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Delocalization-enhanced Bloch oscillations and driven resonant tunneling in optical lattices
for precision force measurements
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In this paper, we describe and compare different methods used for the accurate determination of forces acting
on matter-wave packets in optical lattices. The quantum interference nature responsible for the production of
both Bloch oscillations and coherent delocalization is investigated in detail. We study conditions for the optimal
detection of Bloch oscillation for a thermal ensemble of cold atoms with a large velocity spread. We report
on the experimental observation of resonant tunneling in an amplitude-modulated optical lattice up to the sixth
harmonic with Fourier-limited linewidth. We then explore the fundamental and technical phenomena which limit
both the sensitivity and the final accuracy of the atomic force sensor at a 10~7 precision level [Poli et al., Phys.
Rev. Lett. 106, 038501 (2011)], with an analysis of the coherence time of the system. We address a few simple

setup changes to go beyond the current accuracy.
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I. INTRODUCTION

The coherent manipulation of cold atoms trapped in optical
lattice potentials finds powerful applications in different fields
such as high-resolution metrology [2], quantum information
processes [3], strongly correlated quantum phases [4-6], as
well as in the determination of forces at micrometer resolution
[7-12]. In particular, loading cold atoms into tilted optical
lattices has led to the possibility to detect Bloch oscillations
in the presence of constant forces [13,14], as well as Wannier-
Stark ladders and tunneling [15], while the introduction of
dynamical driving of the lattice depth has been used for several
purposes: performing spectroscopy studies of interband exci-
tations [16—18], characterizing the Mott-insulator regime [19],
quantum simulations of spin chains [20,21], and demonstrating
Loschmidt echoes in thermal gases [22,23] and their utilization
as a high-fidelity atom mirror [23].

In the present paper, we aim to show how it is possible to
merge the two phenomena of Bloch oscillations in tilted optical
lattices and dynamical driving of lattice phase and amplitude
to perform measurements of forces with high sensitivity
and accuracy. This combination leads to the realization
of a technique that we call delocalization-enhanced Bloch
oscillations (DEBO), which is characterized in detail both
theoretically and experimentally in this work. We provide
a unitary treatment of the dynamical system originated by
an accelerated periodic potential which is driven by both
amplitude (AM) and phase (PM) modulation. We give a com-
prehensive theoretical explanation for the effect originating
from an interplay between external acceleration and the driving
fields. This theoretical analysis and its predictions can be used
to understand and interpret the experimental demonstrations
about controlling and tailoring the quantum transport of matter
waves through coherent delocalization by resonant phase
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[24] or amplitude [23] modulation, observation of quantum
transport over macroscopic distances, macroscopic Bloch
oscillations in real space by off-resonant modulation [25],
and coherent phase imprint over the matter waves showing
Loschmidt echoes. Furthermore, starting from the analysis of
space and time symmetries, we provide a demonstration of the
resonance spectrum accuracy of the coherent delocalization
technique.

Particular attention is then paid to the utilization of these
techniques to develop a force sensor for precision measure-
ments of the gravitational acceleration g based on an accurate
determination of Bloch frequency. We provide experimental
measurements of Bloch frequency by direct observation of
the modulation frequency at which resonant tunneling occurs,
and we compare it with the one derived from the DEBO
technique in momentum space after several-thousand periods.
Since these two techniques rely on coherences of matter waves,
we experimentally investigate the decoherence phenomena
limiting the force measurement sensitivity. Finally, we review
all of the important systematic effects and the specific impact
on the two different techniques, providing the error budget and
thus a significant comparison of their performance.

The paper is organized as follows. We outline in Sec. II
the important aspects characterizing the quantum motion in
modulated optical lattices in terms of Wannier-Stark states,
discussing it from the two alternative points of view of
position and momentum space. We calculate the transport
resonance spectrum by means of the Floquet theory [26]. We
provide an analytical, simple model explaining the interference
peak enhancement of Bloch oscillation visibility resulting
from prior lattice modulation. We describe in Sec. III the
experimental setup and procedures adopted in order to tune
the governing parameters and study the system’s observables.
We explicitly discuss in Sec. IV the general advantages of
using modulation driving to improve phase sensitivity in the
measurement of Bloch oscillation frequency. The analysis
and comparison of sensitivity obtained with Bloch oscillation
and resonant tunneling measurements is presented in Sec. V,
where the error budget is analyzed. Section VI, finally,
contains concluding remarks and perspectives on how to
further improve sensitivity for precision force measurements.
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II. THEORETICAL FRAMEWORK: QUANTUM MOTION
IN MODULATED OPTICAL LATTICES

A. The system: Tilted optical lattices

We consider the quantum motion of noninteracting ultra-
cold atoms of mass M, loaded into the one-dimensional (1D)
optical lattice U(z),

Uo 2
UQx) = —— cos (7z) , (1)

with lattice constant d and lattice depth U [27]. This is orig-
inated by the interference pattern of two counterpropagating
laser beams with wavelength A, = 27/k;; the interference
contrast controls directly the depth Uy, while the wavelength
determines the lattice period d = A, /2. As we are interested in
a nondissipative potential, the laser-beam frequency has to be
far detuned from any atomic transition to make the scattering
rate at which atoms spontaneously emit photons negligible.
Motional degrees of freedom can be driven by external
forces, F(z) = —9d,;V(z), and quantum motion can be tailored
by modulating the optical lattice either in amplitude or in
phase. The effective Hamiltonian governing the system is

2
H(z,p.t) = 2p_M + UM +af(O] = pzf()+ V(z), (2)

where f(t) = sin(wyt — @) is the time-dependent harmonic
driving function, and @ and B are, respectively, the amplitude-
and phase-modulation depths. In the reference frame comov-
ing with the lattice (Kramers-Henneberger transformation), 8
is a function of the spatial driving amplitude zo and wy, as
B =Mz a)ﬁ

In the absence of both external forces and modulations, the
stationary solutions of (2) are Bloch states |wg(k)> labeled by
band index j and quasimomentum k, which satisfy Bloch’s
theorem expressing invariance after translation of n lattice
sites [13]. The corresponding energy spectrum consists of
Bloch bands E (k). These are conveniently represented within
the first Brillouin zone, BZ = [—k; ,k; ], so that each band of
index j is continuous over this interval. Within a semiclassical
approach, the derivative of the energy band determines as a
function of k the group velocity of the wave packets in the
optical lattice:
10E;(k)

ve(k) = = —7 3)

Depending on the particular quasimomentum k distribution,
an initially localized particle can propagate from site to site by
means of the so-called Bloch tunneling, resulting in a ballistic
spread over the whole lattice [28]. By applying external forces
and lattice modulations, it is possible to control and coherently
drive the quantum motion of wave packets.

In the simplest case of a constant force F(z) = F, atoms
undergo oscillations with angular frequency,

Fd
o “4)

which manifest themselves both in momentum and real
space; this oscillatory phenomenon is well known as Bloch

oscillations (BO). The external constant force F breaks the
translational symmetry, so that the Bloch states |1/f1j; (k)) are no

wp =
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longer eigenstates of H(a = 0,8 = 0). Nonetheless, we can
still use them as a basis set. If interband Landau-Zener (LZ)
tunneling can be neglected, one finds the time-evolved wave
function

d .
|wm=25;/MQw—ﬂmwmm, 5)
j BZ

where G ;(k) are periodic functions with period 27 /d, which
are determined by the initial state at + = 0. Thus, in case
LZ tunneling can be neglected, the system behaves as if
the quasimomentum k evolves in time according to the
semiclassical equation of motion

h—— =F. (6)

Here, it is implicitly understood that the evolution of quasimo-
mentum is considered folded within the first Brillouin zone.

The linear increase of the quasimomentum results in a
periodic change of the atomic momentum distribution with
the angular frequency (4): when the quasimomentum reaches
the boundary of the Bloch band, it is Bragg reflected [29].

An alternative description of BOs can be given in terms of
Wannier-Stark (WS) states |, ;), which are quasistationary
states constructed from the energy band of index j and centered
on the lattice site of index n [30]. In essence, the — F'z potential
breaks the translational symmetry, and the state energies at
different sites become mismatched to produce a ladder,

gn,sz_j_an:Ej—nth, (7)

where the single energy step is determined by the Bloch
frequency in Eq. (4),and E; = d/(27) [, dkE ;(k) represents
the average energy value of the jth band.

Bloch tunneling is thus suppressed and the phenomenon of
Wannier-Stark localization occurs, though nonzero probability
for LZ tunneling introduces a finite lifetime [31].

