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1 Introduction

In 1982 Feynman first proposed the idea of a quantum simulator, based on the fact that only a
quantum system can simulate other quantum systems in non-exponential runtimes [2]. Since then
many different quantum experiments have been devised to allow for best control and easiest access
to quantum mechanical observables. Ultracold atoms in optical lattices are successful simulators of
quantum phenomena, that allow many degrees of freedom for experimentation [7].

A quantum computer, the quintessential quantum simulator, makes use of quantum bits (qubits)
to manipulate and store quantum information. In the 1D Quantum Walk experiment the qubit is
formed by the |F = 4,mF = 4〉 and |F = 3,mF = 3〉 hyperfine levels of the cesium ground state. To
enable quantum simulations, the ultracold cesium atoms are trapped in a standing wave optical dipole
trap, created by interference between two linearly polarized counter-propagating beams. In the 1D
Quantum Walk experiment one dipole trap beam consists of a synthesized linear polarization made
by two superimposed, circularly polarized beams, which allows spin-dependent, one dimensional atom
transport.

The aim of this thesis was to quantify the decoherence mechanisms within the 1D Quantum Walk
experiment. An important aspect of qubits is their ability to retain quantum information. A loss of
such information, called decoherence, inevitably results from the interaction between the qubit and
its environment. The characteristic timescale on which decoherence becomes important is called the
coherence time, and it depends strongly on the realization of the qubit, and thus on the experimental
setting. To quantify the decoherence mechanisms, I tried to create a structured overview of the
decoherence mechanisms at play, and their origins within the polarization set-up of the experiment.
I partly built on the knowledge of decoherence that has been amassed with previous versions of this
experiment [11, 17, 18], combining the characterizations and extending them to the most current
set-up. In addition I performed a series of measurements to improve the polarization purity of the
set-up.

In chapter 2 I review the interaction between atom and light field, as well as the principle of state-
dependent transport, which underlie the 1D Quantum Walk experiment. Subsequently I discuss a
definition and typology of coherence times as well as the method used to measure this value in
chapter 3. In general decoherence is influenced by fluctuations of experimental parameters from their
ideal value. I describe the types of fluctuations and the characterization of decoherence mechanisms
in chapter 4.

Since the experiment is subject to continuous updates and improvement, in chapter 5 the current
experimental set-up is explained, and the influence of individual components upon the coherence time
is studied to a greater extent. Here special emphasis is placed on a combining fiber, which currently
seems to limit the polarization purity of the synthesized beam. Since this seems to be the limiting
factor, I looked into alternatives for the current fiber, as described in section 5.3. In chapter 6 I
summarize and conclude the thesis.
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2 Principles of operation

In quantum optics the interaction between ultracold atoms and light fields plays a central role. The
oscillating electromagnetic field ~E(~r, t) induces a time-dependent dipole moment ~d(~r, t) in the atom
as a function of the wavelength and the intensity of the incident light. If the light’s wavelength is
cleverly adapted to the choice of atoms, these can be trapped and moved by manipulating the light
field geometry [7]. In the case of cesium atoms it is even possible to achieve a differential coupling
based on the internal spin state, which allows state-dependent transport of the atoms [13]. The states
considered in the 1D Quantum Walk experiment are the |3, 3〉 and |4, 4〉 hyperfine levels of the cesium
ground state. During quantum experiments, the qubit created by these states can be manipulated
through application of microwave pulses, on resonance with the |3, 3〉 ↔ |4, 4〉 transition frequency.
Using quantum walks and atom interferometers, made up of both transport steps and microwave
pulses of different duration, other physical processes can be simulated [13].

2.1 Atom-light interaction

If an atom is placed in a light field, the electric field ~E(~r, t) = 1
2( ~E0(~r)e−iωt+c.c.) of the incident light

induces an optical dipole moment ~d(~r, t) in the atom that oscillates at the driving frequency of the
light field ωL. This can be described semi-classically by assuming the atom as a quantum mechanic
two-state system (consisting of an excited |e〉 and a ground state |g〉) interacting with a classical light
field [11].

