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Abstract. We report on the realization of dynamical control of transport
for ultra-cold 88Sr atoms loaded in an accelerated amplitude-modulated one-
dimensional (1D) optical lattice. We show that the behavior of the dynamical
system can be viewed as if traveling wave packets were moving in a static
lattice whose energy dispersion can be tailored at will in width, amplitude and
phase. One basic control operation is a reversible switch between Wannier–Stark
localization and driven transport based on coherent tunneling. Performing
modulation sequences of this operation within a Loschmidt-echo scheme, we are
able to reverse the atomic group velocities at once. We then apply the technique
to demonstrate a novel mirror for matter waves working independently of the
momentum state. We finally discuss advantages of amplitude over previously
reported phase modulation techniques for applications in force measurements at
micrometric scales.
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1. Introduction

Atoms trapped in optical lattice potentials in the absence of defects and phonon excitations
are extremely versatile systems for quantum applications [1], including transport [2, 3] and
realization of strongly correlated phases [4–7]. In addition, control of atomic interactions
may keep the dynamics coherent over seconds [8, 9] and has led to atomic optical
clocks with extraordinary performances [10, 11], determination of forces with micrometer
resolution [12–19] and quantum information processing [20–24].

Tailoring and control of the coherent transport behavior is an essential tool for these
applications [25]. Dynamical mechanisms, such as phase or amplitude lattice modulations,
can be designed to drive transport behavior over desired time and length scales. Phase
modulation, obtained by a periodic spatial displacement of the optical lattice, has been
exploited to investigate quantum chaos [26] and, under the effect of constant forces, to observe
Wannier–Stark resonances [27], photon-assisted resonant tunneling [18, 28], quantum transport
over macroscopic distances [29] and dynamical control of Mott insulator transitions [30].
Amplitude modulation has been used so far as a spectroscopic tool for interband excitations [31],
to induce parametric heating [32, 33] and to characterize the Mott insulator regime [34].
Analogous techniques are produced by acoustoelectric means in semiconductor nanostructures
in the form of surface acoustic waves, aimed at making single-photon high-frequency
sources [35, 36] and drive delocalization [37], but in this case the relevant spatial scale is much
longer than the underlying static lattice.

In this paper, we report on the dynamical control of coherent transport of atomic wave
packets, which is realized through amplitude modulation of vertical optical lattices. While
extensive theoretical studies on phase modulation of optical lattices are available [38–40], the
physics underlying the control of transport through amplitude modulation is to our knowledge
largely unexplored, together with its experimental realizations. We show that amplitude
modulation brings two main differences over phase modulation which can be useful for
applications. Amplitude modulation is characterized by a linear dependence of the tunneling
rates on the amplitude of the external driving, which allows one to operate the wanted effects
over a wide range of the governing parameters, while the phase modulation is characterized
by a nonlinear response, giving rise to dynamical localization [41]. In addition, amplitude
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modulation allows the implementation of the method much closer to a reflective substrate, which
turns out to be very useful for precision measurements at micrometric distances.

We show that the dynamical system behavior can be viewed as if traveling wave packets
were moving in a static lattice whose energy dispersion can be tailored at will in width,
amplitude and phase. Using this simplified view as a guide for the experiment, we demonstrate
basic control operations, such as reversible switch between Wannier–Stark localization and
driven transport based on coherent tunneling. Applications of these techniques bring some
advantages in the design of tools for force measurements at micrometric scales and matter-wave
transport. In fact, by performing a two-burst modulation sequence within a Loschmidt-echo
scheme [42, 43], we reverse the atomic group velocities at once and demonstrate a novel mirror
for matter waves working independently of the momentum state.

The paper is organized as follows. We illustrate the concepts underlying amplitude
modulation and the theoretical characterization of our system in section 2, where it is shown
how the effective energy dispersion can be tailored. The experimental method and setup are
described in section 3. The results are illustrated in section 4, where we characterize the resonant
tunneling and demonstrate new tools for quantum transport control, namely the realization of
Loschmidt echoes and of a novel kind of atom mirror. We conclude this section by testing the
present scheme on a 0.5 ppm measurement of the local acceleration of gravity. We discuss the
advantages of using amplitude over phase modulation at each step, and draw our concluding
remarks in section 5.

