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1 Introduction
“Fabry-Perot resonators entered the scene of physics more than a century ago and have
continued to play an important role ever since” [1].

Considering the amount of applications of Fabry-Perot resonators nowadays, this state-
ment is unequivocally valid. On the one hand, Fabry-Perot resonators constitute a key
component within lasers which are fundamental necessary instruments for current re-
search and industrial processing. On the other hand, Fabry-Perot resonators can provide
an intense electromagnetic field confined to a small space, a property which is required
for experiments on coupling of single atoms with photons. Not long ago, this rapidly
developing field of research – Cavity Quantum Electrodynamics – started to employ
microfabricated fiber-based Fabry-Perot cavities with their desirable small and easily ac-
cessible mode volumes. Besides examination of fundamental quantum mechanics, these
cavities are promising systems for applications in the aspiring field of quantum informa-
tion science. Furthermore, fiber-based Fabry-Perot cavities are very qualified for the use
as optical filters with narrow bandwidth and high transmission on resonance. Such kind of
filter is important for and frequently utilized in a wide variety of applications, for example
in telecommunication systems or in spectroscopy experiments.

Two areas of focus of this thesis are the polarization mode splitting and the transmis-
sion of a fiber cavity on resonance. A new fiber-based Fabry-Perot cavity which shall
subsequently be employed as a filter cavity will be set up.

Polarization mode splitting of the cavity resonances occurs in every optical resonator
to a certain extent and is an unwanted effect for many applications of Fabry-Perot cavities.
Consequently, it is necessary to be able to control and minimize the mode splitting. A
characterization of this phenomenon and the clarification of an earlier measurement on
the subject are the topic of chapter 3.

One essential figure of merit of an optical filter is a high transmission on resonance.
Considering fiber-based Fabry-Perot resonators, the amount of transmitted power is very
sensitive on the alignment and geometry of the fibers. Chapter 4 is devoted to a theoretical
and experimental discussion of how to optimize a fiber cavity for high transmission.

In order to provide the theoretical basics, the principle behind a Fabry-Perot resonator
and its fundamental mode are recapitulated and general information about fabrication and
properties of fiber resonators are presented in chapter 2.
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2 Theory of Fabry-Perot Resonators
In 1897, Charles Fabry and Alfred Perot utilized multiple-beam-interference between two
planar mirrors in order to construct an interferometer. Nowadays, modern physics can
not be imagined without “Fabry-Perot Resonators”. The following chapter presents an
outline of the functionality principle behind this kind of resonator.

2.1 Functionality
The easiest way to build up a Fabry-Perot resonator is to arrange two planar mirrors
opposed to each other, forcing light to bounce back and forth and thus, to interfere
with itself. Monochromatic polarized light of frequency ν and wavevector ~k is given as a
solution of Maxwell’s equations by a plane wave with the complex wavefunction

~E(~x, t) = ~E0 exp
(
i(~k~x− 2πνt+ ϕ)

)
k :=

∣∣∣~k∣∣∣ = 2π
λ

= 2π
c
ν (2.1)

where c denotes speed of light in the surrounding medium (usually air). Because light in-
side the resonator will interfere with itself, only beams of certain wavelengths will interfere
constructively, so called “modes”. These modes which will form standing waves can be
determined by considering that they reproduce themselves after a single round-trip. Since
the additional phase shift on each mirror is π (which imparts 2π after one round-trip),
the physical relevant phase shift ∆ϕ after one round trip is only defined by the distance
L of the two mirrors. Claiming this phase shift to be a multiple of 2π, one obtains

∆ϕ = k · 2L = 2π
c
ν · 2L != q · 2π q ∈ N>0 (2.2)

=⇒ νq = q · c2L (2.3)

the resonance frequencies νq of the resonator with given length L. These adjacent fre-
quencies are spaced by the Free-Spectral-Range FSR

FSR = νq − νq−1 = c

2L. (2.4)

One would alternatively obtain the resonance frequencies by considering the transverse
component of the electric field to vanish at the mirrors, which is a natural boundary
condition on (perfect) electrically conducting materials.

t1,r1 t2,r2

L

}Et

E0

E1

E2
Ecirc

Ein

Fig. 2.1: Multiple reflections and trans-
missions of light inside a cavity. The in-
tensity of each field is given by I = |E|2.

The strict condition of single resonance fre-
quencies allowed to propagate inside the
cavity is relaxed considering real mirrors.
In reality a mirror is not perfect, which is
characterized by its power reflection and
transmission R and T , respectively, or
analogously by its effect on the complex
wavefunction expressed by the amplitude
attenuation factors r, t ∈ C with |t|2 =
T, |r|2 = R. Moreover, losses L can oc-
cur because of absorption or scattering, for
instance. The relation R + T + L = 1 is
valid due to energy conservation. As a con-
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sequence, not only optical waves with discrete frequencies, but a continuous spectrum
appears inside the cavity. Imagine the light beam on its way through the resonator as
depicted in fig. 2.1. An incident light wave Ein (polarization is neglected here) with in-
tensity Iin = |Ein|2 passes the first mirror and a fraction E0 = t1Ein is transmitted into
the cavity. Here, it undergoes multiple transmissions and reflections, so that the overall
field Ecirc circulating inside the cavity can be expressed as the sum of the infinite internal
light waves which are continuously reflected. By taking the additional phase shift ∆ϕ
after one-round trip into account, Ecirc is given by

E0 = t1 · Ein
E1 = r1 r2 e−i∆ϕ · E0

E2 = r2
1 r

2
2 e−2i∆ϕ · E0

E3 = r3
1 r

3
2 e−3i∆ϕ · E0

...


Ecirc =

∑
i

Ei = Ein
t1

1− r1r2e−i∆ϕ (2.5)

Using equations (2.2), (2.4) and the geometric series, an intensity distribution inside the
cavity can be determined as

Icirc(ν) = |Ecirc|2 = Imax

1 +
(

2F
π

)2
sin2

(
πν

FSR

) (2.6)

Imax = Iin
T1

(1−
√
R1R2)2 , F = π 4

√
R1R2

1−
√
R1R2

(2.7)

and the normalized transmission spectrum reads

T (ν) = It
Iin

= |t2 · Ecirc|
2

Iin
= Tmax

1 +
(

2F
π

)2
sin2

(
πν

FSR

) , Tmax = T1T2

(1−
√
R1R2)2 (2.8)

These are periodic functions of frequency, see fig. 2.2. The resonator behaves completely
transparent on resonance for T1 = T2 and in case of no absorption losses (Ri = 1 − Ti),
otherwise Tmax < 1. The finesse F is proportional to the lifetime of a photon inside
the cavity. If it is large, F � 1, the intensity is sharply peaked around the resonance
frequencies and the intensity Imax of the intra-cavity field on resonance can be enormously
higher than the incident intensity. The full-width-at-half-maximum FWHM is then given
by FWHM = FSR/F , which means for large F the resonance peaks are quite narrow
compared to the FSR. This is one main reason for employing Fabry-Perot resonators as
optical filters. They can be tuned by adjusting the length of the cavity. For macroscopic
cavities (L ≈ 1 cm) however, the resonance frequencies are very sensitive to small changes
∆L of the cavity length, since ∆νq = qFSR∆L/L. As an example, for typical frequencies
of νq ≈ 5 THz, the order is q ≈ 17 000, so that even a small change in cavity length
∆L/L = 10−3 alters the resonance frequencies by ∆νq ≈ 250 GHz. The change of the free
spectral range is only ∆FSR ≈ 15 MHz.

