Eq4) de-
notes the time ordering of the superoperator taken in qual
tum mechanics. "
The deviations%,(7) in Eq. (5) oscillates at the fre- IMOA o~ iat, ~4 —iAt
. P . . . . . (; = +
qguencies of the laser drive fields and their combinations. 07p(7) 2 [(re Te )0l ®
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FIG. 1. A A-system(a) and a typical arrangement for
the experimental measurement of resonance fluores-
cence induced by two monochromatic laser fields with
frequenciesw, and @ (b). 7, y', and y,, are the re-
laxation rates of the populations in the upper levels;

L I'13, I'p3, andl'y, are the dephasing rates; amdis the
s rate of pumping to level 2. The fluorescence spectrum

of the atoms is analyzed using a Fabry-Perot interfer-
2 ometer(FP) and a photodiodéPD) in a direction per-

pendicular to the directions of the lasgb) and atom
(Ab) beams.

whereg,=0?+9'?, g=d;sE’, g’ =d,3E, and the opera- where o*(t) are the Heisenberg positivénegative fre-

tor 7 is defined as quency operators. These operators have a time dependence
only in the form of high-frequency oscillations at optical
}zgxl(ga{?‘_’_gr&g?). (9) frequencies. The superoperatd§0t) and S(t,t+7) de-

scribe the relaxation and interaction of the atoms with the

In deriving Eq.(8) we have neglected terms containing sumseXxciting laser fields during the time intervals t)0,and
with higher frequencies. (t,t+7), andpS(0}) is the density matrip(t) at timet. It
Equation (8) obviously determines additional spectral follows from Eq. (3) that the superoperator§(0t) and
components at frequencies, =A and o/ =A, of which  S(t,t+ 7) are simple exponentials of the form ¢xXprwA],
only the components ab, —A and o +A are new. The according to the rotating wave approximation.
correspond to four-photon processes and should show up for The termo~(t)[ S(t,t+ 7)o" (t+ 7)] in Eq. (10) is sim-
a symmetricA-system as a mirror reflection of the virtual ply the product of the two operato{s‘(t) and (}+(t+7)
levels of the subsystem of lower levelig. 2) owing 10 averaged over the fluctuations in the time intervat € 7).
modulation of the 1-3 and 2- 3 transitions by the intrinsic  Thjs averaging is carried out with the aid of the transforma-
oscillatory frequencyA ~ w,, of the lower level subsystem. tion g(t,t+7), which determines the conditional atomic
It is known that four-photon frequency mixing leads to gen-quantum mechanical probability distribution function at time
eration of a coherent signal at the Stokes and anti-Stokes. - relative to timet. The emission spectrum of the atom
frequencies. Our later calculations show, however, that can then be calculated as the Fourier transform of the corre-
these nonlinear resonances are also accompanied by sidgrion function(10).
bands because of incoherent scattering processes. In the stationary case the density matrix in the vector
The above analysis shows that the important differencgepresentation is simply the zero vect6f of the matrix of
between exciting a two-level atofsee Eq.(7)) and aA-  the evolution superoperatoimys. Then we can obtain the
system(Eqg. (8)) is that excitation in the case of tlesystem  stationary correlation function from ELO) by averaging it
is mainly determined by the biharmonic frequency detuningyyer the temporal oscillations. This averaging leads to the

A. In experiments this detuning is usually much smaller thanepjacement of the bilinear combination of the complete op-
the frequencies of the laser systems that are exciting the Sy@'rators&i(t) by two combinations:

tem. This means that the intensity of the additional compo-
nents in the fluorescence spectr(fime structure which is
determined by the exponential factors in EG8.and (8), is
substantially higher for aA-system than for a two-level 3
atom.

3. CALCULATING THE FLUORESCENCE SPECTRUM OF A 20 - @
A-SYSTEM L L

The spectral density of the emission from an excited
atom(resonance fluorescence spectjusrdetermined by the
normally ordered two-time correlation function of the light
emitted by the atomt!® Assuming that the atomic fluctua- — 9 )
. . . . 20- o
tions are Markovian, i.e., they are independent of one an- ———_,4 L L
other at timeg andt+ 7, we can write down the correlation
function for the atomic fluorescence in the form . —

R R R FIG. 2. A A-resonance and additional resonances which determine the fine
T(1)=(peS(0) |0~ (O)[S(t,t+ 7)o" (t+ 7)]), (10 structure of the resonance fluorescence spectrum.
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A _ ~ 4 ~ ~ 4 ~ AN 1 mea——

o (X0 (t+7) = 013X 013(T) @ 05X 05(7). +9A/2/4 +9A/21;l
Similarly, we have ‘-‘7/\’2\‘ —g ,2‘:‘

LY A
SEN
TT)— T (7)+ T 7). | & SIS
) + [ = &

When we calculate the resonance fluorescence spectrum of SN 2 3‘_'5 3‘2' 8’-"
the atom in the rotating wave approximation the correlation ! F
functions .72, () correspond to the frequencies;s~w *9/2 0 +g"/2,’
and w3~ | and when we calculate the fine structure of the / { !
spectrum beyond the range of validity of this approximation -g,/2} ! —gAIZ\‘
they correspond, respectively, to the frequencies -t T
o, —A=2w —w andew +A=20 -, . (See Sec. 2.2. i a b