If we consider a state with initially defined wave vector kg
at ¢+ = 0 in the lowest band, then its time evolution will be

|1ﬁ(k(),t)>: Z e—i5n<jf/heik011d|qln’j>

n=—00
— e—iEjl/T’l Z ei(k0d+w81)n|\pn7j>
=7 EM g (k(1))), (8)

where k(1) = ko + wpt/d should be intended modulus the
Brillouin zone. The latter result is identical to that of Eq. (5)
previously derived from the semiclassical equation of motion.
This second point of view puts in evidence the interferometric
character of this phenomenon [8], where a phase imprint wp?
occurs from site to site. Thus, observing Bloch oscillations
requires the initial state to be prepared with coherences
between separated sites, namely, in a superposition of at least
two different WS states, e.g., |V, ;) and |¥, ;). Conversely,
if the initial state is given by a single WS state, then the
dynamics would simply reduce to the accumulation of a trivial
global phase. Site-to-site coherence implies, in other words,
that the coherence length of the atomic cloud must be longer
than the lattice period d, which for a thermal gas is of the order
of the thermal de Broglie wavelength.
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Therefore, intuitively, a way to enhance the visibility of
the BO momentum peak is to set a coherent broadening of the
initial wave packet. We will come back to this point in Sec. I E,
where we show how amplitude and phase modulation of the
optical lattices contributes to the observation of DEBOs.

B. Driving by nearly resonant amplitude and phase modulation

We study the dynamics resulting from the time-dependent
Hamiltonian in Eq. (2). We show here that both the amplitude
modulation (AM) (¢ # 0, 8 = 0) and phase modulation (PM)
(¢ =0, B # 0) of an optical lattice are very flexible tools to
steer the quantum transport of atomic wave packets in tilted
optical lattices, i.e., in the presence of an external constant
force F. In particular, we are interested in the coherent
delocalization of matter waves by means of resonant tunneling.
Resonant tunneling occurs when the atoms absorb or emit
energy quanta 71 wy, resonant with the £th harmonics of Bloch
frequency €/ wp, while they tunnel upwards or downwards
along the optical lattice, respectively. For this reason, we
will consider nearly resonant modulation frequencies wy, i.e.,
wy =~ £ wg. Energy quanta are exchanged between the atoms
and the photons of the modulated optical lattice, suggesting
an interpretation of this transport mechanism in terms of
photon-assisted tunneling [24,32,33].

In the rest of this work, we will consider only physical
regimes where interband LZ tunneling is fully negligible. For
clarity, we therefore drop the band index j, since under this
assumption the atomic dynamics remains confined in the same
initial lattice band at all times.

In the case of AM driving, we can use the WS basis to
rewrite the Hamiltonian in Eq. (2) in the tight-binding form,

+00

Ham = ) —nhwp|W,)(W,|

n=—0oQ

+00
U
+> [%C?M sin(@umt —@)| Wire) ("IJHH_H-C;| ,

n=—0o0

9

with the coefficients C?M = (W,,4+¢| cos(2k;z)|W,) represent-
ing the real-valued overlap integrals between resonantly
coupled WS states |W,). In writing the Hamiltonian (9),
we neglected all time-dependent coupling terms, except
for those which are nearly resonant. For this reason, we
disregarded the interband coupling terms, too, as we assume
the modulation frequency wy, to be much smaller than the
energy gap between lattice bands. It is possible to express
the Hamiltonian in a time-independent form by transform-
ing it into the rotating frame through the operator Ugrp =
exp[—i Z:;”ioo n(wy/0)t|V,)(¥,|]. Using the rotating-wave
approximation where the fast oscillating terms are neglected,
one obtains

) +00 B
Hiw = 2 [ 19 (Wl

n=—0oQ

) B jAM
4 <ez<n/2 ¢)ZT|\pn+£)<\.Iln| +H.c.>i|, (10)
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where § = wy — wp is the detuning, the prime refer to the
transformed reference frame, and the complex-valued coef-
ficients expli(/2 — $)] MM represent the tunneling rates,
which are determined by
o U()

T<Wr1+5| cos(2k2)[Wy). (1)

Both parameters o and ¢ can be precisely controlled in
an experiment, offering great flexibility in steering atomic
transport. For instance, a simple shift by 7 of the phase ¢
allows the tunneling rates to be inverted [23].

Itis worth noticing that the coefficient C;*™ can be viewed as
the Franck-Condon factor of a stimulated two-photon Raman
transition [34], leading to the interpretation of a two-photon
Raman process underlying the resonant tunneling among
intraband WS states [35].

In the case of PM driving, following a procedure similar
to the one used for AM modulation, one can express the
Hamiltonian in the tight-binding form

jAM _
fi =

+00
Hew = Y —nlhop + d sin(wyt — $)11W,) (¥, |
) +00
— Y [BACM sin(@yt—¢)|Wose) (U +Hec],

(12)

where the coefficients CEM = (V,+¢|z|W¥,)/d represent the
real-valued overlap integrals between resonantly coupled WS
states. Similarly to the approximation made in the AM
case, in Eq. (12) we disregarded all off-resonance time-
dependent coupling terms between different WS states; in
addition, it is worth underlining that the diagonal time-
dependent terms are kept here, in contrast to the AM
case, as they exhibit a spatial dependence on the lattice
index n. Applying the transformation into the rotating
frame Urp = exp[—i Z::OiwnA(t)NJ,,)(\Il,,H with A(t) =
(o /Ot — Bd/(hwy) cos(wyt — ¢) [36-38], the Hamilto-
nian takes the time-independent form

) +00 K
HPMZ Z n7|‘yn)(“pn|

n=—0o0

) B jPM
n (em/z ¢)lT|\yn+g><qzn| +H.c.>:|, (13)

where the complex-valued tunneling rates expli(w/2 —
$)1 TP are determined by

IM =26, M (ﬂ) , (14)

with J; as the first-order Bessel function of the first kind, and
&¢ as the ¢th Fourier harmonic of the energy band E(k),

eo= L[ dre ™ E), (15)
21 Juy
The quantity 2, is well known for being the tunneling rate
between states lying £ sites apart in a pure lattice potential,
i.e., in the absence of any modulation or external force. A
detailed derivation of the Hamiltonian in Eq. (13) is given in
Appendix A.
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The similarity between (10) and (13) is evident; the only and
the significant difference being given by the actual expression
of the tunneling rates (11) and (14). In the AM case, the tun-
neling rate is linear in the driving amplitude «, while in the PM
case, this occurs only for 8d < hwp, when J1(Bd €/ (hwy)) =
Bdl/(2hwy). Besides, in the strong-driving regime defined
by large values of its argument, J; vanishes at specific values of
the argument and the tunneling rate is dramatically suppressed
leading to dynamic localization [32,36,39].

In both cases, it is demonstrated that the stationary states of
(10) and (13) at resonance (i.e, § = 0) are delocalized Bloch
states with their energies forming a band

Emod(k) = Je sin(bkd + ¢), (16)

where J; is given, respectively, by jZPM or jeAM [23,24].

C. State evolution
1. In real space

We investigate the time evolution in real space of an initially
localized state under the action of AM and PM driving.
The transport dynamics is governed by the Hamiltonians in
Egs. (10) and (13), respectively, which are similar in their
form.

For § # 0, the translation invariance is broken and the
Hamiltonians exhibit a strict analogy with the Hamiltonian of a
static lattice in the presence of an effective homogenous force
of magnitude F; defined by § = Fs€d/h. This suggests the
physical picture in which the nearly resonant driving reduces
much of the “tilt” of the lattice potential stemming from the
force F, but not completely: a small detuning § effectively
corresponds to a small external force Fs. One thus expects that
the transport dynamics is characterized by Bloch oscillations
with time period 277 /5. Indeed, this was first observed through
macroscopic oscillations of atomic wave packets [25], and
later studied with noninteracting Bose-Einstein condensates
(BECs) [40]; it also led to a generalization of Bloch’s
acceleration theorem for periodically driven systems [41]. In
the other case with § = 0, the system is invariant under discrete
translations, and coherent delocalization occurs, with the
atomic wave packets spreading ballistically in time according
to the dispersion relation in Eq. (16) [24].

The eigenstates of the Hamiltonians are the Wannier-Stark
states

oo
[Du@) = Y "L, (i) Woime),  (17)
m=—00 F‘Sd

corresponding to a force Fjs, with J,, as the mth order Bessel
function of the first kind [30]. These states are centered on
the nth lattice site and extend over a number of sites of the
order of the argument of the Bessel functions, J;/(Fsd). The
set of energies associated with these states forms a Wannier-
Stark ladder with E, (8§) = nhd/¢. Hence we obtain the time-
evolution operator in the rotating frame,

Ur(1) = exp |:—i Z ”5f/5|<l>n(3)>(‘l>n(5)li|- (18)

n=—0o0
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By applying it to the initial state |W,,), we get the time-evolved
state

(W, (1))

> N i i in(8t/2) Jot
— indt/t im¢ 1m6t/2j SIn( N7,
e E e e m [—8[/2 7 | n+ml>

m=—00

19)

at time ¢, with the intermediate steps reported in Appendix B.
The superposition principle allows the evolution of any initial
distribution to be calculated as well.