All things considered, a high finesse is desirable in order to obtain a Fabry-Perot filter
cavity with sharp transmission peaks permitting only a small band of selected frequencies
to be transmitted. Of course, losses on the mirror surfaces should be reduced in order to
transmit as much power as possible on resonance.
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Fig. 2.2: The transmission spectrum for different values of the finesse is a function with
periodicity FSR. If F � 1, the peaks are approximately described by Lorentz-peaks.

Ray confinement – geometric stability

stable resonators

instable resonators

confocal

planar

concentric

symmetrical
resonatorsconfocal/planar

Fig. 2.3: Stability diagram. The
blue area marks the regime of sta-
ble resonators, symmetric resonators
with R1 = R2 lie on the red dashed
line. Some special examples are given.
Parts of the image are taken from [2].

One disadvantage of two parallel planar-
mirrors with finite diameter is the high sen-
sitivity on misalignment. If the to mirrors
are not perfectly parallel, rays will leak out of
the resonator after some round-trips. Other
cavity geometries providing a more stable
ray confinement are possible. A quantity
to characterize this stability is given by the
g-parameters of the two mirrors with radii
of curvature R1, R2 and distance L (concave
mirrors have R = − |R|). A stable resonator
must provide

0 ≤ g1 · g2 ≤ 1, gi = 1 + L

Ri

(2.9)

which is graphically presented in fig. 2.3. A
detailed derivation can be found in [3].

2.2 The Gaussian Beam
So far, the description of light inside a cavity via a plane wave was sufficient. However,
a plane wave is not spatially confined and can not provide any information about the
spatial distribution of the intensity. Considering a special case of Maxwell’s equations,
the paraxial Helmholtz-equation, one can find the Hermite-Gaussian-Beams as a whole
set of orthonormal solutions. These do provide information about a spatial intensity
distribution. The lowest order solution – the so called Gaussian Beam – is of most
importance as it describes laser beams and modes inside a cavity to good approximation.
In the following, only a brief outline of the most important properties of the Gaussian
beam shall be outlined, since good and far more detailed treatments of the quantities and
their relationships can be studied in textbooks like [3].

Let z be the propagation axis and ρ = x2 + y2 the radial distance from any point
to this axis. The intensity of a Gaussian beam in any transverse plain is concentrated
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Fig. 2.4: (a) Radial intensity profile. For z = z0, the intensity on the axis is halved.
(b) The radius obtains its minimum value at the beam waist and increases linearly with
z for large z. The wavefront normals are paraxial rays. Sketch (b) partly from [4].

and distributed spherically symmetric around the propagation axis, following a Gauss-
function (see fig. 2.4a). The width w(z) of this Gauss function is defined as the radial
distance where the intensity drops to 1/e2 of the peak intensity. w is known as the radius
of the beam at position z. This radius takes its minimum value w0 at the beam’s waist
and grows successively in both directions, which means the beam is converging left and
diverging right of its waist as illustrated in fig. 2.4b. Moreover, after a “Rayleigh range”
z0 from the waist the intensity on the z-axis drops to half its value.

The Gaussian beam is of interest in the context of this thesis because it is a good
approximation for a beam exiting single mode fibers which are frequently used in the
experiments, and because it describes a mode inside a fiber cavity.

Gaussian mode inside a cavity

Imagine two mirrors left and right of the beam’s waist opposing each other. If the radius
of curvature of the beam’s wavefronts at the positions of the mirrors is identical to the
mirror radii, the Gaussian beam will retrace itself after one round trip and thus forms a
self consistent mode (a treatment of the phase is neglected here).

Because a mathematical description is essential for a discussion of mode-matching
efficiencies of Gaussian beams, which is the topic of chapter 4, we now specify a Gaussian
beam matching a resonator. Let Ri be the radius of curvature of the mirror located at
position zi (the beam waist w0 be at z = 0). Since both mirrors are separated by a
distance L, z2 = z1 + L is valid. Considering the condition that the wavefront curvature
at the mirrors is identical with the mirror curvatures, one obtains [3]

z1 = −L(R2 + L)
R1 +R2 + 2L, z2 = z1 + L (2.10)

z0 = −L(R1 + L)(R2 + L)(R1 +R2 + L)
(R1 +R2 + 2L)2 (2.11)

for mirror positions and Rayleigh range (Ri < 0 for concave mirrors). These parameters
completely describe the mode. Important parameters are the beam radii w0 at the waist
and wm,i at the mirror i = 1, 2, given by

w0 =
√
λz0

π
, wm,i = w0

√
1 +

(
zi
z0

)2
. (2.12)

For mirror radii between 140 µm to 210 µm and cavity lengths between 10 µm to 50 µm,
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Fig. 2.5: Beam radii wm,1, wm,2 at the mirrors and minimum beam radius w0 at the waist
versus the length of the cavity L for two mirrors with radii of curvature R1 = 140 µm, R2 =
165 µm and light at 780 nm wavelength. For small mirror distances the radii are almost
constant, which implies that the Rayleigh range is much larger than L. The singularities
around 140 µm originate from a violation of the geometric stability condition (2.9).

which are reasonable values for fiber cavities, the beam is focused down to only 2 µm to
4 µm at both, waist and mirrors (see fig. 2.5). Moreover, the divergence is really small,
which is due to a large Rayleigh range between 40 µm to 60 µm for this set of parameters.

The resonance frequencies of a Gaussian beam inside a cavity are identical to those
of a plane wave, but only shifted by a constant displacement This especially means that
the free spectral range stays the same. Why is it legitimate to state that the Gaussian
beam is the dominant mode inside a fiber cavity? A beam exiting a singlemode fiber is
well approximated by a Gaussian beam, and entering the cavity, it is projected on an
orthonormal set of all possible cavity modes. Due to the similarity of the mode field radii
of the Gaussian beam exiting the fiber and of the Gaussian beam inside the cavity, the
overlap of both is quite large compared to the overlaps with other cavity modes (see also
chapter 4). Consequently, the Gaussian beam is the dominating intra-cavity mode.

2.3 Fiber-based Fabry-Perot cavities

Fig. 2.6: Sketch of the
geometry of an aligned
fiber-based cavity. Taken
from [5].

Fiber-based Fabry-Perot cavities offer numerous advantages
for CQED experiments. They combine small and easily ac-
cessible mode volumes with a potentially high finesse. More-
over, there is no need of further mode-matching optics which
make them very applicable for the assembly in integrated
systems. Fiber resonators consist of two optical glass fibers
arranged opposite to each other, as shown in fig. 2.6. The
fiber tips are microfabricated mirrors, thus, the setup is in
principle a normal Fabry-Perot resonator. What makes it so
interesting for current research is the possibility that the the mirrors can approach each
other up to L ≈ 8 µm (only a few λ/2 and shorter than the Rayleigh range) due to their
tiny diameter, resulting in very small and almost constant waists inside the cavities be-
tween typical values of 2 µm to 4 µm. The corresponding small mode volumes are highly
desirable for light-matter-interaction experiments.
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(a) (b)
R

d
≈125µm

Fig. 2.7: (a) Scanning electron microscope image of a fabricated fiber tip. Taken from [5].
(b) Cross section of a mirror-fiber. The concave depression can be approximated to
first order by a sphere of radius R. Moreover, a decentration d can be recognized (the
red line represents the fiber core). Typical single-mode fibers have a cladding diameter
of ≈ 125 µm.