For small intensities of the light field, the induced dipole moment depends linearly on the electric
field: ~d(~r) = α(ωL) ~E(~r). The proportionality is given by α(ωL), the complex polarizability, which
depends on the internal state of the atom and the frequency of the light [7]:

α(ωL) =
e2

me

1

ω2
0 + ω2

L − iωLΓ
(1)

Here ω0 is the atomic resonance frequency, and Γ describes the spontaneous decay of a given initial
state into a different final states; it can be calculated using Fermi’s golden rule. Thus we get a
relationship between the state’s lifetime, and it’s atomic polarizability and dipole moment [15]:

Γ =
ω3

0

3πc3ε0h̄
| 〈e|~d|g〉 |2. (2)

The Cs 62S 1
2
→ 62P 3

2
transition has a decay rate of Γ = 2π · 5.23 MHz [12]. Here 62S 1

2
is the cesium

ground state, written in the standard spectroscopy notation n2S+1LJ .

This can be used to obtain formulae for the experimentally relevant expressions. The optical dipole
force is conservative and can be derived from a potential: in case of an optical dipole trap (see
section 2.3), the trap depth is the same as the dipole potential, which also corresponds to a shift of
the atomic energy levels commonly known as the AC Stark shift (see section 2.5) [7]:

Udip(~r) = −1

2
< ~d~E >= −1

2
< α(ω) ~E2 >= −3πc2

2ω3
0

Γ

∆
I(~r). (3)

When ∆ < 0 (ωL < ω0) the dipole potential is negative and the atoms are attracted to intensity
maxima of the light field. This is also called red-detuning; for blue-detuned light (∆ > 0) the atoms
are correspondingly repulsed by the light field.

The absorptive part of the dipole interaction leads to inelastic scattering of the photons of the trapping
light [7]:

Scattering Rate: Γscat(~r) =
3πc2

2h̄ω3
0

(
Γ

∆
)2I(~r). (4)
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As seen in equations 3 and 4 the dipole potential scales as I/∆, whereas the scattering scales with
I/∆2. Therefore often large detunings (for example ND:YAG laser with λ = 1064nm) are used in other
experiments [7]. However, the 1D Quantum Walk experiment requires state-dependent transport, and
to this end a frequency which enables a differential coupling of our Cs hyperfine states to the light
field is needed.

2.2 Cesium

Figure 1: Term diagram of the fine-structure of the ground and first excited states of cesium. Shown
are possible transitions for circularly polarized light.

In the experiment the hyperfine states |F = 4,mF = 4〉 and |F = 3,mF = 3〉 of the cesium ground
state are used. In a most correct calculation of the atomic polarizability one should take into account
all possible cesium transitions. However, in this case it suffices to take into account only the strongest
two transitions: the D1 and D2 lines [17]. The D2 line at 894.6 nm corresponds to the 62S 1

2
↔ 62P 3

2

transition; the D1 line at 852.3 nm to 62S 1
2
↔ 62P 1

2
[12]. The effective detuning is given by [7]:

1

∆eff
=

1

3
(

1

∆D1
+

2

∆D2
). (5)

If the atoms are exposed to a linearly polarized light field that is detuned between the D1 and D2

line, the |F = 3〉 and |F = 4〉 states will couple to both via the σ+ and σ− contributions of the light
(see Fig. 1). They are red-detuned with respect to the D2 line, the J = 1

2 → J ′ = 3
2 transition, which

forms an attractive potential (see Fig. 1). However, in respect to the J = 1
2 → J ′ = 1

2 transition they
are blue-detuned, yielding a repulsive potential. By detuning the light field near to the middle of the
D1 and D2 line the attractive and the repulsive contributions from the m′J = ±1

2 transitions cancel
each other out. The uncompensated attractive forces from the outermost states |J ′ = 3

2 ,m
′
J ±

3
2〉

form the state-selective (re-detuned) potentials, in which atoms of the different fine-structure levels
are trapped state-dependently [18].

The |3, 3〉 and |4, 4〉 are composed of [18]:

|4, 4〉=̂ |mI =
7

2
,mS =

1

2
〉

|3, 3〉=̂
√

7

8
|mI =

7

2
,mS = −1

2
〉 −

√
1

8
|mI =

5

2
,mS =

1

2
〉 . (6)