One can use Eq. (19) to calculate the spatial broadening of a
matter-wave packet initially localized at the nth site as a func-
tion of time, crén (1) = (W, (1)|(z — nd)?*|W,(t)). Considering
the expression in Eq. (19), one expects the quantity oy, (t)/d
to be of the order of the argument of the Bessel functions. This
is, in fact, confirmed by carrying out the detailed calculation,
which produces at large ¢ the asymptotic ballistic expansion

og, (1) ~ vit’sinc(3/ Tr ), (20)

with v, =h~'4d|J;|/~/2 as the speed of broadening at
resonance, 'y = 27 x (7w¢)~! as the Fourier-limited linewidth
of the resonance spectrum, and the sinc function defined as
sinc(x) = sin(x)/x. Appendix C reports a derivation of this
expression for the resonant case (§ = 0). We omitted showing
in Eq. (20) the terms corresponding to the size of the initial state
|W,) and a quivering motion exhibiting fast, tiny oscillations
on a time scale of the order of 27 /wy,; in fact, these terms
are of marginal significance, as they depend specifically on
the given initial state. The complete expression is, however,
provided in Appendix C.

Thus, from the expression (20), we see that resonant driving
has the effect of coherently delocalizing atomic wave packets
over sites which are £d apart; conversely, nearly resonant driv-
ing yields spatial oscillations with period 27 /§ and maximal
extent 2v,/6. The prediction in Eq. (20) for oy, () allows
the measurement of Bloch frequency by directly determining
the resonant frequency fwp through in situ observations
of the spatial distribution of the atoms in the lattice. In reality,
one has to consider that the atomic cloud is characterized by
an initial finite size o, which produces a spatial distribution
that is the convolution of the two distributions: the variance,
corrected for the atomic cloud’s size, becomes

.y 2
o(t) = \/002 + v2t2sinc (M) ) 21)

This expression depends on four free parameters, which
can be determined by fitting the experimental data: the starting
width of the atomic cloud oy, the maximal extent at resonance
vet, the resonance linewidth I", and the Bloch frequency wp.
The experimental validation of this formula will be analyzed
in Sec. IV.

2. In momentum space

Studying nearly resonant driving in momentum space
brings an alternative viewpoint, which puts in the foreground
mainly the aspects related to quantum transport. One in fact
expects that at resonance, the eigenstates of Eq. (18) are
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delocalized Bloch states |k) with wave vector k, and the
transport dynamics is determined by the energy dispersion
relation Epoq(k) introduced in Eq. (16). Conversely, off
resonance, the eigenstates are the Wannier-Stark states |®,,(5))
given in Eq. (17), and one expects that the transport dynamics
is characterized by Bloch-like oscillations: the quasimomen-
tum increases linearly in time as hdk/dt = — Fst, with the
understanding that & is taken modulus the Brillouin zone.

This can be directly seen by projecting the time-evolved
state |W,,(¢)) on quasimomentum states,

(KW, (1)) = (k| W, )e™"/¢
X exp |:—;Tl / dt' Emoa(k + Fat’/h)] ., (22
0

where we made use of Bloch’s theorem
KWy gm) = e (k| W) (23)

and the Jacobi-Anger expansion to derive it.

This result allows us to interpret an optical lattice that
is dynamically driven by AM or PM modulation as a tilted
stationary lattice whose parameters can be tailored at will. The
tilt is controlled through the detuning §. The periodicity of
E0a(k) as a function of k shows that the size of the Brillouin
zone is shrunk by the order of the driving harmonic £. This is
rigorously proven in the next section. The overall phase of the
effective energy band ¢ can be tuned through the phase of the
time-dependent external driving. The width of the energy band
J¢ can be manipulated as well by tuning the driving strength
o and B. In the PM case, the width depends also on the ratio
Bed/(hwy), due to the mechanism of dynamic localization
for strong driving.

In addition, the result (22) implies that the momentum
spectrum of an initially localized WS state evolves in time
in the presence of external driving by only acquiring a phase,
which depends on the time and on the wave vector k. Then,
the squared modulus of the momentum spectrum remains
constant,

|k W, (1)) |7 = | (k| Wo) |2, (24)

implying that only the probability amplitudes and not the
probability distribution in the momentum space evolve in time.

However, dynamical driving can be used to extend spatial
coherences of wave packets, i.e., delocalizing them over
several lattice sites, leading to transient narrow distributions
in time-of-flight (TOF) experiments. Transient modification
of TOF density distributions is at the basis of the DEBO
mechanism, and it is discussed in Sec. I E; in static optical
lattices, transient interference phenomena have been recently
investigated using BECs [42].

D. Transport resonance spectrum

We want to study the problem of quantum transport
in driven optical lattices from the point of view of space
and time symmetries. In particular, we are interested in
determining the exact positions of resonances without making
any approximation of the original Hamiltonian in Eq. (2). This
is of special interest for the application of AM- or PM-driven
quantum transport to determine the Bloch frequency wp in

PHYSICAL REVIEW A 86, 033615 (2012)

Eq. (4), thus performing a precise and accurate measurement
of the local force F.

It is convenient to define H, as the Hamiltonian in the
absence of modulation, i.e., for « = 0, 8 = 0, and H; as the
driving Hamiltonian H; = H — Hy. Regarding space sym-
metries, we have D, HoD}, = Ho + mhoy and D, H,D), =
‘Hy + mpBdf(t), with D,, as the unitary operator shifting the
space coordinate by an integer number m of lattice sites.
Regarding time symmetries, we have that H, does not depend
on time, while H; is invariant under time shifts by an integer
number of Ty = 27w /wy.

The invariance under discrete-time shifts, which occurs for
periodic drivings, allows the use of the Floquet theory [26] in
order to express the time-evolution operator Uy () at the time
t =Kty as

Ur(kty) = Ur(tm)”, (25)

with « as an integer value. The Floquet quasienergies E; are
determined, up to integer multiples of 27 7y, /71, by means of the
eigenstates exp(—i E; Ty /h) of Ur(ty): transport resonances
manifest themselves when the corresponding eigenstates of
Ur(ty) are delocalized states, leading to coherent delocaliza-
tion of any initially localized wave packet. In addition, as a
result of Bloch’s theorem, we have that the eigenstates are
indeed delocalized when D,,,L{T(rM)DL = Ur(ty), i.e., when
U7t (t)r) is invariant under translations of an integer number of
lattice sites.

By making use of the interaction picture, the evolution
operator can be written as

Ur(ta) = exp(—iHota /BT exp (—i / ' dtH, /h> . (26)
0

where T exp represents the time-ordered exponential and
1 = exp(i Hoty /h)H; exp(—iHotp /R) is the transformed
Hamiltonian. Owing to the space symmetry mentioned
above, it follows that the first term transforms as
D, exp(—iHoTy /D), = exp(—iHoTu /h) exp(—imwpTy),
while the second one remains invariant,

™
D,, T exp (—i f dtH, /h) DI
0

=exp |:—i f TMdtmﬁdf(t)/h] T exp (—i / TMdﬁ:ll /h> ,
0 0

27)

where the identity fOtM dtf(t) = Ois enforced by the definition
of t). Finally, this results in

DU (ty)D}, = Uz (ti) exp(—imwpTy), (28)

implying that [Ur(ty),Du] =0 for wy = wp/q, with g
as an integer number. More generally, if we consider the
symmetry group characterized by discrete translations of
£ m lattice sites, with £ and m as integer numbers, then it
follows that [Ur(ts), Do ] = 0 for wy, = Lwp/q, proving that
transport resonances, i.e., coherent delocalization of atomic
wave packets, occur at integer (and subinteger) harmonics of
the Bloch frequency wp.

In addition, this result proves that, when modulating at
integer harmonics £, the translation symmetry group is the one
determined by a unit step of £ lattice sites, indicating that the
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first Brillouin zone which describes the eigenstates of Ur(Ty)
extends over the interval [—m/({d),7/({d)], thus showing
indeed a shrinking by an integer factor ¢ of the Brillouin zone
of the original lattice.

These findings can be straightforwardly generalized to
an arbitrary periodic driving f(¢) with period 2w /wy. As
a result, for AM driving, the location of transport reso-
nances remains unchanged, while for PM driving, one should
consider that a nonzero average value of the driving force
F' = OIM dtBf(t)/ty produces an effective Bloch frequency
shift F’d/h with respect to wp defined in Eq. (4). This
generalization to arbitrary periodic drivings is of clear interest
for measuring wp with high precision and accuracy: measure-
ments obtained by AM driving are insensitive to the presence
of spurious higher harmonics and subharmonics of wy, in the
modulation signal f(z).