Fabrication and Characterization

The current optimal way to fabricate the required fibers is to focus a CO2 laser pulse
onto a cleaved fiber tip [6]. It evaporates the fiber by heating it up, resulting in a concave
shape with very low surface roughness which minimizes scatter losses (see fig. 2.7a). In a
next step, a high reflective coating is deposed onto the fiber end faces.

In order to characterize the mirrors in terms of the radius of curvature, an interfero-
metric microscope is employed allowing to fit a sphere to the mirror cross-sections. Thus,
the radius of curvature R can be determined. However, two very important figures of
merit have to be considered here, of which the first one is ellipticity. In general, the
mirror surfaces are not perfect spherical but exhibit ellipticity, that is, their surface near
the centre can be approximated by an elliptical paraboloid with a mayor axis of radius of
curvature R1 and a perpendicular minor axis with radius of curvature R2 [1]. This leads
to important phenomena which are examined in chapter 3.

The second significant cavity mirror parameter is decentration, which occurs if the
CO2-beam has not been perfectly centered on the fiber core. The distance d of the centre
of the concave profile to the fiber core is called decentration, as depicted in fig. 2.7b. This
effects the coupling of the fiber mode with the cavity mode, which is treated in more
detail in chapter 4.

Properties of the employed fibers

A short outline of the fibers used in this thesis shall be given here. All the fibers, of which
the most are singlemode and few are multimode fibers, have identical coatings. The
singlemode fibers CU800 are ordered from the company IVG Fiber and have a measured
mode field diameter of (4.8± 0.2) µm, a cladding diameter of (125± 1) µm and a cut-
off wavelength of 770 nm. The dielectric coatings are optimized for 780 nm. For light at
850 nm wavelength, which is used in the experiments of this thesis as well, the transmission
T is higher resulting in a decreased finesse. Table 2.1 presents T and L values of the
coatings, as well as theoretical finesses to expect. The equations (2.7) and (2.8) for the
finesse and the maximal achievable transmission can be approximated for low T and L
using the taylor expansion:

F ≈ 2π
T1 + T2 + L1 + L2

, Tmax ≈
4T1T2

(T1 + T2 + L1 + L2)2 (2.13)

Typical radii of curvature are 140 µm to 210 µm, most fibers exhibit decentrations in a
range from 0.5 µm to 4 µm. Ellipticity can mainly be found in a range from R1/R2=1.02
to 1.13.
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780 nm 850 nm
T/ppm 13± 3 134± 4
L/ppm 13± 3 13± 3

F 121 000± 14 000 21 400± 500
Tmax/% 25± 6 83± 3
γ / dB 48.9± 0.5 41.3± 0.1

Tab. 2.1: Properties of the
coatings of our fibers. Fi-
nesse and Tmax are calculated
via eq. (2.13), extinction γ via
eq. (2.14).

2.4 Filter cavities
Optical filters are an important technology with applications in telecommunications, in
setups where they separate laserfields with small frequency spacings, or in current modern
atomic physics experiments, just to mention a few. Because Fabry-Perot cavities only
transmit light around distinct resonance frequencies and reflect all other frequencies, they
can be employed as excellent optical filters. However, the spectrum of source light should
be smaller than the free spectral range in order to avoid ambiguity. If the finesse is high,
the transmitted bandwidth is small and the extinction ratio, that is the ratio between the
intensity of the transmitted light on and off resonance, is large. All things considered,
important figures of merit of an optical Fabry-Perot filter are:

• High transmission on resonance

• Large extinction ratio

• Narrow bandwidth FWHM

• Large free spectral range FSR

The transmission on resonance is very sensitive on the coating parameters as can be
seen in equation (2.8). Moreover, it depends on the coupling of the fiber mode with the
cavity mode, which is sensitive on the alignment and the geometry of the fiber mirrors.
All other quantities mentioned above are related to the optical finesse. Comparing the
transmitted intensity on resonance It(νq) with the transmitted intensity off resonance
It(ν = νq + FSR

2 ), the extinction ratio reads:

γ(F ) := Ion
Ioff

= 1 + 2F

π
(2.14)

Consequently, a high finesse yields a large extinction. Furthermore, since F = FSR/FWHM,
a large FSR and a narrow bandwidth are complementary quantities for a given finesse.
That is why a high finesse is desirable to obtain a large FSR and a small FWHM simulta-
neously. However, in the case of significant losses in the mirror coatings, one is confronted
with a trade-off between large finesse, which requires low transmission of the mirror coat-
ings, and large transmission on resonance, which requires high coating transmissions. This
trade-off and the coupling of the fiber and cavity modes is topic of chapter 4.

All in all, fiber-based Fabry-Perot cavities are very qualified for the employment as
optical filters with excellent properties. The finesse is very high and due to the small mirror
distance the FSR is very large. Thus, it is possible to transmit light in a small frequency
range and to simultaneously extinguish all other effectively. For example, choosing a
typical fiber-cavity length of 25 µm and a finesse of 100 000, the free spectral range is
≈ 6 THz. The linewidth of the transmission peaks is around 60 MHz, that means it is five
orders of magnitude smaller!
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2.5 The “SM-MM cavity”
For the work on this thesis a new fiber-based cavity was set up. When choosing the fibers,
one main aspect was taken into account: The fibers should provide a large polarization
mode splitting in order to grant the possibility of examining this effect in more detail,
which is the topic of chapter 3. Therefore, the fibers must provide a large ellipticity
[1]. Furthermore, the new cavity shall serve as an optical filter cavity, which led to the
decision for a combination of a singlemode (SM) input and a multimode (MM) output
fiber. That is because a multimode fiber with its large numerical aperture gathers more
light from the intra-cavity field resulting in a maximum filter transmission (see chapter 4
on mode-matching efficiency for details).

Table 2.2 presents the properties of the chosen fibers. While the cavity length is
scanned over two adjacent resonances, the free spectral range and the linewidth of the
transmission and reflection peaks can be measured via an oscilloscope, yielding a finesse
of

λ = 850 nm =⇒ F = 24 300± 300
λ = 780 nm =⇒ F = 189 000± 8000

which is quite large compared to the theoretical values in table 2.1. The accuracy of
this kind of finesse measurement is discussed in appendix A. A summary of the measured
figures of merit for this particular cavity can be found in the concluding chapter 5.

Whenever in the following text it says “the SM-MM setup” or “the SM-MM cavity”, this
cavity is meant.