2. The model: tailoring the energy dispersion

We consider a one-dimensional (1D) optical lattice originated by the interference pattern of
two vertical counter-propagating laser beams with wavelength λL, so that atoms effectively see
a periodic potential with a period d = λL/2 and a depth dictated by the laser intensity, which
we modulate in time. Our system is then described by the 1D time-dependent single-particle
Hamiltonian

H(z, p, t) =
p2

2m
− U (z) [1 + α f (t)] + mgz, (1)

where U (z) = U0 cos(2kLz)/2 and

f (t) ≡ sin
[
ωM(t − t0) − φ

]
. (2)

As sketched in figure 1(a), U0 is the lattice depth, kL = 2π/λL is the laser wave vector, m is
the atomic mass and g is the gravity acceleration along the lattice direction. The modulation is
characterized by its amplitude 0 < α < 1 expressed in units of U0, frequency ωM = `ωB that is
the `th harmonic of the Bloch frequency ωB = mgd/h̄, time t0 when the modulation is switched
on with initial phase φ. We explicitly leave the possibility of independently play t0 and φ in
view of applying repeated sequences of amplitude modulation bursts.

When the modulation is off (α = 0), it is well known that the resulting static Hamiltonian
H0 is diagonalized by the so-called Wannier–Stark states |n〉 centered on the nth lattice site and
separated in energy by quanta of h̄ωB [44]. These are in turn built up from the Wannier functions
|w(m)〉 of the non-tilted (g = 0) lattice centered at the mth site.

From now on we consider working in a deep lattice with U0 � ER on the scale of the recoil
energy ER = h2/(2mλ2

L). Under these conditions, the energy gap EG is sufficiently large on the
scale of mgz and h̄ωM, so that the band-to-band coupling due to the exchange of ωM quanta
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Figure 1. Sketch of the transport mechanism in the amplitude-modulated lattice.
(a) In the real space: Wannier–Stark localized states populate the tilted lattice
of energy potential U (z, t). In the absence of amplitude modulation, α = 0, the
inter-site tunneling is suppressed. Coherent tunneling between sites `d apart is
enabled when the amplitude modulation is switched on at ωM = `ωB. (b) In the
momentum space, wave packets behave as if they were moving in an effective
sinusoidal energy band, whose width, periodicity and phase can be tailored
by means of the amplitude-modulation parameters. Because of the sinusoidal
shape, the group velocity vg is reversed when k → k − kL/`. Only the unit cell
[−2kL/`, 2kL/`] of the effective and periodic energy band of 6 is shown.

is negligible. In this regime where also the Landau–Zener tunneling is suppressed, we can
safely restrict ourselves to a single-band description with no interband transitions. Wave packet
tunneling is thus frozen due to Wannier–Stark localization and Bloch oscillations set in, where
the quasi-momentum spans the Brillouin zone [−kL, kL] with Bloch period τB = 2π/ωB [2, 3].

In order to obtain the picture of the system behavior when the modulation is switched
on at frequency `ωB, we first observe that in the basis set of the Wannier–Stark states |n〉 the
Hamiltonian (1) reads

H=

∞∑
n=−∞

nh̄ωB|n〉〈n| −
αU0

2
sin(ωM(t − t0) − φ)

∞∑
` > 0

n = −∞

(C`|n + `〉〈n| + h.c.), (3)

where C` ≡ 〈n + `| cos(2kLz)|n〉 and due to translational symmetry we have dropped the
diagonal term −(α U0/2) C0 sin(ωM(t − t0) − φ)|n〉〈n|.

We then use the unitary transformation U = exp
(
−i

∑
∞

n=−∞
(n/`)ωM(t − t0)|n〉〈n|

)
to

move to the rotating frame where the secular approximation is applied discarding the off-
resonant terms with respect to the resonance at ωM = `ωB. In particular, the interband transitions
can safely be neglected because they are far from resonance under our experimental conditions.
In this rotating frame, the Hamiltonian of (1) is simplified into H′

= U†HU − ih̄ U† dUdt ,
that is

H′
=

∞∑
n=−∞

[
i

(
J`

2

)
eiφ

|n + `〉〈n| + h.c.

]
(4)
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with tunneling rates

J` = −
αU0

2
〈n + `| cos(2kLx)|n〉. (5)

The Hamiltonian (4) predicts that coherent resonant tunneling can be established between sites
spatially separated by `d [18], as sketched in figure 1(a).