On descrlblng thm-SyStem with the aid of the Liouvil- FIG. 3. The formation of Rabi nutations in a two-level at¢an and in a

lian in the rotating wave approximation and expanding it in;.system(b). Only a minimum set of transitions between the quasienergy
terms of the eigen-projectors, we obtain the following rela-states, corresponding to the set of all possible lines in the fluorescence
tively simple expression: spectrum, is shown,

8
n)= 2, {0161 [K)) (K| o exd (M=) 7]
N are proportional to the coefficient in front of the correspond-
+(0]op3 [K))(Kk|ospexd (A\—iw[)7]}, (11)  ing exponent in Eq(11), while their width and frequency
shift are determined by the real and imaginary parts of the
where the symbol *’ means that the operators are multi- eigenvalues., . In general, the fluorescence spectrum can be

plied in accordance with the multiplication rules for opera-cajculated numerically. In an asymptotically strong field,
tors and the result is presented in the form of a ket-vectorj,g\wever. as we shall show belo@nd has been demon-

)\.'" [k), and (k| are the ellgenrvyalues of the matrix and thestrated previousf/for a special cagean analytic solution
eigenvectors of the LiouvilliartZzya.

Using Eq.(11) together with Appendix B we can obtain can also _be qb_tamed. . .
the following expression for the correlation function that de- ' of SImplicity let us consider A-system excited by two
scribes the structure of the resonance fluorescence spectrign-Power laser fields of equal intensity. In this case we can
of the atom outside the range of validity of the rotating wave@verage the relaxation of the system over the Rabi nutations,
approximation: while the Hamiltonian corresponding to the laser-induced

precession operator,= (i/f’z)[ﬁ’/p ,©] takes the form

R e . _
A= g & (0101 (K {exi] —iw ~2)7]

0 1 1
+exd —i(w] +A)7]}exp(\¢7), (12 ,}Kp=ﬁ 9 P 9a 1.0 0
22 1 00

where thefrf2 are the complex conjugate amplitude of the
subsystem of lower levels which modulate the dipole mo-
ment of the transition. This modulation gives rise to new
spectral components in the fluorescence spectrum. This Hamiltoni d - ith en-

Recall that Eq(12) describes only the basic structure of Is Hamiltonian corresponds to quasi-energy states with en

the fluorescence spectrum, which is determined by the pae_rgies that ar? shifted with respect to the eigenvalues of the
rameterg, /w1,, Which, in turn, we assume to be small. Hamiltonian 77,, which equal{0,+g,/2}.** (For a two-
Here we have neglected the higher order contribution whichevel atom the eigenvalues of the Hamiltonian are equal to
makes a nonzero contribution to the coherent component df=g,/2}). The temporal dynamics of these mixed quasi-
the response in the rotating wave approximation, which comenergy states cause oscillations in the expected values of the
ponent equals zero when this correction is neglected in @hysical variables at two different frequencigs andg /2.

strong field in a first-order approximation with respect to theThe physical significance of these nutations in terms of the
parametef’/g, for detuningss, dg~0 (by analogy with the quasienergy levels is illustrated in Fig. 3.

two-level aton). The Rabi nutations between the quasi-energy levels are

3.1. Fluorescence spectrum in the rotating field described by a Liouvillian which, in the operator basis

approximation {N3,N1,N;,0%,,0%,,0%53,053,053,054) (the indicesc ands

The fluorescence spectrum determined by Ed) is the  denote the cosine and sine components, respectjviales
sum of Lorentz spectrum lines whose total spectral powerghe form
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Its eigenvaluea, (k=0, ..., 8) areequal to 0, 0, 0-igA/2, —igA/2,igA/2,i9/2, —ig,, igA , While the corresponding set
of eigenvectors is defined as

0 0 0 0 0 V2 o Ji2 o

0 -1/2 —-12 J1u2 © 0 0 0 0
V12 2732 2782 12 0 0 0 0 0

0o iz -ir 0 0 0 -12 0 12

{wt={ 0 0 0 0 V12 —irz o i/2 0
0 0 0 0 V12 iR 0 —il2 0
0 —il2 i 0 0 0 -12 0 112
12 -14 -1/4 —273%2 0 0 —il2 0 -il2

12 —-14 —-1/4 —273%2 ¢ 0 i/2 0 i/2

Let us now discuss the physical significance of the dynamig,/2. The last two eigenvectorgs; and g, describe the
cal variables corresponding to the eigenvecigs excitation of the bound state together with the populations of
The eigenvectory, describes the stationary excitation of all three levels and the polarization of the ground sté&th)

a system by two laser fields of equal intensity acting on theoscillating at a frequency of, . Therefore, the Rabi nuta-
1-3 and 2-3 transitions, respectively. The eigenvectorstions of the eigenexcitations of the system for combinations
1 and ¢, describe a two-dimensional stationary excitationof the unbound levels take place at a frequencyg@f2,
space, a combination of the polarization of the ground statevhile the bound states oscillate at a frequencygef (See
and the populations of all three levels. The eigenvecieys Eq. (A5)).

and g describe excitation which involves a combination of Using Eq.(13) for the nutation operatofZp, we can
the populations of the subsystems of the lower levels and aaverage the LiouvilliarZ s+ %, in Eq. (1) over the nutations
independent combination of the polarizations> 3® 2+ 3; and write it in the form of a sum of 8 3 matrices, two X 2,
they oscillate at half the Rabi frequenay,/2. The eigen- and two IX 1. (The last two are diagonal elementas a
vectors, and 5 describe excitations which are a combi- result, we can obtain a simplified expression for the last three
nation of three polarizationd < 2 and an independent com- terms in Eq.(1), which describe the overall dynamics of the
bination 1~ 3@® 2+ 3) which also oscillate at a frequency of system in the interaction representation, of the form
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_(F13+F23)/2 0 O