E. Delocalization-enhanced Bloch oscillations

In Sec. I C1, we showed how resonant driving of the lattice
potential establishes coherences among WS states as a result of
the broadening of atomic wave packets during the modulation
time. In the case of a finite time of free evolution after releasing
from the optical lattice, this implies interference of matter
waves initially located at different lattice sites. This can be put
into evidence by means of the following three-step experiment:
we apply the (AM or PM) modulation f(¢) = sin(wpt) for a
certain time 1,04, then hold the wave packets in the static lattice
for fe1q, and finally release the wave packets in time of flight
tof. For an optimal choice of #,04 and #f, it is possible to
enhance the interference effect responsible for BOs and its
visibility.

To understand the DEBO mechanism, we thus start with
an initially localized state |y) centered around a site n = 0.
The results could be easily generalized to any initial site n by
a simple translation. The initial state at + = O can be written
as in Eq. (5). If the thermal energy kzT is larger than the
recoil energy Eg, then G(k) is smooth and flat over the whole
Brillouin zone. In the first step, after a modulation at the £th
harmonic for a time #y,04, the states | 5(k)) thus evolve by
means of the operator U(t) = exp[—i Emoa(k)? /1]:

[Yg (K, tmoa)) = e ASNED |y p (), (29)

where the quantity A = Jyfmoq/h multiplied by £ represents
the spatial extent of the broadened wave function expressed in
units of the lattice constant d.

During the hold time #,,q in the static lattice, the external
force shifts k according to k — k + wpthoa/d and the wave
function changes into

| (fmod + thold))
_ f dkG(k)e A UD |y (k 1 wgtoa/d)).  (30)

The result (30) can be alternatively stated as

[ (tmod + thoa)) = / dk Gk — wpthoa/d)

BZ
x e~ HASIN(Ekd =2 thaia/T0) |y, (1)) G

where the argument of the G function has to be taken modulus
the Brillouin zone, and tp is the Bloch period. Switching off
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the lattice maps the Bloch states into free-particle states. This
procedure can occur suddenly or adiabatically. While in the
first case complex interference effects involving higher energy
bands are expected to appear, we want here to catch the basic
concept in the simplest case of adiabatic release. After a time
of flight #,,, the probability amplitude to find the atom along
the optical lattice direction is

(Z| ¥ (tmod + thold + trof))
_ f kG k — wpthoa/d)
BZ

s @A sin(tkd =27 binia/T8) , =ik 1ot /2M ik (32)
The integral in Eq. (32) determines the shape and position
of the wave packet. In particular, we are interested in the
interference peak, which is produced as a caustic effect because
of dispersionless evolution at the interference points. Since
we supposed a flat distribution G(k), the interference peak
is explained in terms of a vanishing second derivative of
the phase in the exponent g(k) = A sin(¢kd — 2 ltyoa/T8) +
Rkt /(2M). We also require a vanishing third derivative to
make the region with g”(k) = 0 as large as possible. The two
conditions are satisfied when t,of = Tirans, Where

Tyans = M AC*d? /R (33)

is the transient time after which the visibility of the interference
peak is maximal. Figure 1 clearly displays the emergence of
a dispersionless peak in the wave packet as the time of flight
approaches Tyans.

The transient time Ty,ns (33) has a clear physical explana-
tion. Since kgT > Eg, the wave packet is essentially equally
distributed in the Brillouin zone, which yields a ballistic
broadening in time of flight with a speed 71 /(M £d). Only after
a time Tyqys 1S the time-of-flight expansion equal to the extent
of the broadened wave packets after modulation, which is
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FIG. 1. (Color online) Enhancement of the interference peak
during time-of-flight detection of Bloch oscillations for a thermal
wave packet (kgT/Eg ~ 3) by means of a resonant modulation
burst (¢ = 1). The solid (blue) line represents the single-atom wave
function after the three-step BO measurement with a broadening
factor A = 30 lattice sites and fiof = Tyrans/2, Which exhibits a narrow
feature at the center of the wave packet with respect to the wave
packet without initial broadening (red dashed line). The third (black
dash-dotted) line shows the wave function at f,;f = Tirans, Which shows
the narrowest peak.
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£d A. Picturing the wave packet as a superposition of different
waves initially located in different lattice sites, the maximal
interference occurs when all of the broadening waves in time
of flight meet each other, which occurs at the transient time
Tyans- 1he DEBO technique can be applied for measurements
of external forces with superior sensitivity. The details of the
experimental results are presented in Sec. IV.

F. Decoherence in momentum space and resonant tunneling

Since both BO and WS resonant tunneling are coherent
quantum phenomena, it is important to investigate the effects of
decoherence. Basic decoherence mechanisms are spontaneous
emission, atom-atom interactions [43], random recoils by
lattice photons [44], and environmental scattering (i.e., off-
resonance scattering by incoherent light or background gas
collisions).

While both spontaneous emission and environmental scat-
tering do not affect the dynamics of an ultracold gas in a
high vacuum system and in their ground state, it is possible to
evaluate the effect of atom or photon scattering. They can in
fact have different strengths, leading to a collapse of the atomic
wave function in a single site, thus leading to a decrease of the
BO visibility in momentum space or sequential tunneling in
position space, even in the presence of a modulation.

The effect of a decoherence process in momentum space can
be understood in terms of superposition of WS states. Starting
from (8) (with « = 8 = 0) and exploiting the translational
symmetry of WS states (23), we can rewrite a general
expression for the atomic wave function in the momentum
space [45],

(k| (1)) = (k|Wo(k)) Z ¢, eindktont/d)

= (k|Wo(k))C(k + wpt/d). (34)

Thus the wave function is the result of the product of a
single WS momentum distribution and an envelope function
C(k), which is a comblike distribution that is periodic both in
time and in momentum space. The width of the momentum
peaks Ak is inversely proportional to the number N of the
superimposed WS states, as we already showed in the previous
section. Any scattering event like photon recoil or atom-atom
collisions yields a decay of the WS states superposition,
while, conversely, it yields a diffusion-like behavior of the
wave-packet dispersion. Thus we expect that the momentum
peak width evolves in time as

AKX (1) >~ Ak(0)*(1 + y1), (35)

where y is the rate of the scattering process. For an exact
treatment of the dynamics of the wave packet, and thus of the
peak width Ak, it is necessary to solve the stochastic Liouville
equation [46], where a localization operator is introduced and
a master equation for the evolution of the density matrix p is
provided. The prediction for the momentum peak broadening
in Eq. (35) is equivalent to saying that a random Gaussian
process heats the atomic gas until a uniform distribution of
the momenta over the Brillouin zone is obtained. This random
walk in the momentum space is proportional to the time ¢ and
the density of scatterers (the atoms or the lattice photons).
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In the case of the BO experiment, we must also consider the
presence of the excited bands, which introduce an additional
source of losses. In fact, for shallow traps (Uy = Eg),
collisions can result in the transition of the atom from the
lowest band into the upper bands, which are only weakly
bounded. This means that only collisions with small exchanges
of momentum can effectively contribute to the broadening of
Ak and hence yexp < v [44]. The lattice-recoil effect plays a
smaller role since it excites the atoms into the second band (the
energy gap between the first and the second band is typically
E¢ ~ Eg) and thus does not contribute to the BO signal.

In the case of resonant driving applied to the system, the
localization process inhibits the coherent coupling among
adjacent WS states, which is responsible for the resonant
tunneling of the atom distribution. The decay of the off-
diagonal elements of the density matrix causes a sequential
tunneling, which asymptotically gives incoherent diffusion
o%(t) ~ Dt, with D as the diffusion constant [44]. The
sequential tunneling processes have the effect of broadening
the resonance spectrum. In the case of simple Lindblad local-
ization operators L, = ,/y |n){(n|, the numerical integration
of the master equation leads to a Lorentzian-shaped resonant
tunneling spectrum, with y approximately the linewidth of the
spectrum [47]. The presence of a decoherence process will
result in a broadening of the Fourier-limited linewidth nearly
by an additive quantity y, which is the inverse of the sensor
coherence time.

Having presented decoherence from both points of view of
momentum and real space, we will discuss quantitatively the
impact of decoherence on the final sensitivity in Sec. V.

III. EXPERIMENTAL SETUP AND PROCEDURES

The experimental setup is based on cooled and trapped
88Sr atoms [11]. The details of the atomic sample preparation
was already described elsewhere [48]. Here we limit our
description to those basic elements which have a relevance to
explaining the results in terms of the accuracy and sensitivity
of our atomic force sensor. A schematic picture of the
experimental setup is shown in Fig. 2.