SM fiber MM fiber
Major ellipticity axis R1 (165± 10) µm (191± 10) µm
Minor ellipticity axis R2 (139± 10) µm (167± 10) µm
Ellipticity R1/R2 1.19± 0.11 1.14± 0.09
Decentration d (1.82± 0.25) µm (3.82± 0.25) µm

Tab. 2.2: Properties of the fiber mirrors of the SM-MM cavity. Both mirrors exhibit
a large ellipticity, which should lead to a distinct polarization mode splitting. The very
large decentration of the MM fiber does not have major effects, since a MM fiber gathers
almost all the intra-cavity light anyway.
The radii of curvature (ROC) of the two ellipticity axes are determined by fitting a
sphere to 30 µm of the mirror cross sections. Fits to 20 µm or 40 µm of the surface yield
the deviation of the ROC around 10 µm. The decentration of the fiber core is measured
by illuminating it from the back and imaging it with a microscope. The error 0.25 µm is
dominated by the microscope resolution.
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3 Polarization mode splitting

3.1 Origin
In experiments with fiber-based Fabry-Perot cavities a mode splitting of two slightly
different resonance frequencies can be observed. This originates from two sources. The
first one is birefringence, as stress on the microscopic fiber mirrors induces slightly different
optical path lengths for two different axes. Polarized light will thus be separated into two
non-degenerate eigenmodes. The second is ellipticity of the mirrors due to production
issues, leading to two perpendicular axes. It has been shown in [1] that corrections to
the scalar paraxial resonator theory by extending it to a vector theory and including
polarization agree excellently with experimental results. Geometry of the mirror surfaces
is found to be the dominant source of polarization mode splitting in microscopic cavities.

Since controlling polarization mode splitting is essential to obtain one instead of two
slightly different resonance frequencies, which is important for a filtering of narrow band-
widths, this chapter is devoted to a characterization of this phenomenon.

The setup used for the investigation is shown in fig. 3.1. The fibers are situated on three-
dimension translation stages, one of which is equipped with a piezo crystal connected to
a frequency generator so that the cavity length can be scanned. Linear polarized light
exiting the isolator enters the fiber. Assuming the fiber to guide the light independently
of its polarization and to not further affect it (which is a tolerant simplification and
considered in more detail in section 3.3), linear polarized light will also emerge inside the
cavity.

The λ/2 retardation waveplate is a key component in the setup. This kind of waveplate
rotates incoming linear polarized light about an angle 2θ, which is twice as big as the
angle θ of the waveplate’s extraordinary axis with respect to the incident polarization.
Consequently, if θ = 90◦, linear polarized light is mapped on itself despite a physically
non-relevant and non-observable additional phase shift of π. By rotating this waveplate,
the linear polarization vector of the light inside the cavity is rotated as well. In steps of

Faraday
Isolator

Telescope

2

BS

Reflection +
      Transmission

PD

3-dim
stages

x,y,zx,y,z

780nm
or 850nm

Piezo

Fig. 3.1: Principal setup used to investigate polarization mode splitting. The key-
component is a λ/2 retardation waveplate as explained in the text. With photodiodes (PD),
the reflection and transmission signals are recorded on an oscilloscope. BS=Beamsplitter.

10



 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

ν1 ν2

n
o
rm

al
iz

ed
 I

n
te

n
si

ty

Frequency

θ1

θ2

Fig. 3.2: Population of both
polarization modes for two
different waveplate angles θ.
Each mode can be fully popu-
lated while the other is depop-
ulated. Output of oscilloscope
looks identically but with time
on x-axis.

θ = 45◦ it can be chosen parallel to one of the two per-
pendicular ellipticity axes, namely fast and slow axis.
Thus, the cavity modes corresponding to the two el-
lipticity axes can be populated separately and only
one resonance frequency remains. In between, both
axes are populated simultaneously and two slightly
different resonance frequencies occur (see fig. 3.2).
All things considered, by rotating the waveplate a pe-
riodicity of 90◦ is expected.

In the experiments, the cavity resonance line-
shapes are recorded as a function of the waveplate’s
rotation angle. The amplitudes of the two peaks yield
information about the population of the two polariza-
tion modes, that means, about the intensity distribu-
tion in the two ellipticity axes. By recording and fit-
ting more than 15 lineshapes for each rotation angle
of the waveplate, the amplitudes of the two peaks are
determined by the mean and the error by the stan-
dard deviation.

3.2 Measurements
Earlier measurements

A rotation of the λ/2 retardation waveplate should re-
sult in a 90◦ periodicity of the population of the po-
larization modes, as pointed out above. In a mea-
surement taken on 15th April 2014 in this research group, a rotation of the λ/2 waveplate
yielded a periodicity of θ = 180◦ which has not been understood and which had been a
reason for the following examination.

Resolving mode splitting

The goal of this project was to characterize the polarization mode splitting of the SM-MM
cavity and finding an explanation for the so far non-understood periodicity measurement.
Therefore, it should be repeated and examined in more detail1.

Finding and resolving polarization mode splitting appeared to be very challenging
at first. Using the SM-MM cavity with laserlight at 850 nm, finesse is measured to be
F = 24 300± 300 and the resonance linewidth2 is (183± 4) MHz for a cavity length of
(30± 3) µm. But no splitting is observable. This implies two possible conclusions. Either
the cavity does not feature a significant mode splitting, which is not very probable since
the fibers exhibit large ellipticity, or the spacing of the polarization modes is smaller than
the resonance linewidth of around 180 MHz. In this case, the two resonance peaks overlap
and are not or almost not separately resolvable and add up to only one “overall” peak.
However, it should be possible to see deviations of the lineshape of the resulting peak by
rotating the λ/2 waveplate – if only one polarization mode is populated, the linewidth is
smaller than if both modes are populated (the sum of two close adjacent peaks is one
peak with larger linewidth than the linewidth of the single peaks). The problem one

1See appendix B for photos of the employed alignment stages and of the opposed fibers.
2Details about the measurement of the linewidth in units of frequency will follow.
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is confronted with at this point is the mechanical jitter of the piezo movement. The
permanent small changes in cavity length are reasons why very closely neighboured peaks
cannot be resolved and analysed properly.

So, an already existing rigid cavity where strong splitting had already been observed
has been employed. This rigid cavity is built by two singlemode fibers glued with their
mirror tips into a glass ferrule. Thus, the cavity length is fixed and in order to see a
resonance the laser frequency has to be scanned. With laserlight at 850 nm wavelength
a slight mode splitting is observable, but not significant enough for an analysis. With
laserlight at 780 nm wavelength, other challenges occurred. The employed laser showed
a lot of mode jumps making it hardly possible to set it to the right resonance frequency.
Another more stable laser diode was then used, but no resonance could be found here
as well, since its linewidth around 40 GHz was really narrow, considering a free spectral
range of the cavity of around 2.8 THz.
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Fig. 3.3: (a) A large splitting between two polarization modes of (3.22± 0.10) linewidths
is observable. The linewidth of the cavity is (23± 1) MHz. The sidebands of an EOM
are located symmetrically with identical distance beside each mode and can nicely be
distinguished: Sidebands with larger amplitude (black fit) belong to the more populated,
sidebands with smaller amplitude (red) to the less populated polarization mode. (b) The
amplitudes of both polarization modes versus the angle of the waveplate. The expected
periodicity ≈ 90◦ is observed.
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Going back to the SM-MM cavity and using a laser at 780 nm wavelength, strong
polarization mode splitting could be observed. To obtain the cavity linewidth in units
of frequency, an electro-optic modulator (EOM) was used to generate sidebands to the
actual transmission peaks with a frequency spacing of Ω ≈ 248 MHz. Using the side-
bands as markers with known frequency displacements it is possible to perform a cal-
ibration from time to frequency. This is depicted in fig. 3.3a. Finesse turns out to
be 189 000± 8000 which is really high compared to theoretical predictions. A narrow
linewidth of (23± 1) MHz and a large polarization mode splitting of (3.22± 0.10) line-
widths can be observed providing great opportunities for the investigation of the behaviour
of mode splitting in more detail: The λ/2 retardation waveplate was rotated one full cir-
cle in steps of 15◦ and for each angle 15 measurements of the Lorentzian amplitudes of
both peaks have been recorded. The presented result in fig. 3.3b shows nearly perfect 90◦