L awa= 0 2 —(y+y' +Tp)/2v2
0 TNV —(y+y T )b
oyt W) 2T 14— T pd—ig /2 —i52
® —i8J2 T 2— 14— T 4 igA/Z)
T2 T 4T fatiga/2 i 5,2
® i 5,2 — (yipt W)2—T 14— Tyt igAIZ)

®(—3y/8—37'18—T1/8—T144—T »fd—ig,)
®(—3y/8—37'/18—T 18— T144—T4+ig,),

where the total detuning i9s=26+ dr=w +w| — w3 The preceding analysis shows that in a strong field only
— w»3. The corresponding eigenvalues are given by the total detuningd;=25+ Sz appears among the eigenfre-
quencies of the system, and not the Raman detusding
( 0 \ Here for =0, relaxation in the system of lower levels does
—(y+y'+3I'y)/4 not contribute to the oscillations at half the Rabi frequency:
— (I3t 12312 .
w1 M12= — 14— T 294—ig,/2.

INJ=¢ M2 b This effect can, in principle, be used to study the contribu-
7 tion of the lower level system to the fluorescence spectrum in
us an experiment where the spectra are measured as a function

(—3y—3y' —T'1,— 2T 13— 2T »;—8ig,)/8 of the detuningsé for different intensities of the laser line.
\ (—=3y—3y'—T'1,—2T'15— 2T 55+ 8ig,)/8) The measured width of the spectral components located at

(14) half the Rabi frequency is then determined directly by the
relaxation rate in the lower level system.
where For the case of an exact resonané&dg=0), we can
obtain an analytic expression for the fluorescence spectrum
1 . > > in the rotating wave approximation. The major difference
m1z=7 [ =y W=t VA8~ (Y1 W+Tp)) compared to the spectra from two independent two-level sys-
) tems, however, is that in the case of thesystem the general
—I'13=Tp5—2ig,]. coefficient in Eq.(11), which determines the intensity of the

. . spectral components, differs from the corresponding coeffi-
Here y1, andw are the rates of relaxation and pumping of gjent for the case of a two-level atom, which is simply pro-

the lower level systend]'s, is the dephasing rate in this sys- o rtional to y. In coherent population trapping, this coeffi-
tem, y and y" are the rates of relaxation from the excited gjent for a A-system and, therefore, the intensity of the
states, andl’y3 and I';3 are the corresponding dephasing gpectral components decrease by roughly a factdtgfy,
rates. _ _ _ _ which is a small parameter. For the cesium aféras an
Let us now discuss the eigenvaluegin detail. example, it is~1.6x 1073, while for sodiunf it can be es-

Note that because the relaxation operator is not selfmated to be~4.9x 103 using published parameters.
adjoint, each eigenvalue corresponds to two eigenvectors,

one of which describes the operators acting on the physical

variables, while the other describes the density matrix. The

eigenvalue\,=0 corresponds to the stationary Sta}g 3.2. Fine structure of the fluorescence spectrum

—(0| and the operatdr— |0), which has no dynamical sig- For simplicity let us again consider the case of an exact
nificance. This eigenvalue determines the coherent line in theesonance. Using the equations from Sec. 3.1 together with
fluorescence spectrum. The eigenvalues, describe the Eg.(12), we obtain the following expressions for the coeffi-
nonoscillatory dynamics of the system and determine theientscy in front of the exponential factors:

Rayleigh scattering of the fields which excite the system.

The four eigenvalues; 4 s gdetermine oscillations at half the 72/F52 9 1+29/T,

Rabi frequencyg/2=g/v2 and describe the contribution of Co= (31271 )° €173 (312/T)°
field-induced resonances to the fluorescence spectrum. The

last two eigenvalues ;g determine oscillations at the Rabi 1 14T
frequencyg, and describe the ordinary13 and 2—-3 nu- C35=0, Cpe== #'
tations in the weak-field limit. 4 \3+29ITy,
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Eyao Tel. units Isolating the contribution ter;, and o, owing to four-
photon interactions outside the range of applicability of the

-

L0} rotating wave approximation, we can write E46) in the
osl form
0.6] ~ ~
[ o=+ 7080,

0.4F £ 4 4
0.21 ~ aoh oA ~

ol A . . i HP =§(§I5Soﬂl+3+§§550053)+H-C-,

ZmL - 0} o 20 - o,

w
G 4 Th ] vum otaysemthe 7, Ve 7Y determines the standard interaction;;™" de-

. 4. e resonance fluorescence spectrum of-system (the S,;, . . o . 5 _~
—2P,, transition in the cesium atonexcited by two intense laser fields Scnbe_s the addltlon_al contribution owing to _four phOton In
into a coherent population trapping state. teractions, anddS, is the four-photon contribution to the

dynamic transformation of th&-system. Using the final for-
mulas of Appendix B for the transformed operators and

043, We obtain the following formula for the four-photon

! L (15) contribution to the Hamiltonian:

C :_—l
"8 16 3+ 24IT,,

These coefficients multiplied by the common factor 54ph_ 90 f T oAt s _
yg4/4w3, determine the intensity of the fine structure com- <& =24 2 talnonlexd—i(o ~A)
ponents of the fluorescence spectr(if).