Atoms from a thermal beam are slowed by a Zeeman slower
and trapped in a “blue” magneto-optical trap (MOT) operating
on the 'Sy—'P; resonance transition at 461 nm. The temperature
is further reduced by a second cooling stage in a “red” MOT
operating on the 1S,—3P, intercombination transition at 689
nm. This produces about 10° atoms at a temperature of 1
uK. Since the force of gravity is comparable to the force
exerted by the red MOT on the atoms, the cloud of trapped
atoms assumes a disklike shape with a vertical size of 27
pm and a radial size of 180 um. The atoms are adiabatically
loaded in an optical lattice in 200 us. The lattice potential is
generated by a single-mode frequency-doubled Nd : YVOyu
commercial laser (Verdi-V5 Coherent, A; = 532 nm)
delivering about 1 W on the atoms. The optical lattice is
then produced either by retroreflecting the input beam or by
means of a second fiber which delivers half of the available
power from the bottom side of the vacuum chamber [49]. A
telescope can set the beam waist between 300 and 560 pum at
will.
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FIG. 2. (Color online) Experimental setup. The output radiation
from a single-mode 532 nm Verdi is split and then focused on the
ultracold *8Sr cloud, while a pick-off is sent through 200 m fiber
to the comb laboratory for frequency measurements. fiy: beat-note
frequency between Verdi and comb; fj: the carrier-envelope offset
frequency; fr, : repetition-rate frequency; SMF: single-mode fiber;
AOM: acousto-optic modulator.

Typical experimental parameters yield a lattice popu-
lation of Ny =35 x 10*, for an atomic density n =6 X
10'! atoms/cm? and lattice depth Uy = 3Eg. If we consider
the decoherence due to elastic collisions driven by a scattering
length ags = —1.6ay [50], we expect Yeon < 2.2 x 1073 571,
A high-vacuum system allows one to exploit the long co-
herence time allowed by strontium atoms. It consists of a
50 I/s ion pump and a titanium-sublimation pump yielding
a background pressure level smaller than 107! Torr. The
measured lifetime in the vertical lattice is about 20 s.

We used Earth gravity as a test force for the atomic sensor.
This is possible by placing the optical axis of our lattice
along the direction of g. The beam is aligned along the
gravity axis as follows: the superposition of one beam onto
the other is obtained by maximizing the transmission through
the fiber of the opposite beam. Then the lattice verticality
is made sure by interposing a large glass container with
water over the vacuum cell where atoms are trapped. Part
of the upwards-directed beam is reflected by this surface with
an angle 6. Finally we measure, far apart (D = 3m) from
the cell, the distance s >~ 8 D between the laser spot formed
by this reflection and the second downwards-directed laser
beam passing through the water container. This distance s
is then reduced to zero through the fine adjustment of the
optical table tilt. This experimental procedure then prevents
any possible systematic shift due to both relative and vertical
alignment of the two counterpropagating laser beams. The
residual systematic uncertainty is described later.

Absorption imaging of the atomic-cloud position and
distribution is performed either in situ or by means of the
time-of-flight (TOF) technique by a CCD camera with a spatial
resolution of 4.6 pum.

Different procedures can be applied to measure g. In the
case of PM resonant tunneling, a piezoelectric transducer
(PZT) was attached to the retroreflecting mirror. The AM
technique, instead, employs one double-pass acousto-optic
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modulator (AOM), which is servo controlled to simultaneously
stabilize the lattice depth and to apply the modulation at fre-
quency wy, to the lattice. This modulation is either continuous
or with a sequence of modulation bursts depending on the kind
of experiment. The former operational method is used to set
resonant tunneling, the latter is used for DEBO or Loschmidt
echo (which is not discussed in this work, but detailed in
Ref. [23]) experiments. Both the modulation frequency and
the experimental timing are referenced to a global positioning
system (GPS)-stabilized signal, as shown in Fig. 2.

A servo control system is employed to stabilize the laser
intensity, which at the same time avoids slow drifts of the lattice
depth U, and suppress acoustic vibration-induced amplitude
noise. The laser intensity is controlled by changing the radio
frequency (rf) signal which drives an AOM. The error signal
is then obtained by comparing the intensity measured from a
pick-off after the optical fiber and a stable voltage reference.
Hence, any misalignment of the fiber injection does not
affect the lattice potential depth. Instead, fluctuations of the
polarization after the optical fiber can also affect the potential
depth, mostly in a configuration of two counterpropagating
laser beams with respect to a retroreflected single beam. The
stabilized intensity noise spectra in Fig. 3 shows the reduction
of the free-running amplitude noise in the acoustic range by
about two orders of magnitude, with a servo bandwidth of
about 20 kHz. The noise frequencies which are most harmful
to the atoms are, in fact, in the range from Hz to several
kHz, which effectively coincide with the typical acoustic
frequencies. Excitations at these frequencies induce heating of
the atoms by exciting the vibrational frequencies of the optical
lattice [51]. As shown in Fig. 3, we achieve a stabilization of
the intensity offset at the relative level of 107°.

The servo loop controlling the lattice laser-beam intensity
also allows one to insert the AM driving signal, which shares
the same frequency reference as the other relevant frequencies.
From the recorded fast Fourier transform (FFT) spectra of
the modulated laser intensity signal, the higher harmonics
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FIG. 3. (Color online) Noise spectra of the relative intensity of
the lattice laser at 532 nm, which is used to produce the optical lattice
potential. An intensity stabilization system strongly suppresses the
intensity noise of the laser. The comparison of the two spectra shows
that the servo lock attenuates the bump of noise originating from the
acoustic vibrations by about 30—40 dB.
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contents have been reduced below the noise floor level,
corresponding to more than 60 dB attenuation. This reduces
the projected Bloch frequency uncertainty at the 20 ppb level
(see Sec. VB). It is evident that the possibility to have an
in-loop driving modulation in the AM resonant tunneling and
a direct measurement of the driving into the lattice makes the
AM technique more suitable for high-precision measurement
with respect to the PM technique employing a mechanical
transducer.

The PM technique is performed by applying the driv-
ing signal to the PZT attached to the retroreflecting
mirror. The response of this actuator was characterized
by an heterodyne measurement with a Michelson inter-
ferometer, which shows a linear dynamical response of
the electromechanical system with a cutoff frequency of
4 kHz [47]. The voltage applied to the PZT allows one to
modulate the position of the lattice potential by up to 10 lattice
sites peak to peak, so that zop < 2.5A,. According to (14), this
means that the nonlinear regime showing dynamic localization
can occur only at modulation frequencies higher than the sixth
harmonic.

A. Calibration of the lattice frequency

A precise knowledge of the lattice laser frequency value and
its instability is needed for high-precision force measurements.
We employed a Ti:sapphire femtosecond frequency comb to
obtain the absolute frequency measurements of the lattice laser
and to characterize its frequency stability [52]. As shown in
the schematic diagram of the experimental setup in Fig. 2, the
output radiation from the 200-meter-long fiber is superimposed
with radiation from the femtosecond comb (filtered at A =
532 + 5 nm) and the beat signal with the corresponding tooth
is observed on a fast photodetector.

To perform precise frequency measurement, we lock the
repetition rate of the comb by stabilizing this beat note to an rf-
frequency synthesizer and we count the carrier-envelope offset
frequency of the optical frequency comb by self-referencing
techniques. The absolute value of the lattice laser frequency is
given by equation f =n x fip & fo & fov, where the correct
tooth number # is determined by a wave meter calibrated with
a stabilized laser on the 689 nm 'Sy—>P; 38Sr transition, which
allows an evaluation of the lattice laser frequency with an
uncertainty of the order of 100 MHz.

Figure 4 displays the result of an absolute frequency
measurement that lasts for about 10* s. It is interesting to
compare dynamics of the lattice laser frequency with typical
durations of the Bloch frequency measurement both with the
BO technique and with AM resonant tunneling. From this
measurement, we can clearly observe periodical fluctuations
at two different regimes: the first low-frequency fluctuation
with a typical period of about 10* s and amplitude of 130-
140 MHz, and a second regime that is a fast oscillation with
a shorter period of about 33 s and a typical amplitude of 30—
70 MHz (see inset in Fig. 4).

Long-term deviation of lattice laser frequency greatly
depends on many factors, mainly related to temperature and
the laser power setting. To increase the long-term stability,
we left the laser continuously operating for about two days
at the same power setting. Moreover, a thermal insulation
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FIG. 4. (Color online) Example of frequency counting of Verdi
laser for calibration of the one-dimensional (1D) 38Sr optical lattice
frequency, reporting for comparison the typical duration of gravity
measurements for both techniques. The beat-note signal between the
lattice laser and the optical comb is used to stabilize the repetition
rate of the femtosecond laser. The intervals where no data is reported
are caused by the optical frequency comb running out of lock from
the lattice signal.

foam is applied to the laser head to increase the passive
temperature stability. However, this model of commercial laser
exhibits both a quite different absolute frequency (offset by
several GHz) and a large frequency drift rate at startup (up to
100 MHz in one minute).