Therefore |4, 4〉 can couple only to |J ′ = 3
2 ,m

′
J = 3

2〉 via σ+ light, however |3, 3〉 will be coupled by both
σ+ and σ−. Hence it is theoretically impossible to obtain a completely independent coupling of the
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light field to the mF -states. Nonetheless two ‘magic’ wavelengths exist, for which either |4, 4〉 or |3, 3〉
couples to but one circular polarization. These can be calculated by minimizing the σ+/−-dependent
part of the dipole potential U4/3. In the first version of the set-up, there were experimental reasons
to minimize for |4, 4〉: one then obtains a wavelength of λ = 865.9nm for the trapping field [18]. The
resulting state-dependent potentials are:

U4 = Uσ+

U3 =
7

8
Uσ− +

1

8
Uσ+ (7)

2.3 Light field geometry and transport

DT1R

DT1L

Figure 2: The principle of state-dependent transport

The optical dipole force can be used to trap ultracold atoms in specific light field geometries. One
such system is the standing wave dipole trap: two linearly polarized, counter-propagating gaussian
laser beams create a standing wave when overlapped in the longitudinal direction. In our system
only one of the dipole trap beams (Dipole Trap 2: DT2; see Fig. 2) is linearly polarized, the other
(DT1) consists of two superimposed, independently operated, σ+- and σ−-polarized beams (DT1L
and DT1R respectively)1:

Itot =
c · ε0

2
· | ~EDT2 + ~Eσ+ + ~Eσ− |2 (8)

Itot = I0 cos2(kz). (9)

A standing wave, with a power of P/2 in each beam, and a beam waist w0, yields [17]:

I0 =
4P

πw2
0

. (10)

The DT1 and DT2 beams have a typical waist of 20µm and intensities of 30mW for the deep or 6mW
for the shallow lattice respectively. The deep lattice is used to capture the atoms, the shallow one for
experiments - we ramp between these two adiabatically [16].

In the experiment the standing wave passes through a vacuum cell that contains the cesium atoms.
Using a Magneto-Optical-Trap (MOT) the atoms are cooled, before they can be ‘loaded’ into the
dipole trap [10, 15, 17]. As soon as they are cool enough the atoms sense the light field, and are
attracted to the maxima of its intensity. As a result they are fixed to the 1D optical lattice sites

1see chapter 5 for a more extensive description of our experimental set-up
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(periodicity: λ
2 = 433nm). Additionally they can be controlled dynamically by shifting the phase

between DT1 and DT2 to achieve an optical conveyor belt, or between the circular polarizations for
state-dependent transport [8, 9, 18].

This transport is what enables quantum walk and atom interferometer experiments [13]. If the
relative phase between the σ+ and σ− beams is shifted by α = π the lattices are moved one lattice
site apart.

2.4 Measurement

At the beginning of an experiment the atoms are prepared in the |4, 4〉 state. During the experiment
the relative distribution of the |4, 4〉 and |3, 3〉 states can be manipulated by applying microwave
pulses with the transition frequency ωhfs = 9.2 GHz to the ensemble. Depending on the length of the
pulse we can prepare an arbitrary superposition of the two states, and by combining pulses, transport,
push-out, and normal time evolution, a range of experiments is possible. The push-out, microwave
pulses and detection each have a fidelity better than 95 %.

To image the atoms, fluorescence detection is used [10]. During an imaging step we continuously drive
the F = 4 → F = 5 transition: it is approximately closed, which means that the atoms fall back to
F = 4 almost exclusively, from where they are repumped into F = 5. While falling back the atoms
re-emit a photon, with the same probability in all spatial directions. These fluorescence photons are
then collected with an objective and measured with a CCD camera (≈ a few thousand fluorescence
photons per atom per picture).

2.5 Light shifts

Figure 3: Term diagram of the mF hyperfine levels of the cesium ground state.

Since all information about the internal states of our system is manipulated and/or extracted by
applying microwave pulses that are on resonance with the |3, 3〉 ↔ |4, 4〉 transition ω0, a precise
knowledge of this transition frequency is essential for performing coherent quantum experiments. The
frequency is altered both through Zeeman shifts of the energy levels caused by external magnetic
fields, as well as differential AC Stark shifts caused by oscillating electric fields. The latter is also
called differential light shift and describes the optically induced shift of the ground state as well as
the excited state (in the opposite direction) caused by the dipole potential [17].