The complete fluorescence spectrum ok-@ystem, in-
cluding the structure in the rotating wave approximation as
well as the fine structure calculated above, is shown in FigBy calculating the commutators in E¢L7), we can write
4. Equation(15) implies that for the typically large values of down the four-photon contribution with the aid of the tran-
the ratioy/T 1, only the coefficients, andc,=cg are pro-  Sition operators for the low level subsystem as
portional to the large values of ordefy/T;,. As a result,

+ & oldexd —i(wl + Mt} +He (17

only three lines show up in each of the two fine structure = aph i - ) .

features of the fluorescence spectr(fiy. 4). One of them is = 9 E (Vexd —i(o —At]og,

coherent(i.e., has zero widthwith an intensity proportional ~

to cg, while the other two are broadened lines with an inten- +9&, (exd —i(w/ +A)t]o,t+H.c. (18

sity proportional toc, shifted to the left and right of the

coherent line at half the Rabi frequengy/2. This implies that the vacuum electromagnetic field interacts

with the lower level subsystem through four-photon pro-

cesses. The efficiency of this interaction depends on the in-

teraction constant of the laser fields with the dipole transi-
4, EFFECT OF FOUR-PHOTON INTERACTIONS ON tions of the A-system. The distinctive feature of this
COHERENT POPULATION TRAPPING interaction is that the emission of a vacuum photon by the
1+ 3 transition is accompanied by the absorption of-a2

. Using Appencﬁx B we can easily calculate the Cont“b.u'transition photon, while the emission of a vacuum photon by

tion to the relaxation of the ground state from the relaxatlon[he 2.+3 transition is accompanied by the emission of a
contributions of the dipole transitions. The nature of the '€+ . 5 transition photon. Conservation of energy in these pro-
laxation processes involves an interaction of the dipole MO- sses is ensured b;l/ the four-photon interaction of the
ments (.)f the -3 and 2-3 tran_smqns with the_vacuur_n vacuum field with the laser fields, and this is reflected in the
fluctuations of the electromagnetic field. These interaction

. L2 %xponential terms in Eq18).
are described by the Hamiltonian Following Ref. 10, we can write the relaxation operator

P for the low level subsystem, which corresponds to @),
M=% (51 o131 & ‘723) +H.c, (18 in its customary form in terms of the operator basis

{ﬁlrﬁb‘}l-&Z}:

where
~_ 1 - ~_ 1 - %
& =%fd13(r)E0(r), & =%fd23(r)Eo(r) T
L ~ Y12 Y12 0 0
are the components of the vacuum electromagnetic field W W 0 0
Eo(r) with negative frequency amplitudes integrated over = 2 2 ,
the spatial distributiond,;(r) of the dipole moments 0 0 — (vt wip)f2 0
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wherey,, is the relaxation rate of the lower level subsystem. Given that the ¢é&qo;, in Eq. (18) describes a relaxation

transition from level 1 to level 2 and the tergr&z_ (}1+2 describes a transition in the opposite direction, we obtain the following
expression for the relaxation owing to the contribution of four-photon processes:

—c®y;3 Cyis 0 0
74ph_£ c'?ys —C'%y3 0 0 (19
T2 7aA%) 0 0 —(CPy13tC'?yp9)/2 0 '
0 0 O _(02713+C,2'}/23)/2
|
wherec=g/g,, ¢c'=g'/g,, andc®+c’'?=1. When the contribution of four-photon processes to resonance

Equation (19) implies that the contribution of four- dephasing is taken into account, the relaxation operator in
photon processes to the relaxation rate constant of the lowdhe expression forZgwa must include the field-dependent

level subsysteml;, is given by correction(19). Then the results of averaging in Eq20)
and(21) with a natural choice of basis for the vector repre-
9 92 sentation of the density matrigsee Appendix Al are de-
r‘l‘ghstAz (C'2y13+ CPy,g)~ 4TAA2 v142. tscri(l?)Td simply by the corresponding components of the vec-
or {0|.

. _ Performing the corresponding analytic calculations and
This contribution leads to a fundamental lower bound on 9 b g y

. ) .expressing the concentration of active atoms in terms of the
I'15. As an example, for the Cs atom and laser field intensi- b 9

ties of ~1 W/cn?, we havel'jb"~103y,42~10" s7%. pressurep, we obtain

~2 =2 _=2T $,=27
Y ~ (977 92)'126+9g7 R
5. THE ROLE OF FOUR-PHOTON INTERACTIONS IN THE Ng—1=—0.028P\° =5 ng| 6— — T 4124432 |
FORMATION OF AN ABSORPTION RESONANCE 9k 9ali2 12 R
AND DISPERSION (22)
The simplest experimental possibility for observing theand
dark resonance is to measure the transmission and/or disper-
sion (in atomic vapoy of exciting laser waves, whose inde- ~5
pendent detection is made_ easier by th_e relatively large dif- ny=0.028P\° Z_z Ns. (23
ferenceA of the corresponding frequencieg andw, in the 9k

neighborhood of the resonancg>1". The real and imagi-

nary parts of the corresponding refractive indices are exHerens describes the population of the excited state calcu-
pressed in an obvious way in terms of the operators for théated according to the formula

corresponding dipole transitioiassuming that macroscopic

volume averaging is validas 25752 3
1 ~
Ng=|3+ =55 (1+69)+ 5
=" ol @0 o
K= m y g~ — — - ~ o~ — ey~ ~
e Xgirlz+g§/4—<g§—g§>2F1252+29i(g%—gi)aRa,l
and Gig5(0&+ T+ 1093/4) ’
PN where the tilde means that the corresponding variables are
n.—1= 9% Re(|k)(3|), (21)  normalized toI'. The argumentss and oz depend on the
e velocity of the atom owing to the single-photon and residual