Hence, long-lasting measurements of forces by means of the
Bloch frequency are affected by lattice frequency uncertainty
at the 100 ppb level. Looking at the length of the two force
measurements, BO measurements usually require 5.6 x 103 s
(1.5 hours), while AM resonant tunneling lasts three times less.
Then the sensitivity of BO measurements is three times higher,
increasing the error for each Bloch frequency determination,
though the systematic effect is equivalent in both techniques.

IV. MEASURING EXTERNAL FORCES: BLOCH
OSCILLATIONS VS DRIVEN RESONANT TUNNELING

A. Effects at resonant driving I: Wannier-Stark localization vs
coherent delocalization

As discussed in Sec. IIC1, atomic wave packets loaded
into a driven vertical optical lattice potential exhibit coherent
delocalization arising from intraband transitions among WS
levels. WS intraband transitions are observed by monitoring
the in situ wave-packet extent. Coherent delocalization sets in
for modulation frequencies wy; = wg, or multiple integers £ of
wp, suggesting that tunneling occurs not only between nearest-
neighboring sites (i.e., when £ = 1), but also between sites
that are ¢ lattice periods apart. We assessed this phenomenon
by observing an increase of the atomic distribution width
following Eq. (21).

In Fig. 5, the effect of AM driving is shown: after
resonant amplitude modulation at frequency wy = 6 X wg,
the recorded density profile of the atomic cloud appears clearly
stretched along the lattice direction, while the density height
decreases.
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FIG. 5. (Color online) Effect of the resonant AM technique on the
atomic cloud with a modulation time of 10 s. The integrated density
distributions after AM for different detunings § from 6 x wp clearly
appear stretched approaching the resonance. In the inset, we plot the
resonance spectrum derived from the rms size o, along the lattice for
AM resonant tunneling at the sixth harmonic.

The measurement of the spatial rms extent along the lattice
for several modulation frequencies allows us to determine the
Bloch frequency with high sensitivity. Long modulation times
(tmoa = 10 s) make it possible to perform intraband WS state
spectroscopy with very narrow linewidths, down to a Fourier-
limited linewidth I'r = 31 mHz. An AM resonance spectrum
for the sixth harmonic is shown in the inset of Fig. 5. Here
the observed I' corresponds within the experimental error to
the Fourier-limited linewidth I'z. Long modulation times also
increase the transport resonance quality factor, as the maximal
extent at resonance is vyfyq4. However, as observed in Fig. 5,
this implies a reduction of the observed optical density and
thus a reduced signal-to-noise ratio of the in sifu absorption
images of the atomic cloud. The necessary trade-off between
an enhanced quality factor and a reduced signal-to-noise ratio
is found by an optimal choice of the modulation depth «.
A detailed analysis of the effects which may limit the WS
resonant tunneling sensitivity is presented in Sec. V B.

Comparable results were previously achieved with the PM
resonant tunneling. Coherent delocalization was observed up
to £ =4 [24] and Fourier-limited linewidths up to 15 s,
as shown in Fig. 6. In this case, the existence of higher-
order harmonics in the lattice potential is unavoidable. The
measurements show, in the PM case, a higher fluctuation of the
broadening velocity v, which can be attributed to the nonlinear
contribution of the higher-order harmonics as a function of
the modulation strength . For this reason and according to
possible frequency shifts presented in Sec. II D, from now on
we will consider only the AM resonant tunneling technique as
an accurate sensor for force measurements.

B. Effects at resonant driving II: DEBO experimental results

We experimentally compared the DEBO technique with
the usual BO measurement for high-sensitivity gravity deter-
mination. Enhancement of the interference peak during time-
of-flight detection of BOs was previously used for coherent
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FIG. 6. (Color online) Resonance width of PM resonant tunneling
as a function of the modulation time 7. The line superposed to the
data point is the hyperbola (7¢)~! expected from a Fourier-limited
resonance width without any free parameter.

control of the spatial extent of an atomic wave function for
short times [25]. More recently, we applied this technique for
high-sensitivity force measurements [1].

The phase sensitivity to BOs is greatly enhanced by
means of DEBO, which is described in Sec. IIE. In order
to demonstrate this, we employ the following sequence: we
adiabatically load the atoms from the red MOT into the
shallow lattice (U, = 3 Ex) so that after a few milliseconds, the
temperature in the lattice is reduced to about 0.6 K. We then
apply an AM burst at the Bloch frequency lasting 120 cycles
with amodulation depth o« = 0.2. After different time intervals
t of free evolution in the lattice, we perform absorption imaging
of the atomic cloud by means of the TOF technique and the
resulting momentum distribution is analyzed.

The result of the DEBO technique is shown in Fig. 7: we are
able to follow BOs with high sensitivity due to the formation
of a narrow interference momentum peak, as shown in the
left inset in Fig. 7. The resulting interference pattern shows
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FIG. 7. (Color online) Comparison between Bloch oscillation
phase evolution with initial AM burst (black diamonds) and without it
(blue circles). In the insets, 2D TOF atomic distributions are displayed
for the two cases. The red line is obtained from the best fit with a
sawtooth function.
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a narrow Gaussian distribution due to the convolution of the
wave function shown in Fig. 1 with the initial atomic spatial
distribution. The effective momentum peak width is Ap ~
0.187iky, for a tof = 14 ms, which corresponds to Tyans in Eq.
(33). This result is nearly a factor of two narrower than the
central momentum peak in noninteracting BECs [53,54] for
the same time #.f.

The comparison with the BO without the initial AM burst is
also shown in Fig. 7 (blue circles). In this case, the interference
pattern is described by two overlapping Gaussian distributions
overfilling the Brillouin zone [11]. The recorded single-point
error o, can be as large as 0.2 fik; for an overall Bloch
frequency relative error Awg/wp =3 x 107, The DEBO
interference peak yields a typical error of each single point of
the momentum evolution, {o,) = 1.6 x 1072 hiky . This result
is due to the greater visibility obtained by the AM burst
technique: the peak visibility, defined as in Ref. [42], can be as
large as 60%, while for classical BOs, it is smaller than 10%.
Implications on the precision in determining wg are discussed
in Sec. VA.

V. FORCE SENSITIVITY AND SYSTEMATICS
OF THE ATOMIC SENSOR

We analyze the sensitivity and the final precision on the
determination of wp and its application on the determination
of the gravity acceleration g. We proceed by summarizing the
systematic effects which affect the system for both techniques.

A. Phase sensitivity in Bloch oscillations

Starting from an almost dispersionless momentum distri-
bution due to the AM resonant burst, the increase of visibility
yields the observation of BOs up to 17 s, mainly limited by the
lifetime of the optical trap. Each gravity determination lasts
more than 2 hours. Repeated measurements with the same
experimental conditions as in Ref. [1] are shown in Fig. 8.
The precision in the determination of the Bloch frequency
Awg/wp ranges between 2.2 x 1076 and 1.7 x 1077 with
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FIG. 8. (Color online) Summary of gravity measurements by
means of DEBO (black squares) and AM resonant tunneling (red
circles). The dashed line represents the precise value of the gravity
g measured by the FG5 absolute gravimeter [1], which we use to
compare the two force measurement techniques.
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an observation time of about 13 s. However, we observed a
relative scatter of the calculated gravity values one order of
magnitude higher. The final result of local gravity is ggp =
9.80488(6) m/s2. By looking at the residuals produced by
the best fit with a sawtooth wave, we observed a reduction
of its mean value by removing the data set with longer
evolution time. This is a clear signal that phase sensitivity
to BO is washed out by long-term drift of the apparatus.
In particular, the main sources of instability which lead to
this high uncertainty on the determination of gravity are the
frequency of the lattice laser and the stability of the MOT center
position, which originates from the long-term instability of the
second-stage cooling laser.

It is possible to determine the coherence time of the system
by looking at the momentum peak broadening. According to
Eq. (35), if the free evolution time in the lattice is foq K
y !, then we can assume a linear peak broadening, Ap(t) =
Apo(1 + yt/2). In fact, if we consider the decoherence due
to elastic collisions, then the expected coherence time can
be estimated between 440 and 880 s for a 50% fluctuation in the
number of atoms. We experimentally observed a slow increase
of the interference peak width along the 13 s of measurement
time. The estimated coherence time, defined as the inverse of
the slope of a linear fit, is equal to 530 & 150 s, which agrees
with the expected scattering rate, as resulting from the data in
Fig. 9.