periodicity, matching the expectation.
Up to this point the predictions have been fully confirmed, nevertheless the question

about the earlier measurements with 180◦ periodicity remains. One key discovery was
made after some time: It turned out that the waveplate employed in the non-understood
measurement one year ago was by mistake a λ/4- rather than an λ/2-waveplate (however,
the measurement in fig. 3.3b has been realized with the correct waveplate). In order to
examine the change in behaviour of the population of slow and fast axis when a λ/4 re-
tardation waveplate is rotated, the λ/2-plate was replaced by a λ/4-plate in the SM-MM
setup with 780 nm. Indeed, a new measurement presented in fig. 3.4 yields a periodicity
of (178.36± 1.55)◦. The origin of the earlier non-understood measurement seems to be
detected.
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Fig. 3.4: Periodicity measurement with a λ/4 waveplate. It yields a periodicity of around
180◦. However, a sinusoidal fit is not satisfactory.
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3.3 Simulation of two combined retardation waveplates
However, around 135◦ and 315◦ a significant deviation from the sinusoidal fit in fig. 3.4
occurs. To understand this, one has to consider a λ/4-waveplate transforming linear po-
larized into elliptical polarized light. Furthermore, assuming the fiber to have no further
effects on the polarization state of the incident light is not sufficient. Indeed, it can trans-
form the polarization state into any other polarization state. Taking this into account,
it is hardly imaginable how the outcome of light will look like after having passed the
waveplate and the fiber. A simulation shall clarify things.

The simulation utilizes the fact that any polarization state can be written in an or-
thonormal linear basis including a phase shift between both basis states. If the ordinary
and extraordinary axes of a λ/x-waveplate are chosen as basis and a corresponding ad-
ditional phase shift φ = 2π/x to the one basis state parallel to the extraordinary axis is
introduced, the effect of the waveplate can be calculated. In fig. 3.5 the principal idea
behind the simulation is presented: Perfect linear polarized incident light in y-direction
in front of the first waveplate, which can either be a λ/2- or λ/4-plate, is assumed. Having
passed it, the light is given in another polarization state. The effect of the fiber on inci-
dent polarization states in its most general form requires three parameters (considering
the Poincaré-sphere, two parameters define the position of a rotation axis about which
any polarization state is rotated and one parameter defines the rotation angle, that is the
retardation. See [7] for further information). However, here we make the simplification of
simulating the effect of the fiber by assuming it acts as an arbitrary waveplate which is de-
termined by only two parameters, its retardation φ2 and the angle θ2 of its extraordinary
axis with respect to the x-axis3. In the end, after going through the fiber, the polarization
will be mapped onto a cavity coordinate system defined by the angle θC . That offers the
chance to find a coordinate system matching the ellipticity axes of the cavity. The result
of the simulation is the intensity distribution in both cavity coordinate axes as a function
of the angle θ1 of the first waveplate. This corresponds to the measurements above.
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Fig. 3.5: Scheme of the combined-waveplate simulation. Linear polarized light in y-
direction passes the first waveplate, which can either be a λ/2- or λ/4-plate. The fiber is
assumed to act as an arbitrary waveplate with retardation φ2. The final polarization state
is mapped onto a cavity coordinate system and the result of the simulation is the intensity
in both cavity coordinate axes as a function of the angle θ1 of the first waveplate.

3Because we consider the fiber as an additional waveplate, “fiber” and “second waveplate” are used
interchangeably in the following.
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Results

The simulation gives two major insights: Using a λ/2 waveplate, one will always obtain a
90◦ periodicity independent of the behaviour of the fiber. The only effect the fiber can
have is to transform the incident linear into elliptical polarized light which leads to a
constant non-vanishing portion of light in both cavity axes. Of course, since the cavity
coordinate system is orthogonal, the overall intensity is just the sum of the intensities in
each axis.

When using a λ/4-plate one will obtain a 180◦ periodicity in general. A special case
occurs if the ordinary and extraordinary axes of the second waveplate are chosen parallel
to the cavity coordinate axes: Let us assume a λ/4-plate as first waveplate. A rotation
of it leads to a transformation of the incident linear polarized light in y-direction in
steps of θ1 = 0◦, 45◦, 90◦... from linear polarized light in y-direction into right-circular
polarized light, linear polarized light in y-direction, left-circular polarized light and again
linear polarized light in y-direction. Both circular polarization states are identical in
terms of the intensity distribution per coordinate axis (1/

√
2I0 in each axis). The linear

polarization states into which the light is transformed are also identical in this regard
(I0 in the y-axis and no intensity in the x-axis). So far, the intensity distribution in the
x-y-coordinate system shows a 90◦ periodicity of the rotation of the λ/4 waveplate. When
the polarization states undergo the second waveplate, they will obtain an additional phase
shift. However, if the ordinary and extraordinary axes of the second waveplate are parallel
to the cavity coordinate system, this additional phase shift has no further effect on the
intensity distribution in the cavity coordinate system. Thus, the intensity distribution in
the cavity coordinate system shows a 90◦ periodicity of the rotation of the λ/4 waveplate,
as depicted in fig. 3.6a.

In any other constellation of the simulation parameters one gets results which deviate from
a sinus and feature a 180◦ periodicity. And indeed, it is possible to fit the measurement in
fig. 3.4, which is shown in fig. 3.6b. This implies, that the assumption of the fiber acting
as a waveplate is sufficient. All things considered, the origin of the measurement results
from last year are understood. They resulted from the use of an incorrect waveplate.
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Fig. 3.6: (a) Simulation result illustrating the intensity in both cavity axes (IxC , IyC) for
a rotation of the first waveplate. A special case occurs, if the axes of the cavity coordi-
nate system are parallel to the ordinary and extraordinary axes of the second waveplate,
resulting in 90◦ periodicity even for a λ/4-plate as first waveplate. θC = 0◦, θ2 = 90◦.
(b) Fit to the splitting measurement in fig. 3.4 employing the simulation with a λ/4-plate
as first waveplate. The fit is quite better than a sinusoidal fit. θC ≈ 103◦, θ2 ≈ 47◦,
φ2 ≈ 0.3 π, angle offset ≈ 14.4◦.

3.4 Further observations
While investigating polarization mode splitting, further observations have been made.
These shall be mentioned here.