_ i i Doppler effect, while the damping’,, in the lower level
wheregy andl are the corresponding Rabi frequencies andsystem is determined by the reciprocal time of flight of the
intensities of the fields, witik=1 corresponding to fre-  5iomfor a cuvette with pure vaparThus, in order to obtain
quencyw, andk=2 to o (hereg;=g andg,=9g’). To  computational data which model the experimental situation,
calculate Eqs(20) and(21) in the stationary case it is nec- Egs.(22) and(23) must be averaged over a Maxwellian ve-
essary to find the stationary density matrix in the rotatingbcity distribution, which is done numerically.
wave approximation; this matrix is represented by the corre- Figure 5 shows calculated resonance absorption curves
sponding zero eigenvect¢®| determined from the equation ¢, 23, 2Py, transitions in cesium and potassium for in-

tense pump and weak probe fields. Although four-photon

(0| Zrwa=0. dephasing is not very important for cesium, in the case of
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FIG. 5. Absorption resonances in cesigan
and potassiuntb) vapor including(smooth
curve and neglecting(dotted ling four-
photon dephasing. The dot-dashed curve in
Fig. a corresponds to a calculation taking
four-photon dephasing into account where
the separation between the lower levels was
specially reduced by a factor of 10. The field
intensities in the calculations were
I,=0.01 mW/cn? andl,=10 mWi/cnf.

-2 -1 0 1 2 -4 -2 0 2 4
Raman detuning, MHz Raman detuning, MHz

potassium, for which the splitting of the ground state for the(V.N.Z.) is indebted to the Humboldt Foundatié@ermany
isotope “IK is only 0.25 GHz, i.e., almost two orders of for support.

magnitude smaller than the splitting in cesium, with a pump  Thus work was supported in part by the Volkswagen-
field intensity of 10 mW/crhthe resonance in the absence of Stiftung (Grant No. 1/7294%and the Russian Fund for Fun-
a magnetic field is essentially unobservable. Thus, the fourdamental ReseardiGrant No. 96-03-032867

photon mechanism for dephasing of theresonance estab-

lishes a fundamental limit of “observability” for the absorp- APPENDIX A

tion resonance in strong fields, by imposing a limit either on

the pump field intensity or on the magnitude of the splittingDynam'C superoperator of & A-system

in the ground state. Let us consider a\-configuration of the quantum me-
chanical levels of an atonfFig. 1) acted on by two laser
6. CONCLUSION fields with frequencies close to a Raman resonance which is

Four-photon interactions, therefore, play a fundamentafjescrIbGd by a Hamiltonian of the form

role in the formation of fluorescence spectra, as well as of the  _ . .
absorption spectra and/or dispersion of a resonAnsgstem TON=Tlqt+ ), (A1)
during coherent population trapping.
A typical arrangement of a possible experiment for de-where
tecting a resonance fluorescence spectrum employing an
atomic beam is shown in Fig. 1b. Experiments of this SOt O = —hiwiy2)(2| + w4 3)(3]
using an atomic beam and an atom trap have been described

. . : 14 H 15 . . L . .
in detail by Gauthieret al.™ and Stalgieset al,™ respec- s the intrinsic Hamiltonian of the atorfthe energy of level

tively. The directions of the atomic and laser beams are choy js taken to be zero, so that the projection opergitpfl] is
sen to be mutually perpendicular so as to avoid the ordinargpsent in the Hamiltoniarand

Doppler effect. The fluorescence spectrum is analyzed with a
Fabry-Perot interferometer. Calculations for the fluorescence -
spectrum of two-level atoms show that for an atomic beam ~71=%9 cogw t+e)(|1)(3[+[3)(1]) +#g’

with 10° atoms/smn?, using a 5-millimeter Fabry-Perot X cod w] t+¢")(|2)(3]+]3)(2])

cavity with Q~10* one can expect more than®1photons/s -

from a volume of diameter-100,um. For aA-system, four- s the Hamiltonian of the interaction of the atomic system
photor_1 mtera_ctlons, on one hand, reduce the fluorescencgin two light fields having frequencies, andw| , includ-
Intensity rzelatlve to that of a two-level atoms by a factor ofjuq the dependence of the excitation on the phase of the field.
(gr/2w17)%, and, on the other, increase it by a factor of Thg jnteraction constants, i.e., the Rabi frequencies, depend

(v/T12) 2. As an example, for the Cs atom a saturation in-op, the amplituded, andA, of the external field an on the
tensity of 1.1 mW/cm and the corresponding paramete L L

g, =10%y are already achieved for a laser power of 30 mW
at a wavelength of 852 nm focussed into a spot with a diam-