A fundamental source of uncertainty on the phase of the
BO measurement is the stochastic nature of the oscillation
phase due to LZ tunneling during the switch-off of the lattice
in a time-of-flight measurement [55]. In fact, when the atom
cloud is released by the optical trap, there is a finite time
interval ATiz in which the LZ tunneling probability is not
negligible. In our experiment, the switch-off time constant
is about 5 ps, which roughly corresponds to a nonzero
LZ tunneling probability time interval ATyz = 14 us and
thus a random phase 8¢ < ATyzvp affecting the BO of
each atom. LZ tunneling is then translated into a source of
statistical uncertainty, which can be numerically modeled, for
instance, by means of a Poisson-like Af 7 distribution. For
our typical values of the lattice depth (Uy < 6Ex) and atom

momentum width (units of hky)

Time (s)

FIG. 9. (Color online) Broadening of the interference peak in
time-of-flight measurement as a function of the free evolution time
inside the lattice. From the linear fit, a low-density strontium cold gas
can achieve a coherence time higher than 500 s.
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number (N, >~ 5 x 10*), LZ tunneling sensitivity corresponds
todwrz/wp < 1077,

B. Sensitivity in Wannier-Stark resonant tunneling

High-sensitivity measurement of resonant tunneling in an
optical lattice requires coherences between the WS states to
keep at a very low level any diffusive effect on the lattice,
which can randomly extend the atom cloud o, thus causing a
broadening of the tunneling resonance width I".

The keys to enhance the force measurement sensitivity are
shown in Eq. (21). In the case of Fourier-limited resonance
[24], the wp sensitivity to spatial width fluctuations Ao can be
estimated from a power expansion of this formula and then by
applying a first-order propagation of uncertainty theory. This
results in a Bloch frequency uncertainty

Awp =21 X LAU. 36)
wt2vel

It is noteworthy that the resonance width I'v = 27 x (7r1)~!
does not depend on the index £, which identifies the modulation
harmonic with respect to the fundamental frequency wg. This
fact is significant because, as shown by expression (36) for the
uncertainty on wg, it allows us to increase the sensitivity of
the measurement by a factor of £.

A typical Fourier-limited AM resonance at the sixth
harmonic has been presented in Sec. IV in Fig. 5. In order
to investigate the sensitivity of the AM resonant tunneling
measurement, we performed repeated measurements of the
Bloch frequency with a modulation time r = 10 s at £ = 5.
Typical uncertainty of the Bloch frequency ranges between
0.1 and 0.3 mHz, which is translated into a relative uncertainty
between 180 and 590 ppb.

The statistical uncertainty on the WS tunneling resonance
can be estimated from (36) by looking at the fluctuation of
the atomic cloud during the cooling and trapping procedure.
If one assumes an average fluctuation Ao /oy ~ 2%, which is
a typical value for our apparatus, we get an expected relative
error on the Bloch frequency of 370 ppb. This effect represents
the main source of statistical uncertainty for the WS resonant
tunneling. It can be reduced by defining the initial atomic
cloud’s size by means of a narrow optical tweezer [49].

Any source of broadening of the resonance is translated into
a smaller quality factor and thus into a reduced sensitivity to
the external force sensed by the atoms. In resonant tunneling
experiments, collisions lead to sequential tunneling instead
of coherent tunneling. Sequential tunneling is expected to
increase the width of resonance spectra with respect to the
Fourier limit.

We analyzed the values of I" that we extracted from each fit
used for Bloch frequency determination. A histogram of the
deviations from the Fourier-limited resonance I'r is reported
in Fig. 10. Here one can observe a Gaussian-like distributed
broadening of the AM resonance, with a mean value of about
1.5 mHz above the Fourier limit and a standard deviation of
1.3 mHz. If one considers a maximum line broadening of
2.8 mHz and assumes this estimate as the decoherence rate, it
means that the coherence time is better than 330 s, which is
again consistent with collision-induced decoherence and with
the BOs estimate represented in Fig. 9.
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FIG. 10. (Color online) Study of the broadening of the AM
tunneling resonance. Considering a modulation time of 10 s, which
corresponds to a relative Fourier linewidth of 31 mHz, it is possible to
estimate the coherence time of the system by measuring the deviation
of the experimental linewidth from its fundamental limit.

This demonstrates that 33Sr atoms allow coherence times
of hundreds of seconds—one order of magnitude longer than
the lifetime by background collisions in our experiment. This
happens because of the small value of the scattering length
agg. One could conceive to further suppress atomic collisions
by employing the fermionic 3”Sr isotope, where the s-wave
scattering rate is zero. In this case, the precision and accuracy
in a determination of wp is expected to be the same as for
the bosonic isotope, provided that magnetic field gradients are
properly shielded and compensated because of the nonzero
nuclear magnetic moment (I = 9/2). In addition, one should
consider that the small isotopic abundance of the fermion—
about 10 times less—could yield smaller signal-to-noise ratios.

Another source of sequential tunneling can be due to
spurious AM. As shown in Sec. III, the servo-loop system
controlling the lattice laser intensity has been optimized
in order to avoid spurious amplitude modulation. Residual
amplitude noise on the lattice laser intensity induces resonant
tunneling at the harmonics of the Bloch frequency. The level
of the residual relative intensity noise is about —120 dB, which
yields a fluctuation on the atomic size Aogiy =~ 10~2um. This
effect may limit the sensitivity on the Bloch frequency at the
level of 2x 10~ in relative units.

C. Use as a force sensor: Systematic effects

We analyze in this section the systematic effects which
affect the measurement of the gravity acceleration g. These
effects are common to both BO measurement and WS resonant
tunneling techniques.

1. Lattice light shifts

The main contribution to systematic shift in local gravity
measurement with trapped neutral atoms is due to the lattice
light itself. The spatial inhomogeneity of both the intensity
and the wave vector of the Gaussian lattice beam yields
space-dependent variations of the potential energy, which

033615-12



DELOCALIZATION-ENHANCED BLOCH OSCILLATIONS ...

results in
Uior(2) = Us(2) + Ui(z) cos[2k(z)z] — mgz, (37

where U, and U; depend, respectively, on the squared sum
and on the product of the electric field amplitudes of the two
counterpropagating beams. Comparing this external potential
with the ideal lattice in Eq. (1), besides the gravitational po-
tential one recognizes another term due to the lattice intensity
gradient. In the case of a red detuned lattice laser, the atoms’
wave functions are mainly located at the antinodes of the lattice
where the intensity (and the potential) is maximum, so that the
driving force is F = —09,V(z) = 9.[Us(2) + Ui(z) — mgz].
Furthermore, a change in the lattice constant d = 7/ k(z) must
be considered due to the Gouy effect [56], that is,

d
k(z) = ki — 5= [®Pr(2) — Pi(2)]|z=» (38)
2dz
where ®;(z) and ®,(z) are the Gouy phases for the incoming
and reflected beams, respectively, and z is the position of the
atomic cloud. Thus, the gravity value becomes

1 [271(03

g=m }"L 8z

)

=20

(39)

where UoL(z) = Us(z) + Ui(z) is lattice field depth and
A®Dgoyy(2) is the difference of the Gouy phases of the two
beams. The Gaussian beam nature of the lattice introduces
two extra terms in Eq. (39) due to the intensity gradient and
the Gouy phase shift that we call Agy and Agy, respectively.
These sources of systematic shift must be estimated for
a precise determination of the local gravity value g. We
accomplished this task by a precise determination of both the
geometry of the incoming and reflected trapping beams and
the position of the cloud with respect to beam waist, with a
relative uncertainty of 1%, as shown in Fig. 11(a). From this
measurement, we estimated a beam size on the atomic cloud
w(zp) = 557(7) um, considering also the beam ellipticity due
to different beam sizes in the two transverse directions.
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An independent determination of the transverse beam
size at the atomic sample position has been performed
by measuring the radial atomic trap oscillation frequencies
through a parametric heating technique [51,57]. In Fig. 11(b),
we recorded the radial characteristic frequency vg = 5.3(1)
Hz for an input laser power Pj, = 0.848 W. Since the relation
between these parameters is known [57], we can express the
potential depth Uy as a function of the input power as

Uy=kP, and U(z) = Uyl(z), (40)

where /(z) is the normalized intensity profile given by w and
z0. For typical experimental parameters, the two terms are
Agy = 1.53(3) x 10 m/s? and Ag; = 1.0(2) x 1073 m/s.

It is possible to reduce the systematic effects from the
intensity gradient by employing a blue-detuned lattice laser
[56]. In this case, atoms are located at the intensity nodes
where the light intensity is minimal so that the gradient of the
second term U; in Eq. (37) can be neglected. Since U; = U;
typically, the blue-detuned lattice light shift is reduced by a
factor of two.

2. Other sources of systematics and final uncertainty budget

In addition to the light shifts and the calibration of the lattice
frequency, there are other technical and fundamental sources
of shift of the Bloch frequency.