In real space, this site-to-site tunneling can be viewed as a two-photon stimulated Raman
process where the amplitude (phase) modulation brings about in-(out-of-)phase sidebands of
the original lattice [31]. In momentum space the atomic wave packets behave as if they were
moving with an effective energy dispersion

E(`, k, φ) = J` sin(k`d − φ), (6)

as depicted in figure 1(b), where each of the three parameters J`, ` and φ can be accurately
tuned, by acting, respectively, on the amplitude of modulation α, on the choice of the modulation
harmonic of ωB and on the initial phase at which the modulation is started. This tunable
sinusoidal energy profile has deep consequences for the transport behavior, as proved by the
experimental results in the following sections. Firstly, the profile is periodic within the Brillouin
zone with a period 2kL/`. This periodicity physically results from the resonant tunneling which
selectively couples sites that are separated by ` lattice periods d. Secondly, both φ and the energy
bandwidth J` can be tuned, the latter being linear in the full range of modulation amplitudes
0 < α < 1. Finally, the group velocity

vg(`, k, φ) =
∂ E(`, k, φ)

∂(h̄k)
=

`d

h̄
J` cos[k`d − φ] (7)

reverses its sign whenever k → k + (2n + 1) kL/` for any integer n, as shown in figure 1(b).
This recalls the Loschmidt-echo scheme in [42, 43], where it is shown that the wave vector
mapping is equivalent to reversing the band curvature J` → −J`. We thus proceed to illustrate
the experiment where this basic operation of reversing the group velocities is performed and
exploited for quantum transport control and for precision measurements.

3. Experimental apparatus

The source of ultra-cold atoms has been described elsewhere [16], therefore we only provide
essential information here. We start by trapping and cooling about 2 × 107 88Sr atoms at 3 mK
in a magneto-optical trap (MOT) operating on the 1S0 −

1 P1 resonance transition at 461 nm.
The temperature is further reduced by a second cooling stage in a red MOT operating on the
1S0 −

3 P1 intercombination transition at 689 nm. Finally, we obtain ∼1 × 106 atoms at 1 µK.
We load the atoms in the optical lattice, which is switched on adiabatically in 80 µs. The atomic
sample arranges itself in a disc-shaped geometry with a vertical rms size of about σ0 = 30 µm.
Atomic interactions here are negligible because of the tiny scattering length in the ground state
a = −1.4 a0 [45]. The lattice potential is originated by a single-mode frequency-doubled Nd :
YVO4 laser (λL = 532 nm) delivering up to 1 W on the atoms with a beam waist of 250 µm.
The beam is vertically aligned and retro-reflected by a mirror. The resulting Bloch frequency
is ωB = 2π × 574.3 s−1. The corresponding photon recoil energy is ER = 2π × 8000 s−1, and
the lattice depth of the static lattice is fixed in a range from 5ER to 20ER, when the energy
gap at kL is EG & 3ER � h̄ωB and the bandwidth is always smaller than 10−1 EG. Given these
conditions, Landau–Zener tunneling is negligible. By controlling the radio-frequency power of

New Journal of Physics 12 (2010) 065037 (http://www.njp.org/)

http://www.njp.org/


6

Figure 2. Tunneling rates of the resonantly driven transport. The points with
different symbols correspond to the measured tunneling rates for the first three
harmonics of modulation ` = 1, 2, 3 as a function of the lattice depth U0/ER

(see legend). By relying on the linearity of the tunneling as a function of the
modulation amplitude α, the data have been normalized so that αU0 = 2ER. The
lines correspond to the computed theoretical values (see text). The error bars are
in the size of the symbols.

an acousto-optical modulator, we stabilize and modulate the laser intensity in order to reproduce
the time-dependent Hamiltonian in (1). The readout is performed by measuring in situ the spatial
atomic distribution using resonant absorption imaging.

4. The results

4.1. Resonant tunneling in amplitude-modulated optical lattices

To characterize the tunneling rates J` we proceed as follows. The atoms are initially localized
to single lattice sites, their quasi-momenta being spread over the whole Brillouin zone. In
fact, the de Broglie wavelength results λdB ∼ 200 nm < d at temperature T ∼ 1 µK. Applying
the amplitude modulation for a given time results in a spatial broadening of the atomic wave
packets. The speed of this broadening corresponds to the average over k of the group velocities
〈v2