. .
dipole matrix elementsl;; anddos:

eter of about 1 mm. For these experimentally easily realized 1 , 1
" A L= A, 9= A, (A2)
parameters, we may expect, as the calculations show, a re h L h L
duction in the scattering intensity of thesystem compared
to two-level atoms by a factor of>210° and, therefore, to Only the case when a single-photon resonance is present
detect fewer tham-100 photons/s, which is not a problem is of interest, i.e., whem, andw, are close, respectively, to
for modern detection systems. w13 and w,z. We can rewrite 7, in the form
The authors thank D. N. Klyshko, A. Schentzle, and R. R R R
Wynands for fruitful discussions. One of the authors . 7Z,=.7,+.7%5, (A3)
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where the “unperturbed” Hamiltonian 12)=g,(g€?|c)—g’e "¢ |n)),

-}%Zﬁ(wn_|3><3|—A|2)<2|), (A%) which leads to the result

2

" Jexel+

including the biharmonic  frequency  detuning N
A=w|— o ~w;,, describes free precession with the two 7=
laser frequencies. The “perturbing” Hamiltoniarr,, can be

written in the form + 8g gng [elte=¢)|c)(n|+H.c.]

Or0
o+

2 v

T s=—183)(3| +5:12)(2], figa
+ > (|C><3| +H.c.).

where

In the basis{|3),|c),|n)} the corresponding matrix has the
d=w — w13, SrR=0[~ 0~ form

describe the single-photon detuning for {i¢—|3) transi- 0 ha2 0
tion and the two-photon Raman detuning, respectively. Both | 9a
detunings can be zero with a suitable choice of laser frequen- . 7Z,=| figa/2 6 0

cies. 0 0 I

The dynamics of an atomic system with the Hamiltonian
(A3) can be characterized as a combination of fasting to s 0 0 0
7/0) and slow(owing to. 7/5) precessions, so it is appropri- + —ZR 0 g? gg’e”“’*“")
ate to shift to a representation of the interaction with the 9 0 gg’e*‘“"*“") g'2

unperturbed unitary transformation

. and, for 5g=0, can quickly be expanded in terms of the
p _ e 2X2 matrix of a two-level system “dressed” with the
/Jo(t)—exr{ %Ot}' atomic field and the X 1 matrix of a single unbound state,
i.e., the excited and bound states form an effective two-level
In the rotating wave approximatibmve can neglect the rap- system |e)@|c). For simplicity we redefine|l) as
idly oscillating terms, so that the Hamiltoni&A1) takes the exp(—i¢)|1) and|2) as expfi¢’)|2), so that we can rewrite
form Eqg. (A6) in the form

TN=T s+ Hp=h] = 83)(3|+ 6r|2)(2| +(9r/2)(|c) o) =gx'(gl1)+9'[2)), [m=-gy%(g'[1)—g[2)),
X (3|+H.c. . : .
(S[+H.c)] (AS) which does not contain the phase factors explicitly.
With this representation of the Hamiltonian in the rotat-
ing wave approximation, the corresponding dynamic part of
the Liouvillian has the form

and is the effective Hamiltonian in this approximation. Here,
we have introduced the bound state)j and the unbound
state (n)) orthogonal to it:

lcy=g, (ge '?|1)+g'e"¢'[2)), % :—[7/A,®] (A7)

Iny=—g,X(g’e'?|1)—ge ¢'|2)). (A6)  The complete LiouvillianZgya also contain a relaxation
operator which is specified phenomenologically here.
The statdc) is associated with excitation of the levelith
an effective coupling constant af,=/g?+g'2. For zero
Raman detuning §&g=0), it is easy to see that the Hamil-
tonian (A5) describes a two-level system. This can be dem-
onstrated most clearly by substituting the express®) ) o
corresponding to the inverse transformatioh6) in Eq. The initial representation of the Liouvillian in the rotat-
(A5): ing wave approximation is a matrix in the nonhermitian basis
{e =P, p=|a)(Bl, where k=(a,8) and a,=1,2,3,
-, , which can be represented by the following complex matrix
|1)=g5"(g'€'*'[c)+ge '), elements using Eq$A7):

Al. Transformation of the Liouvillian in the rotating wave
‘approximation
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At ’ 0 0 _ 2 -~ _ = -
Y=V Y Y 2 2 > 2
ig ig
0 - 0 0 — -— 0 0
Y12 Y12 2 2
0 w o o-w 0 0 0 0 8
2 2
: ig’ ig
0 0 0 og—T 0 —_— 0 0 - —
IorR—1 12 5 >
ig’ [
Fawa= 0 0 0 0 —isg-Typ, 0O 9 '9 0
2 2
i i ig’
_9 9 9 0 —i5-T4 0 0 0
2 2 2
9 _9 0 0 _9 0 i6—T 3 0 0
2 2 2
ig’ ig’ ig .
-— 0 —_— 0 — 0 0 6—T 0
2 2 2 1ol
ig’ ig’ i
9 o -9 _8 0 0 0 0 i6-Ty
2 2 2
For converting to the more convenient Hermitian bases, we can introduce two transfornvgtiangV; of the form
1 00 00O 0 0 0 0
0 1 00O 0 0 0 0
0 01 0O 0 0 0 0
0 001 O0 0 0 0 0
V.= 0 0 0 0 1 0 0 0 0o 1,
0 0 0 0 0 glgx 0 g'lga 0
0 00 0O 0 a/ga 0 ag'/ga
0 0 0 0 0 —g'lgx 0 a/ga 0
0 00 0O 0 —g'lgy 0 a/gx
1 0 O 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 12 1m2 0 0 0 0
V=] 0 0 0 —ilv2 ilv2 0 0 0 0 (A8)
0 0 O 0 0 w2 1V2 0 0
0 0 O 0 0 —ilv2 ilv2 0 0
0 0 O 0 0 0 0 w2 1INV2
0 0O 0 0 0 0 —ilv2 iv2