As shown in the experimental apparatus description, during
gravity measurement, the vertical alignment of the lattice
beam has been checked for each measurement. Moreover,
during the measurement, a tilt meter with a resolution of 1.7
prad and attached to the optical table has been employed to
check alignment stability. This procedure has typical errors of
0.5 mrad, leading to a relative uncertainty 8g/g = 1078, while
the stability of the optical table over the duration of a typical
measurement (< 1.5 hour) is better than 10 prad.

We estimated the contribution due to the distribution of
masses around the experimental setup and we found that the
biggest contribution to the local field is given by the 3.5 x
1.5 m optical table (20 cm thickness) that supports the
experiment. Given the distance between the table surface of

C ol A
E &h\ / ﬁ/ ! \H\y}ﬂ ?\i/ A
% 06 \i\} } /} b
E /

% 0.4+ \\Q/ 4
£ | | | o A

Modulation frequency (Hz)

FIG. 11. (Color online) Characterization of the lattice beam propagation and intensity in the proximity of the atomic cloud. (a) The
measurement of the beamwidth of two orthogonal transverse directions (respectively, squares and circles) determines the trapping potential
gradient. Best fits are, respectively, the (blue) dot-dashed and the (red) dashed curves. (b) Parametric excitation of radial motion is used to

calibrate the intensity of the optical lattice at the place of the atoms.
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25 cm and the weight of 640 kg, we calculated the effect on the
vertical direction tobe Ag =2 x 1078 ms™2 (or 2 x 107 in
relative units). This effect is far below the current sensitivity.

In Sec. IID, we have demonstrated that intraband WS
resonances occur precisely at integer multiples (submultiples)
of wp because of symmetry reasons. However, one has to
consider that measurements are performed within a finite
interrogation time, which entails a finite linewidth I' of
resonances. It is therefore important to consider the effect of
spurious off-resonance (sub) harmonics on the main resonance
signal. The contribution of a series of sinc functions centered
around the harmonics of w), yields a shift of the resonance at
wyy that scales as (w% t3)~!. This contribution is suppressed
with long interrogation time ¢ and it is estimated in our case to
be below the 10~!° level. This effect adds to residual amplitude
noise, which we already estimated to limit the sensitivity at the
level of 20 ppb. Furthermore, off-resonant interband transitions
can be non-negligible [58] and with expected linewidths of the
order of kHz. We experimentally checked possible shifts and
broadening of the resonance due to off-resonant couplings and
higher-order effects by changing the modulation depth from
4% to 10%. Within the statistical error in the determination
of the resonance center and resonance linewidth, we do not
observe any shift or deviation from the Fourier limit in the
measured linewidth.

Another effect to be taken into account for these measure-
ments comes from tidal forces. The peak-to-peak effect of tides
at our site is of the order of 2 x 107° m/s?, i.e., Awp/wp <
100 ppb. This value is only two times smaller than the current
best sensitivity to wg. Nevertheless, the correction for this
effect must be applied in accurate gravity measurements [1].
Since each measurement lasts about 1 hour, the variation of
g during every measurement due to tides is below 1077 m/s?
(i-e., below 10 ppb in relative units), and then the Earth tides
do not affect the current uncertainty budget.

In Table I, we present a summary of all of the important
systematic effects occurring in a gravity measurement. Any
Bloch frequency determination is currently limited by 200 ppb
uncertainty due to systematic effects, mainly dominated by
the lattice frequency uncertainty. Beside this effect, the force
sensor based on WS resonant tunneling has proven a systematic
error at the level of 50 ppb. According to (36), if a frequency
stabilized lattice laser is employed, then this level of sensitivity

TABLE I. Uncertainty budget concerning the gravity measure-
ment with the atomic gravimeter. Correction values and their
uncertainties depend on operating conditions. Typical values are given
in relative units (x1077).

Effect Correction Uncertainty
Lattice wavelength fluctuations 0 2
Lattice beam vertical alignment 0 0.1
Inhom. Stark shift (beam geometry) 14.3-17.3 0.4
Experiment timing 0 0.2
Tides —-1.4-0.9 <0.1
Off-resonance tunneling <0.01 0.2
Systematics total 12.9-18.2 2.1
(Without lattice wavelength fluct.) 12.9-18.2 0.50
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can be achieved after 26 s of modulation with the current setup
at the sixth harmonic.

VI. CONCLUSIONS

We explored the physical properties and the technical
problems behind the measurement of forces by atoms trapped
in driven optical lattices. After 15 years from the first detection
[14] of the quantum phenomenon of BOs, the precision
and the accuracy of force measurement has reached the
hundreds-of-ppb level. This has been possible by exploiting
the delocalization obtained by dynamical mechanisms and
the matter-wave interference nature of this phenomenon.
In particular, we have shown that the DEBO measurement
originates from modulation-induced delocalization, leading to
a dispersionless interference peak in momentum space [25].

Direct measurement of the Bloch frequency, and thus of
the external forces, can be performed by means of in situ
measurements of the atomic-cloud dynamics under AM or
PM resonant tunneling among WS states. In particular, our
experimental and theoretical analysis shows that the AM
resonant tunneling results in the most accurate technique, with
higher potential for further improvement both in accuracy and
in sensitivity. We provide a detailed characterization of the
uncertainty budget of our force sensor. In the present setup,
its uncertainty is due to the lattice wavelength fluctuations.
A frequency stabilized lattice laser would allow accurate
measurements of forces with 50 ppb uncertainty. This value
approaches the performance demonstrated in free-fall atom
gravimetry [59] with the advantage of a small interferometer
suited to microscale experiments.
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APPENDIX A: PHASE-MODULATION HAMILTONIAN

In the rotating frame, the Hamiltonian in Eq. (12) becomes
’ i . d g
Hipy = UreHpmliiy — lhuRFEuliF. (A1)

The resulting expression

—+00 he —+00
Mo = Y n= ) (] = > {pdcM

x sin(wyt — @) expliBld /(hwy) cos(wyt — @)
—iwy ]| Ware) (Wal + Hee.} (A2)

can be further simplified by making use of the Jacobi-Anger
expansion and by then keeping only the time-independent
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resonant terms,

+00 +o0

’ hé CEM i(m/2—¢)
HPM = Z n7|wn)("pn|+ Z :BdTe

n=—00
dt
h(x)M

In order to retrieve the Hamiltonian in Eq. (13), one has to use
the fact that Jy(x) + Jo(x) = (2/x)J1(x) and that

fi =0
(Wyel2l W) /d = 1" o
ge/hwpg  for £ #0,

with the coefficients ¢, defined in Eq. (15).

n=—00

(;?ﬂ)} |\Ijn+€><\yn| + HC}
wpy

(A3)

(A4)

APPENDIX B: TIME-EVOLUTION OPERATOR

It is convenient to express the WS states |\W,,) in terms of
the states defined in Eq. (17), which are eigenstates of the
Hamiltonians in Egs. (10) and (13):

o0 i B k7€
_ im(mw/2—¢)
W)= Y e T (—Fs d)|<1>nmz(a)>. (B1)

m=—00

The time-evolved state at time ¢ is given by

o0

D Pu®IW)e " D, (8))

m=—00

W (1)) =

o0
— e—iné‘t/ﬁ Z e_ip(”/2+¢)eiq&Jq(x)Jq+p(x)|\I—’,,+pg),
P,g=—00

(B2)
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with x = J,;/(Fsd). By using the addition theorem of the
Bessel function, which states

Z €1 T, (x) gy p(x) = P72 [25in(er/2)x],  (B3)

g=—00

one finds directly the expression in Eq. (19).

APPENDIX C: BALLISTIC EXPANSION AT RESONANCE

Considering the special case on resonance, § = 0, the size
o(t) of an atomic wave packet can be calculated in the
asymptotic limit by means of the group velocities v, (k), which
are defined, analogously to Eq. (3), as

laEmod(k) _ Ed«%
h ok

where Epoq(k) is the energy dispersion relation derived in
Eq. (16) in the presence of resonant driving. Taking into
account the uniform momentum distribution of the initial state
[W,), i.e., |(k|W¥,)|? = 1, the variance at time ¢ results in

o d
og, (1) ~ /_OO dxx? <E /BZ dks[x — vg(k)t]) =vt?,
(C2)

in agreement with Eq. (20). Since the computation of U\i,, (t)is
rather lengthy, we shall report only the final result for the AM
modulation,

oy, (1) = vjt*sinc[8/ Tp(1)]?
+2v2vtde, [ (hog) cos[p—(wu
+ Lwp)t /2]sinc[8/ Tr(1)]+og, (0),  (C3)

with the coefficients ¢, defined in Eq. (15), I'r(¢) as the
resonance linewidth, and oy, (0) as the size of the initial state
|Wy).

Ug(k) =

cos(Lkd + ¢), (C1)
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