g〉
1/2

= `dJ`/(
√

2h̄) [39], which, thus, provides a measurement of J`. We measure the speed
of broadening by recording the spatial size of the atomic cloud at different times of modulation
and fitting the resulting curve by a linear expansion [18]. By varying the modulation amplitude
0 < α < 1, we find that the J` depend linearly on it. This is a unique feature of amplitude
modulation, which provides a clean tunability of the J` across a wide range. This is shown in
figure 2, where the measured J` values, represented by symbols, are shown together with the
numerical values, represented by lines, while varying the lattice depth U0. The numerical curves
are computed by using expression (5) and an analytical expression of the Wannier–Stark states
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Figure 3. Realization of Loschmidt echoes (a) The applied sequence: two
identical amplitude-modulation (AM) bursts of the optical lattice intensity I (t)
at `ωB enable the resonant tunneling, which couples lattice sites separated by
`d. The bursts are separated by a freezing time tfr, during which the tunneling
is disabled and Bloch oscillations of the quasi-momentum set in. (b) The
corresponding cloud’s rms size versus tfr has periodicity 2π/(`ωB). From top to
bottom, the amplitude modulation at ωM = `ωB induces resonant coupling with
up to ` = 3 neighboring sites. Inversion of the group velocities vg occurs at the
minima of the rms size.

|n〉, which is valid in the regime of deep lattices [44]. The agreement is excellent in all three
cases ` = 1, 2, 3 of harmonic modulation.

4.2. Loschmidt echoes

In order to demonstrate the reversal of the group velocities, we employ the sequence in
figure 3(a), using a Loschmidt-echo scheme analogous to the more familiar spin echo in
other systems [42, 43]. Two identical amplitude-modulation bursts characterized by the same
amplitude, phase and by the frequency `ωB are applied lasting about 500 ms each, which
correspond to 287 Bloch periods τB, where τB has been preliminarily measured with 1 ppm
sensitivity [18]. For each case ` = 1, 2, 3, we choose U0 and α in a way to keep comparable
tunneling rates and stay within the same regime of operation. It turns out that, while we decrease
U0 through the values U0 = 11.2ER, 6.6ER, 6.3ER, we have to increase α through the values
α = 0.23, 0.47, 0.84.
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Figure 4. Loschmidt echoes persisting over a long period. The data points report
the full data series corresponding to the case of ωM = 3ωB reported in figure 3.
The damping time is estimated to be of the order of 4 s.

The two bursts serve to enable the coherent tunneling and are separated by a variable
freezing time tfr during which the amplitude modulation is off, α = 0, and the resonant tunneling
is disabled. During the freezing time, the quasi-momentum increases linearly in time performing
Bloch oscillations within the Brillouin zone with period τB. This corresponds, in other terms, to a
phase imprinting created by the linear gravity potential on the lattice such that neighboring sites
acquire a ωBtfr phase difference. The group velocity vg(`, k, φ) during the second burst depends
on the group velocity during the first burst and on the phase imprinting during the freezing
time. The overall cloud’s expansion or contraction during the second burst is related to the
comparison of the group velocities before and after the freezing time, whether they are aligned
or anti-aligned as shown in figure 1(b). By varying tfr, the two situations alternate periodically
with period τ` ≡ τB/`, proving the `-fold periodicity of the effective energy band within the
Brillouin zone. Figure 3(b) shows that this is indeed the case, resulting in a periodic signal with
period τ`. The group velocities vg(`, k, φ) are fully reversed independently of the k values at
each τ`/2, that is at the minima occurring at tfr = τ`/2|2n + 1| (n integer).

The Gaussian convolution of the single-atom response with the initial cloud’s distribution

suggests that the expression of the rms size is σ(tfr) =

√
σ 2

0 + σ 2
1 cos(π tfr/τ`)2, with σ0 being the

initial size. This is reproduced by the solid curves, best agreeing with the measured points. The
fit to each data set with different ` yields τ` = τB/`, and σ1 turns out to match the broadening that
would occur after one single burst twice as long. The oscillations persist over several seconds,
indicating a high fidelity in recovering the quantum state after vg reversal [42, 43]. This is
illustrated in figure 4, where the damping time is estimated to be about 4 s.