The transformatiorV/, introduces two pairs of polarization operatd?s, ﬁ’* and ﬁ’n,l5+ for transitions to the excited level
from the bound and unbound states whilg introduces the Hermitian cosine-sine operatarsalogs of the coordinates and

momenta or the Pauli matncesl 02 in a two-level system

qg:(Plz+ Po)/V2, pg:_i(P12_ P,)IV2,

Qc=(Pc+PIIVZ, po=—i(P.—P)IV2,

4n=(Pa+PIVI, Po=—i(Py—P;)IVa. (A9)
Here the subscriptg, ¢, andn correspond to the ground (22), bound ¢« 3), and unboundr(«3) subsystems.
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After applying the transformation@\8) to the Liouvillian %gwa in the rotating wave approximation, for the transformed
operatorl gy a= Ve Vel rwaVs Vo, we obtain

ga
-y—v y y' 0 0 0 — 0 0
V2
2
0 ~ Y12 Y12 0 0 o - 0 0 £79,
V2 V2
2
0 W o-w 0 o | o 79 o _E79
V2 V2
3 B _ 5 o 9a
0 0 0 | PP ORr 0 Enga 0 —(¢ _77)7
@ , A10
RWA 0 0 0 Sr “T,| o 0 _g?A 0 (A10)
0 0 0 0 0 | -T, 5 AT 0
2 2
O [ 0 | -6 -T. | o0 AT
V2 V2 V2
0 0 0 0 %A AT 0 | -T, 5
0 _ Engn  €mdy (52_ 7]2) g_A 0 0 AT -5 -T,
) ) 2

where we have used the following notation
£§=09lgx, 1=9'19x,
Fo=&T 13+ nTa3, Tp=9T1a+ T3,

ATl'=&n(I'13—T'z3).
The block structure of the transformed dynamic superoperiaigy, indicated by the continuous lines in EGAL0) is
discussed in more detail in Appendix A2.

As opposed to the initial complex representation, the transformed operaigr, has real matrix elements, since it
corresponds to the Hermitian bagts,!.

For a symmetricA-system, withl'13=1",3, g=g’, and, thereforeAI'=0 andé= 5, Eq. (A10) takes the form

—y—v' 0 v 0 0 0 galv2 0 0
0 ~ Y12 Y12 0 0 0 —gp/2v2 0 ga/2v2
0 w -w 0 0 0 —gapl2 0 —gp/2v2
0 0 0 -T'y, —6g| O —gp/2 0 0
L rwa= 0 0 0 o -Ip| O 0 —gp/2 0
0 0 0 0 0 =T 1) 0 0
—galv2  gpl2V2 gal2 | gul2 0 ) -T 0 0
0 0 0 0 gal2 | O 0 -T S
0 —gp/2v2 gp/2v2 | 0 0 0 0 -4 -T
|
A2. The block structure of the dynamic superoperator in the tion variables(A9). By analogy, the matrix blocks can be
rotating wave approximation numbered with a subscrigi corresponding to the popula-

The physical significance of the superoperdtgg, de- tions and by the subscripts ¢, andn corresponding to the

fined by Eq.(A10) becomes most transparent on examiningPolarizations of ground (4-2), bound (%-3), and un-
its block structure. It is convenient to break the matag0) ~ Pound (1-2) subsystems. In this notation, the matid0)

up into blocks in accordance with a definite set of polariza-2PP€ars as
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Lop O _sz —Llp where the perturbation Liouvillian has the form
0 Ly —-L&; —L; i .
Lrwa= oo e (AL1) 8L p(1)=7[87(7),0]. (B4)
ch ch Lec _an h
Lop Lng  Lnc Lon Integrating 5Sy(t) with respect tor and using Eq(B4)

It consists of nine nonzero independent blocks. The diagonr;ﬁ)gemer with Eq(B3), we obtain

block L ,, describes the dynamics of the populations n, OA ~ At A4 iat
andn,, and the blocks 44, Lcc, andL,,, the polarization 8Sp() =Sy [T€7 —77e 7, 0]S(1), (B5)
dynamics, respectively, of the ground state and of the bound

and unbound subsystems. The five nonzero nondiagonal m#hich describes oscillations at a frequenky

trices describe the dynamics of thesystem owing to cou- The superoperatdy(t) in Eq.(B5) describes the unper-
pling among the above basis variables. The antisymmetry dtirbed dynamics represented by the Hamiltoriia), which
these five blocks is a consequence of the purely oscillatoraccounts for the free precession of all thesystem transi-
character of the dynamics resulting from the interaction withtions. The latter is represented in the form

the external field, while the inner dynamics includes relax- _ ot a—iAty ot pidt g ot a—ioty oF iogt

ation so it is also represented by the matrix elements which So(D=Se TOSETeS; L MBS e
yield nonzero real components in the eigenvalues of the ma- ®She olle Shelelte Py, (B6)

triX “Zrwa-

It is easy to see from the block structure @f11) that ~ where the matrice§,; for the corresponding superoperators
there is no connection between the populations and polarizare the one-dimensional eigen-projectors on the correspond-
tions of the ground state, sincey,=0. This reflects the fact ing intrinsic precession of the variables aRglis the projec-
that the exciting field acts directly only on transitions into thetor on the three-dimensional subspace of the nonoscillatory
excited state, while single-photon excitation of the groundvariables, i.e., the populations. After substituting BBg) in
state is absent. Eq. (B5), we obtain