Asymmetry in the reflection signal

A fit of the reflection signals always reveals a slight deviation from a Lorentzian lineshape.
One can observe an asymmetry as shown in fig. 3.7. The effect occurs in either cases, scan
of the cavity length with increasing or with decreasing length. Comparing both cases, the
effect seems to be “mirrored”. An investigation on this behaviour is already timetabled
in the research group.
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Fig. 3.7: Asymmetry in the reflection signal (with 850 nm) when the length of the cavity
is scanned over the resonance with (a) decreasing and (b) increasing length.
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Fig. 3.8: Cavity ringing occurs for very
fast scans over the resonance on time
scales of 10−8 s. The output field fea-
tures amplitude modulations with in-
creasing frequency. Here, the full width
at half maximum of the resonance is
scanned within (32± 1) ns.

Immediately after having scanned the
length of a cavity over resonance, the intra-
cavity light field starts to exponentially
decay, characterized by the cavity-decay
time. Considering the coating parameters
at 780 nm for our fibers, the order of mag-
nitude of this decay time is 10−8 s. If the
cavity is scanned over its resonance faster
than the decay time, a phenomenon called
“cavity ringing” occurs. The output field
features a modulation of its amplitude with
increasing frequency. This can be under-
stood by considering the interference be-
tween a laser field of constant frequency
and an intra-cavity field with continuously
shifted frequency due to the cavity scan [8].
Because its origin lies in the decay of the
cavity field, the ringing is always found on
the trailing edge of the peak independent
of whether the cavity is scanned with in-
creasing or decreasing length.

Minimization of polarization mode splitting

The polarization mode slitting inside fiber cavities causes two slightly different resonance
frequencies. Consequently, the transmitted bandwidth becomes larger, which decreases
the applicability of fiber cavities as optical filters. Polarization mode splitting can be
minimized by a rotation of one fiber with respect to the other, so that the major ellipticity
axis of one fiber mirror is opposed to the minor ellipticity axis of the other and vice versa.
This “neutralizes” the ellipticity to a certain extent. Photos of a rotatable fiber mount
can be found in appendix B.
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4 Transmission efficiency

4.1 Theory
Two important figures of merit for optical filter cavities are a small bandwidth and high
transmission on resonance. The first is determined by the finesse and the cavity length, the
latter is characterized by the transmission efficiency, which is the ratio between incident
and transmitted power. Unfortunately, in a cavity with losses L, these two are competing
quantities. How to deal with this trade-off shall be analyzed in the following.

On its way through the setup light undergoes and is affected by several optical com-
ponents and their efficiencies. For transmitted power we obtain:

Ptransmitted = Pin · ηpath in · ε1ε2 · ηpath out · Tmax
Tmax = 4T1T2/(T1+T2+L1+L2)2

(4.1)

In case of losses on the mirrors a maximum transmission Tmax < 1 occurs (see section 2.1),
which is inherent to the cavity mirror coatings at hand. ηpath in,out are the efficiencies of
all optical components the laser light passes by, such as the fiber couplers or the splicing.
What is left is the product of the mode-matching-efficiencies ε1ε2 of the fiber mirrors 1
and 2.

Mode-matching efficiency

A laser beam can mathematically be composed into Hermite-Gaussian modes, whereas
the fundamental Gaussian-mode is of most importance for our experiments. It describes
beams exiting single-mode fibers and thus entering the fiber-cavities. As pointed out in
section 2.2, if the mode match between the fiber mode and the Gaussian cavity mode is
large, the intra-cavity light field on resonance can be described to good approximation
by a Gaussian beam as well. Considering the coupling of the fiber mode ψf to the cavity
mode ψc, the power coupling or mode matching efficiency on mirror i is given by the
squared absolute overlap integral [5],[9]:

εi(λ, L,R1, R2, wf,i, d) = |〈ψf |ψc〉|2 = 4(
wf,i

wm,i
+ wm,i

wf,i

)2
+
(
πnwfwm,i

λRi

)2 · ζ

ζ(λ, L,R1, R2, wf , d) = exp(−(d/de(λ,L,R1,R2,wf,i))2)

(4.2)

Here, Ri, wm,i, wf,i, L denote radius of curvature of mirror i, cavity mode field radius
on mirror i, fiber mode radius of fiber i and length of cavity, respectively. Mind that
ellipticity of the mirror surfaces is neglected in this formula. R1 and R2 refer to the two
different fiber mirrors and not to the two ellipticity axes of one and the same mirror
as in chapter 2 and 3. The second part of the denominator results from the lensing
effects and wavefront curvature, since the beam wavefront, after having passed through
the mirror, has radius of curvature Rbeam = Ri

n−1 with n the refraction index of the fiber
core. Moreover, a decentration d is taken into account which exponentially damps the
mode matching efficiency. The same is valid for angular misalignment of one fiber with
respect to the other. For a full expression of de and additional information about angular
misalignment which is neglected here, see [9].
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4.2 Optimizing transmission efficiency
Achieving a high transmission efficiency can be fulfilled by two independent possibilities:
maximization of the product ε1ε2, which depends on the alignment and the geometry of
the fiber mirrors, and maximization of the maximal achievable transmission Tmax, which
depends on the mirror coatings. In the following analysis a cavity with a singlemode input
and a multimode output fiber (with coating parameters presented in tab. 2.1) is assumed.
Because the output fiber is a multimode fiber with large numerical aperture, it gathers
almost all the light exiting the cavity and its decentration has no effect so that we can
assume ε2 = 1.

Maximization of mode matching efficiency ε1ε2

The geometry of the cavity is a very important factor to obtain large mode matching. As it
can bee seen in equation (4.2), the mode match ε1 between the SM-fiber mode and the cav-
ity mode increases to a maximum if the SM-fiber mode field radius wf,SM = (2.4± 0.1) µm
is identical to the cavity mode field radius wm,1 on the mirror of the singlemode fiber.
The multimode fiber is not that sensitive on this condition as it gathers the intra-cavity
light anyway (ε2 = 1), considering its large numerical aperture and the small divergence
of the cavity beams. Consequently, in order to achieve high mode matching efficiency, the
cavity geometry has to be chosen such that the Gaussian beam inside the cavity is sharply
focused on the singlemode mirror surface and attains a beam radius of wm,1 ≈ wf,SM !

SM MM

fiber
core

Fig. 4.1: Optimum
geometry for a SM-
MM combination.

This can be fulfilled by taking care of the curvature of the
multimode fiber mirror. The larger its curvature, the sharper
will the beam be focused onto the singlemode fiber mirror,
as illustrated in fig. 4.1. With R2 = 50 µm, the radius of the
cavity beam on the SM-mirror obtains 2 µm to 2.5 µm for cavity
lengths between 5 µm to 45 µm. This definitely agrees with the
radii condition and results in an almost 100 % mode matching
for this range of mirror distances. Furthermore, in order to
minimize lensing effects, a flat singlemode fiber (R1 = ∞)
should be chosen. The resulting mode matching is depicted in
fig. 4.2, solid lines.