4.3. A novel kind of atom mirror

The tools developed so far can be used efficiently to realize an atomic mirror for traveling
matter waves with defined momentum. In order to observe this effect, we need to prepare the
atoms with a momentum dispersion narrower than the Brillouin zone. We accomplish this by
increasing U0 = 14ER sufficiently to trap a fraction of atoms also in the second band, where the
momentum distribution shrinks because here the thermal momentum distribution is steeper. In
addition, we purposely favor one of the two directions by letting the atoms freely fall for about
200 µs between the release from the red MOT and the lattice switch on. We can accurately
control the value of k within the Brillouin zone by following the Bloch oscillations in the
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Figure 5. Cloud’s barycentric position after a single amplitude-modulation burst
versus switch-on time of the amplitude modulation, t0, at ωM = ωB. Changing
the initial hold time t0 in the static lattice allows one to prepare any initial
quasi-momentum within the Brillouin zone. The sinusoidal shape of the data
point indicates that the dynamics in the modulated system are described by the
effective energy dispersion in equation (6). By varying the modulation phase φ

of the driving, we shift the sinusoidal energy dispersion by the same amount, e.g.
at φ = 90◦ from sine to cosine.

static lattice for a time t0 before activating the amplitude modulation. During the modulation
the cloud’s position is expected to move with a velocity vg(`, k, φ) with k = 2kLt0/τB modulus
the Brillouin zone, as it is shown in figure 5. Here, it is also emphasized that besides the width
and the periodicity of the dispersion law, we can also tailor its phase at will.

At the flex points of E(`, k, φ), like at k = 0 for φ = 0, the motion becomes dispersionless
and reaches the largest vg, and consequently the largest displacement. In this case, figure 6
shows the displacement of the atoms in the second band, which move upwards with a vg of
0.64 mm s−1 when α = 0.33 and ` = 1. We track this motion for 500 cycles corresponding to
a duration of 870 ms and a displacement of about 0.5 mm. A residual broadening still occurs
because of finite spread of the initial momentum distribution, but it is limited to one-tenth of
the total displacement. This can largely be reduced by initially preparing a narrower momentum
distribution, as with Bragg or Raman velocity selective stages, sympathetic cooling or BECs. In
order to reverse the wave-packets’ motion, we subsequently apply the scheme of figure 3(a) by
choosing tfr = τB/2. During the second burst, the atoms move downwards with the same speed
but opposite direction. As expected, the atom mirror reverses the direction of motion as well as
the broadening of the atomic cloud, making the traveling wave packets recover their initial size
at the echo time of 500 cycles when the duration of the second burst equals the duration of the
first one, analogously to the Loschmidt echoes shown in figure 3.

4.4. Gravity measurements

The control of transport obtained here with resonantly driven optical lattices can be exploited
to determine with high-precision the local forces applied to the atoms. In addition, since
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Figure 6. Atom mirror for traveling matter waves. Atoms loaded in the second
band have sub-recoil momentum dispersion. Wave packets with initial k = 0
travel upwards with minor dispersion (solid line). After reversing the group
velocity vg, atoms move downwards with opposite speed (dashed line). Inset:
linearity of the tunneling versus the modulation amplitude α. Right panel: 2D
density profile of the cloud corresponding to the data point, circled in figure,
at t = 783 ms. Because the atoms in the second band have a higher vg, the two
clouds separate from each other away from the origin.

measurements here occur with atoms trapped in confined geometries, this type of technique is
well suited in applications where high spatial resolution is required. In this regard, we expect to
reach micrometer spatial resolutions by properly reducing the initial size of the atomic sample.

As we have already demonstrated using phase modulation techniques [18], we can provide
high-precision determination of the Bloch frequency ωB, which is in turn proportional to the
local force experienced by the atoms, by recording the response of the atomic dynamics during
a modulation frequency scan around the tunneling resonances centered at ωM = `ωB. In [18]
we have also demonstrated that the resonance spectra obtained after this measurement are
characterized by a width that remains Fourier limited regardless of the harmonic of modulation
`. Therefore, by phase modulating the lattice at higher frequency `ωB, we were able to increase
the quality factor of the resonances, hence the sensitivity in the determination of the local
acceleration of gravity.

The very same effect is observed in the present setting, where we perform an amplitude
modulation of the optical lattice potential for a finite time. We obtain resonance spectra that
are Fourier limited up to the fifth harmonic of the Bloch frequency, resulting in an improved
sensitivity (see below). This is illustrated in figure 7: as expected, the spectrum is shaped like
a sinc function with a Fourier-limited width, demonstrating that coherent delocalization of the
wave packets occurs.