The block representation given here for the dynamic su-

peroperator in the rotating wave approximation is convenient  sg(t)= 9A ({7,015 exd —i(w_—A)t]

for qualitative discussions of the effect of the parameters of 2A

the A-system on its dynamics, since it reduces to changes in 5 OIS ext —i(w! + At

only the inner structure of the blocks in the representation (77, O1Sz ex i@+ At]

(A11). —[77,01Sz exdi(w, —A)t]

APPENDIX B +[7,0]S; exdi(w +A)t]}. (B7)

Superoperator calculation of the general formula for the Then substituting Eq(B7) into Eqg. (B2) and using Eq.
fine structure of the spectrum (B1) together with the relatiop,S(0,t) —(0| for t—o be-

cause of the damping of all the eigen-oscillations corre-

Let us calculate the two-time correlation functi¢fo) sponding to the nonzero eigenvalues, we can finally write the

that determines the atomic fluorescence spectrum: correlation function in the form

T =(peSOD]o~ (O[S(tt+ D  (t+7]).  (BD T+ 1) =(0]6So() 5 - XD Lrwar) 8So(t+ 1) 5,
Here the total evolution superoperatisee Eq.(2)) has the (B8)

form where the symbol “” denotes the product of transformed

S(O,t)=SRWA(t)§O(t), (B2) operators an@ = = o 3+ o3 is the sum of the complex am-

whereSgwA(t) is the superoperator in the rotating wave ap-pIItUdeS oscillating at the oE)t+|caI frequenues; . “y
If we then applyéSy to o~ and recall thar;; and o3

proximation andSy(t) is the superoperator for the perturbed : S + +
evolution owing to the nonresonant interaction. The superopz-ire eigenvectors for the eigen-project@fy and S;, we

= ; . - obtain
eratorSy(t) describes the transformation of an initial system

i ian. 7 ~_ OA g~ .
Hamiltonian.7/(t) of the form 5Sy(1) &~ = — o (7 o mlexdi (o, — A)t]
s ot sy s TN iat, sk iad
W(t)%]/o‘l‘ 575(':):]/0‘*'7(7'9' +77e™! ), +[AT,&2_3]eX[[i(w,'_+A)t], (Bg)
R B3 and
where the operator is defined by Eq.(9). In first-order
perturbation theory we can introduce a superoperagt), 5Sy(t+ 7)o" :3_2 {[7,075lexd —i(w —A)(t+1)]

corresponding to the Hamiltoniai®3), in the form
+[77,055]exd —i (o +A)(t+ 7]},

~ t
So(t)=So(t) + 6Sg(t) = So(t) + JO 0 Lp(T)d7Sp(1), (B10)
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where the commutators of the complex amplitudes of the Let us consider the important special case in which the
13 and 2-3 transitions withr and 7" are given by oscillations in Eq(C.2) are fast compared to the rates of all
the relaxation processes, so that it is possible to average over

oA _E N _3_1+2 these oscillations. Then the resulting effectiVeeduced”)
[7.015]= 2’ [7.023]= 2’ relaxation operator has the form
[’T a'+ ]:(}_1—2 [’T+ fr+ :@ ‘%rezzﬁ Laa,,BB|a><:8|®|ﬁ><a|
Y13 \/E’ Y23 \/5 . !
After substitution of Eqs(B9) and (B10) in Eq. (B8) and + zﬁ L op,apl@)(a|O|B)(B, (C3

leaving out terms which oscillate relative tpwith the dy-

namical representation in the rotating wave approximation inyhere it is assumed that all the frequencigg; correspond-
terms of the eigenvectors and corresponding eigenvalues Epg to the— « atomic transitions ¢ # 8) are different. The

(B8) finally takes the form of Eq(12). first term in Eq.(C.3) describes the relaxation of the popu-
lations owing to 8— « transitions from other levels §
APPENDIX C #a) and radiative decay d=«). The second term de-
Transformation of the time evolution superoperator in the scribes the relaxation of the polarization variables. The cor-
rotating wave approximation responding matrix imXn, wheren=3 is the number of

. L ... levels in aA-system.
i For a A-system with a time-independent Hamiltonian The superoperatofC3) commutes with the dynamical
A, the time evolution superoperator is unitary and is given_jouvillian, since they have an eigenbasis in common. Given
by an exponential“(t) =exp(” ;1) with a purely dynamic  this circumstance, the relaxation of the atomic oscillations is
Liouvillian of the type(A7) and can be written in the form  simply described by the corresponding damping rates

L= )= ext] —i(w, Fap=—Relapap-

xp If these guantities are all nonzero, then the statioriagyo)

—wp)t]|a)(a|O|B)(Bl, (C1)  vector(p% has nonzero components only in population re-

. : laxation space and is actually described by rtheomponent
where thew, and|a) are the Bohr eigenfrequencies and the P st y . y P
zero-vectorp,, of thenXn submatrixL ,, gs -

corresponding eigenvectors of the Hamiltonian, while the
unitary transformatiorvZ(t) is specified by the relation
i 1LBJ. D. ?gar’J\;ekalVIé B.lG;J;gy, B. G. Matisov, and Yu. V. Rozhdestvenski
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