In order to obtain a very high coupling for a cavity consisting of two singlemode fibers,
the beam radii on both mirrors have to agree with the radii condition. Thus, the probable
optimal geometry is a symmetric cavity (R1 = R2). In this constellation the beam radii
on both mirrors are identical. This constellation has not been investigated further.

fiber mode

cavity mode

dc
df

Fig. 4.3: Minimizing
decentration effects by
the alignment.

Avoiding decentration and misalignment is another keyword
since both exponentially damp transmission. Although decen-
tration is due to production issues of the fiber mirrors and
cannot be corrected afterwards, it is possible to minimize its
effects by aligning the fibers in a way illustrated in fig. 4.3.
Due to a tilt of the fibers, the effective decentration dc − df
is smaller than the inherent decentration df . However, this
introduces angular misalignment which also causes a decrease
in mode matching. So, a compromise between both has to be
found. Furthermore, one has to balance the degree of freedom
of rotating the fibers with respect to each other between mini-
mizing decentration effects and minimizing polarization mode
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Fig. 4.2: The mode matching efficiency is very sensitive on the condition wm,1 ≈ wf,SM .
A small radius of curvature R2 = 50 µm of the multimode mirror sharply focuses the
cavity beam onto the singlemode fiber, so that the condition is approximately satisfied.
By employing a flat singlemode fiber, lensing effects vanish. The result (solid lines) is
ε1 ≈ 100 % for a long range of cavity length. The abrupt drop at L = 50 µm is due to
geometric instability. With R2 = 120 µm (dashed lines), the mode match decreases about
22 % due to larger deviations of the radii.

splitting. All in all, that makes three quantities forming a trade-off. That is why finding
a more reliable way of fiber-mirror fabrication with lower decentrations is the best option
here.

Considering a Gaussian mode with its infinitely wide power distribution inside a cavity
with finite mirror-diameter Di, a “clipping” loss has to be taken into account4. Upon
every reflection on mirror i the clipping loss reads [5]

Lcl,i = exp(−2(Di/2wm,i)2). (4.3)

These clipping losses effect finesse and Tmax which become functions of the cavity length
and consequently drop at large fiber distances. As an example, for a cavity with R1 =
R2 = 180 µm (which is a typical value of our fibers) and no decentration on the singlemode
fiber mirror, the finesse and Tmax drop around a cavity length of 90 µm as depicted in
fig. 4.4a. The maximum transmission efficiency can be found at cavity lengths between
3 µm to 5 µm for the parameter ranges of our fibers, because here the cavity mode field
radius wm,1 on the mirror of the SM fiber is identical to the SM-fiber mode field radius
wf,SM = (2.4± 0.1) µm (illustrated by the blue dashed line) which results in almost 100 %
mode coupling efficiency ε1. The remaining mismatch is due to the mirror curvature.

Maximization of Tmax

On the other hand, taking care of the dielectric coatings on the fiber tips is is also
required to reach the highest possible transmission of a Fabry-Perot filter cavity. But
as mentioned before, as long as the coatings have losses, transmission and finesse are
competing quantities. While the first requires a high coating transmission, the latter
requires low coating transmission. This can be seen in fig. 4.4b. If the coating losses
are really low, for example L = 1 ppm (dashed lines), the transmitted power is almost

4The mirror-diameter D can be found via a Gauss-fit of the mirror surface, see section 2.3.
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Fig. 4.4: (a) Transmission and finesse vs. cavity length for a symmetric singlemode-
multimode cavity with R1 = R2 = 180 µm, no decentration and light at 850 nm wave-
length. The drop at 90 µm is due to clipping losses. The maximum transmission can be
found around 5 µm because here wm,1 = wf,SM . (b) Transmission and finesse vs. trans-
mission of coating for the same cavity as in (a) with laser light at 850 nm and at a typical
cavity length of 25 µm. For low losses L = 1 ppm (dashed lines) one can obtain both,
high finesse and high transmission efficiency. For larger losses L = 13 ppm (solid lines) it
is rather a trade-off. In both cases no decentration is assumed.

constant for fiber mirrors with coating transmissions above 10 ppm. Thus, one can obtain
high transmission efficiency around 75 % and also large values of finesse above 100 000
simultaneously. However, using the coating properties of our fibers with losses around
13 ppm (solid lines), one has to decide between large transmission or large extinction,
large free spectral range and narrow bandwidth.

All things considered, in order to obtain a singlemode-multimode filter cavity with large
transmission on resonance, the geometry of the cavity is of uttermost importance. A
flat singemode fiber mirror and a strongly curved multimode fiber mirror will lead to an
almost perfect mode matching. The losses in the mirror coatings cause a trade-off between
large finesse and large power transmission on resonance. The choice between these two
quantities has to be made with respect to the specific application for which the cavity
shall be employed. In the case of decentration on the singlemode fiber, its effects can be
decreased by angular misalignment. However, it is always better to choose a fiber with
less decentration.
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4.3 Measurements
In an experiment with the SM-MM cavity the theoretical model above should be verified.
Therefore, the transmitted power has been recorded for different cavity lengths with the
setup in fig. 4.5a. By analysing microscope camera photos, the fiber mirror distances
have been measured; a calibration from pixels to metres is possible because the cladding
diameter of the SM fiber is well-known. The amplitude of the transmission peak, which
is recorded with a photodiode and an oscilloscope, yields the amount of transmitted
light on resonance. For every new set length the fibers have been aligned again so that
the transmission peak on the oscilloscope increased to its maximum. This procedure
minimizes misalignment effects which occur when the fibers are moved apart or together
and results in the best trade-off between angular misalignment and effective decentration.

The measurement result is shown in fig. 4.5b. Since the effective decentration and
the angular misalignment are unknown, the theoretical prediction (solid line) has been
calculated assuming no angular misalignment and thus full decentration (which is 1.824 µm
for the SM-fiber). This means, that the theoretical prediction represents a lower limit
for the transmission to be expected. Since the fibers have been aligned for maximum
transmission peaks (that means for the optimum trade-off between angular misalignment
and effective decentration) at every length, all data points should be located above the
solid line.

However, a large discrepancy between experimental results and theory can be observed.
Measuring a transmission between 26 % to 20 % for typical cavity lengths up to 30 µm, the
SM-MM-cavity transmits even less light than the theoretical lower limit predicts. This
attenuation could be due ηpath, that means the effect of the optical components which
the laser light passes by. One possible source is the splicing of the SM-fiber, which could
be defect and reflect a lot of light, leading to a decrease in transmission efficiency. A
measurement of the mirror coating transmission of the SM fiber yields (134± 4) ppm for
light at 850 nm, which coincides with the coating transmission of our other mirror fibers.
This implies that the splicing does not have a dominant influence on the transmitted
power. The beamsplitter can be excluded as well, since its non-perfect 50/50 splitting
into the channels one and two has been taken into consideration in the experiment.