Instead of scanning the tunneling resonances by varying ωM, it is also possible to exploit
the Loschmidt-sequence method described in section 4.2. In this case we can provide a
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Figure 7. Resonance spectrum after amplitude modulation of the lattice
potential. The spectrum is obtained after a modulation time of t = 5 s while
scanning across the fifth harmonics of the Bloch frequency ωB. The resonance
width is estimated to be 69 mHz close to the Fourier limit of about 1/(π t) =

64 mHz, indicating that the corresponding tunneling couples coherently lattice
sites that are separated by 5λL/2 = 1.3 µm. The solid line represents the
convolution of the initial spatial size and the broadening that is described by
sinc(x) = sin(x)/x function with argument x = δt/2, where δ = ωM − 5 ωB is
the detuning from resonance and t is the modulation time. From this spectrum,
we determine the Bloch frequency ωB with a statistical uncertainty of about
1 ppm.

measurement of ωB while working at—or close to—the resonant frequencies ωM = `ωB. For
example, a fit of the data set of figure 3 with ` = 3, obtained following the oscillations for
8 s, yields a measurement of g with relative sensitivity 1g/g = 5 × 10−7. The advantage of the
Loschmidt-sequence method in which two separated pulses of modulation are used is that the
physical signal is integrated during the freezing time when the modulation is switched off. This
suppresses the atomic losses that originate from the modulation itself. Although the latter occur
at a very small rate, they can build up to a significant level on a time scale of several seconds.

A few remarks are now in order, which can be useful to compare these modulation
techniques for precise force measurements with other methods, based on the study of Bloch
oscillations in static lattices [14, 16, 46]. In the present phase or amplitude modulation
techniques, the atomic sample is prepared in a superposition of quasi-momenta states spanning
the whole Brillouin zone. This relaxes one important constraint on the temperature, which can be
above the recoil energy ER. In the static-lattice methods, one significant sensitivity requirement
is that the temperature is below ER, in order to initiate the atomic sample in a highly defined
quasi-momenta state. In addition, the present techniques directly probe differences of potential
energy and thus they can be employed under conditions where strongly curved potentials play
a role, as with the Casimir–Polder interaction. This direct sensitivity to potential differences
is notably important when compared with the other atomic techniques aiming at exploring
inhomogeneous potentials, which are sensitive either to the first [15] or to the second [47]
derivative of the external potential, depending on whether one measures Bloch or dipole
oscillations in a static lattice, respectively.
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We finally remark on an important conceptual advantage of amplitude over phase
modulation, regarding the measurement of forces when the atoms are placed close to a
macroscopic substrate. In fact, the method based on amplitude modulation can be implemented
in the vicinity of a reflective substrate, since an independent control of the two lattice beams
is not required. Conversely, in the case of phase modulation, it would be inconvenient to
mount a bulky macroscopic substrate on top of a piezoelectric transducer. Besides this intrinsic
difference, the use of amplitude modulation has allowed us to observe coherent broadening at
higher ` values with respect to those previously obtained using phase modulation, and therefore
to improve our sensitivity. This is mostly due to purely experimental reasons, since amplitude
modulation allows a better control over phase modulation schemes.

5. Conclusions

In conclusion, we have presented a novel method to control the transport of cold atoms in optical
lattices. The method is based on an amplitude modulation of the lattice potential on resonance
with the Bloch frequency and its harmonics. Under these conditions, the dynamical system can
effectively be viewed as a stationary one, where the atomic wave packets move in an effective
energy band whose periodicity, width and phase can be tailored at will while acting on the
modulation parameters.

Besides the significant interest per se of this dynamical energy-band engineering, the
flexibility offered by the present method is of great importance for applications. As an example,
we have used the basic operation of group velocity reversal to implement a Loschmidt-echo
sequence, thus offering a new powerful tool to perform spectroscopy of strongly correlated
samples, to study decoherence phenomena and fidelity in quantum many-body systems [48],
and for applications in atom optics. As to the latter, we have demonstrated a novel and efficient
atom mirror.

Using the same concept of [18] with phase modulation, we have implemented amplitude
modulation to obtain coherent delocalization of atomic wave packets and effectively shorter
Bloch-oscillation periods, resulting in sub-ppm sensitivity in the measurement of the local
acceleration of gravity. We have discussed conceptual and technical advantages of the present
method over previous ones, based on the study of Bloch oscillations either in static or
in phase-modulated optical lattices. Allowing the measurement of forces with micrometric
spatial resolution and high sensitivity, we can conclude that amplitude modulation provides
an excellent tool for the study of potentials at short distances from a surface, e.g. the
Casimir–Polder interaction, or for tests of gravitational interaction at micrometric distances
[14–19].
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