In order to make the SM-MM-cavity usable as an optical filter with high transmission
on resonance, a more detailed examination on the contribution of the optical components
which probably damp the transmission efficiency should be scheduled. For example, to
be really sure about the effects of the splicing, one could measure the transmission of the
fiber directly after and in front of the splicing. However, this is not possible in a non-
destructive way. Due to time issues, this idea could not be checked during the bachelor
project.
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Fig. 4.5: (a) Setup of the transmission measurement with 850 nm and a fiber beamsplitter
(FBS). The transmission signal is recorded with an oscilloscope, the cavity length has been
estimated from microscope camera (MC) images. SPL=splicing. (b) The transmission
measurement shows a large discrepancy between the recorded data and the theory. The
solid line represents a lower bound of the transmission to be expected. Obviously, some
components in the setup attenuate a lot of light. Errors on the cavity length are dominated
by the resolution of the microscope camera.
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5 Conclusion & Outlook
The topic of this thesis was the examination of two important characteristics of fiber-based
Fabry-Perot resonators, of which the first one was polarization mode splitting. Polariza-
tion mode splitting inside a fiber cavity is due to ellipticity of the fiber mirrors. It is the
reason for the appearance of two slightly different resonance frequencies. In the SM-MM
cavity the displacement of the polarization eigenmodes was around 75 MHz, which pro-
vided a good opportunity to investigate the behaviour of the mode splitting in more detail.
A simulation was employed to calculate the population of the two polarization modes as a
function of the waveplate rotation. The effect of the fiber on incident polarization states
was simulated by assuming it acts as an arbitrary waveplate. The measurements veri-
fied the results: By the rotation of a λ/2 retardation waveplate, the polarization modes
are populated and depopulated with a periodicity of 90◦. Using a λ/4-plate instead, the
periodicity is 180◦ and not longer sinusoidal, despite some special cases. In terms of its
effects on polarization states, it seems suitable to approximate a singlemode fiber as an
arbitrary waveplate. Moreover, the earlier non-understood measurements in the research
group could be clarified. They resulted from the use of an incorrect waveplate.

Large transmission on resonance is an essential figure of merit of a fiber-based filter
cavity. The mode match between the fiber mode and the Gaussian cavity mode obtains
a maximum, if the beam radius of the cavity mode on the mirror surface is identical
to the fiber mode radius. It has been shown for a cavity consisting of a singlemode
input and a multimode output fiber, that a flat SM- and a strongly curved MM-fiber
satisfy this condition, which results in an almost perfect mode matching for a long range
of cavity length. Furthermore, it has been outlined that with the coating losses of our
fibers the finesse and the maximal achievable transmission form a trade-off. Experimental
verification however was not successful. It seems that optical components in the setup
attenuate a lot of light.

So far, the SM-MM cavity features the properties presented in tab. 5.1. Despite the
quite small transmission, especially the combination of narrow bandwidth and large free
spectral range makes it outstanding compared to usual commercial optical filters. For
example, an optical filter based on a Bragg grating of the company OptiGrate5 provides
transmission bandwidths of several 10 GHz, which is 3 orders of magnitude larger than
the bandwidth of the SM-MM cavity. A macroscopic Fabry-Perot resonator produced by
the company Quantaser6 features a much smaller bandwidth of 80 MHz, which is compa-
rable to the bandwidth of the SM-MM cavity, but the free spectral range is only around
20 GHz.

In order to develop fiber Fabry-Perot cavities into practical filter devices, it will be nec-
essary to precisely stabilize their resonance frequencies. This could be realized by glueing
the mirror fibers into an optical glass ferrule. Another important figure of merit is thereby
introduced: Temperature stability. An analysis and optimization of this quantity would
be an exciting project in future.

5BragGrateTM - Bandpass Filter. OptiGrate, Oviedo, FL. http://www.optigrate.com
6FPE002. Quantaser, Taiwan. http://www.quantaser.com
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850 nm 780 nm
Finesse F 24 300± 300 189 000± 8000
FSR / THz 5.0± 0.5 5.0± 0.5
Linewidth FWHM / MHz 183± 4 23± 1
Mode splitting / linewidths not observed 3.22± 0.10
Transmission / % 20± 1 not measured
Extinction γ / dB 41.9± 0.1 50.8± 0.2

Tab. 5.1: Summary of the measured finesse, linewidth, splitting and transmission effi-
ciency of the SM-MM cavity for a cavity length of (30± 3) µm. FSR and extinction are
calculated via eqs. (2.4) and (2.14), respectively.

Appendix

A Accuracy of the finesse measurements
In this thesis, finesse has been measured with the setup depicted in fig. 3.1. The input
fiber was situated on a three-dimension stage equipped with a piezo crystal. By plugging
in a triangle voltage, the piezo moves the fiber towards and backwards so that the cavity
length is scanned over two adjacent orders of resonance. Thus, one can simultaneously
measure the free spectral range and the linewidth of the transmission and reflection peaks
in units of time. The ratio of both yields the finesse and deviations yield the error.

The fiber has to be moved by a distance of λ/2 ≈ 400 nm to shift the cavity from one
order of resonance to the next order. For the calculation of the cavity finesse the piezo
movement was assumed to be perfectly linear over the entire scan range. As I learned
later, the piezo movement cannot assumed to be linear in this range. That introduces a
systematic error on the finesse values presented in section 2.5. Due to time issues, the
error due to non-linearities in the cavity scan could not be investigated.

A more accurate and precise way of measuring the finesse of a cavity is the following:
The cavity length will only be scanned over one single transmission peak so that trouble
with the piezo properties will be prevented. One employs two lasers emitting light into
the cavity and sets the difference of their frequencies to exactly one free spectral range of
the cavity. This can be fulfilled by setting them at first to the almost identical frequency
and observing both transmission peaks on the oscilloscope. Then the frequency of one
laser is altered until it is again resonant with the cavity. This manifests in a reappearance
of the second resonance peak on the oscilloscope. When these peaks completely overlap,
one can measure the frequency difference of the lasers with a wavemeter and thus obtain
a value for the free spectral range. The absolute linewidth of the cavity would still be
measured by making use of calibrated sidebands as described in section 3.2. This kind of
measurement could be utilized for future finesse measurements.
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B Photos of the alignment stages and opposed fibers
The following photos show the setup that was used to align the two fiber mirrors opposing
each other. Each photo is a zoom-in of its prior photo.

In fig. B.1 the three-dimension alignment stages can be seen, as well as the cables
connecting the piezo of the right stage with a frequency generator. The fibers are situated
in V-grooves which are depicted in fig. B.2. The singlemode fiber is furthermore clamped
in a rotatable mount so that the fibers can be rotated with respect to each other. This
degree of freedom is usually utilized to decrease mode splitting by opposing the major
ellipticity axis of one fiber mirror to the minor ellipticity axis of the other and vice versa.

The same situation as in fig. B.2 is photographed with the microscope camera, shown
in fig. B.3. The distance of the fiber tips is approximately (34± 3) µm. This can be
calibrated because the cladding diameter of the singlemode fiber is well-known.

microscope
camera

SM fiberMM fiber

piezo
control

piezo
movement

Fig. B.1: Photo of the three-dimension alignment stages.
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MM fiber SM fiber

microscope
camera

Fig. B.2: Photo of the opposed fibers of the SM-MM cavity. The photo is a zoom-in of
fig. B.1.

Singlemode fiberMultimode fiber

(125 ± 1)µm

Fig. B.3: Microscope camera photo of the opposed fibers in fig. B.2. The cavity length
is (34± 3) µm. The background is white because a white paper has been situated there
when taking the photo.
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