The prerequisite splitting of the hyperfine states is achieved by applying homogeneous external mag-
netic fields, lifting the degeneracy of the ground state by a Zeeman shift of the energy levels. The
magnetic field also provides a quantization axis for the experiment. The |F = 3〉 and |F = 4〉 hyperfine
states are separated by 9.19 GHz2, and in this case the mF levels are splitted by an additional shift
of 7.3 MHz (see Fig. 3). However, this shift causes our qubit states to couple to the D1 and D2 with

2This value is exact, since it is the basis for the SI definition of the second.
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different strength: the detuning of the light field is ωhfs = 9.2GHz less for an atom in |F = 4,mF = 4〉
than for one in |F = 3,mF = 3〉. As a consequence the |4, 4〉 level experiences a slightly stronger light
shift, resulting in a shift of the |3, 3〉 ↔ |4, 4〉 transition towards smaller resonance frequencies. The
resulting scalar differential light shift δ0 can be approximated as [15]:

δ0 =
1

h̄
(U0(∆eff)− U0(∆eff + ωhfs)). (11)

With an effective detuning of ∆eff = −1.2 · 107 Γ. Since whfs � ∆eff, the differential light shift is:

δ0 =
1

h̄

ωhfs

∆eff
U0. (12)

Thus the scalar differential light shift is proportional to the total optical potential with a scaling factor
of η = ωhfs

∆eff
= 1.45 · 10−4.

In general, the differential light shift depends on the polarization of the light field. In the case of
linearly polarized light the contribution of the vector polarizability to the AC Stark shift is zero and
these shifts are called scalar light shifts. Vector light shifts are those sensitive to the polarization of
the photons: they occur in case of circularly polarized light [14]. Only differential light shifts will
change the transition frequency between the |3, 3〉 and |4, 4〉 states:

∆diff(~r) =
1

h̄
(U4(~r)− U3(~r)). (13)

Where the potentials are given by:

U4 = (1 +
1

2

η

h̄
)Uσ+

U3 = (1− 1

2

η

h̄
)(

7

8
Uσ− +

1

8
Uσ+) (14)

U0 = Uσ+ + Uσ−

A difference between the Uσ+ and Uσ− potentials results in an ≈ 850 times stronger differential light
shift than a shift of U0 by the same amount.
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3 Decoherence

In a perfectly isolated two-level quantum system the time evolution is unitary and thus reversible.
However, for realistic qubits some coupling to the environment is inevitable. This coupling causes
decoherence, i.e. the evolution of the pure quantum state into a statistical mixture of states, which
corresponds to an effective loss of the information stored in the qubit [11]. The characteristic timescale
on which the state is preserved to a fraction 1/e of its original value is called the coherence time: only
within this time the system retains its quantum behavior and meaningful quantum experiments can
be performed. As such, it is important to determine the coherence time precisely and identify the
underlying decoherence mechanisms. Due to the probabilistic nature of quantum mechanics, one has
to observe atoms in an ensemble average. Decoherence in this case is caused by a decay or dephasing
of the induced magnetic dipole moments within the |3, 3〉 and |4, 4〉 superposition state.

The decay rates can be included in the optical Bloch equations as dampening terms, which yields
a notation of the characteristic population and polarization decay times similar to the one used for
nuclear magnetic resonance [11]:

The longitudinal relaxation time T1, also called population decay time, describes the decay of the
population to a stationary value. Its duration depends solely on scattering effects by photons of the
optical lattice’s light field which couple the two hyperfine states via a two-photon Raman transition.
This effect is suppressed due to destructive interference, and scales with I/∆4 [5, 15]. It will not be
considered here, since our T1 time of 100 ms is approx. 500 times bigger than the T2 time - yielding
it effectively irrelevant for our experiments.

The total transverse relaxation time T2, also called the polarization decay time, describes the dephas-
ing of the induced electric dipole moment (the polarization) of the atoms. These transversal dephas-
ing mechanisms are divided into two main categories: homogeneous and inhomogeneous dephasing.
Homogeneous dephasing affects each qubit of the ensemble in the same way, whereas inhomogeneous
dephasing only occurs in the case of an ensemble of qubits each evolving at slightly different resonance
frequencies. The dichotomy is useful because constant inhomogeneous dephasing can be cancelled,
whereas homogeneous dephasing can not.

T
′
2: homogeneous dephasing results from a homogeneous differential light shift δ during the time of the

experiment. Intensity and phase fluctuations, and pointing instabilities3 of the light field generating
the optical lattice, as well as fluctuations of the magnetic field, play into this effect.

T ∗2 : inhomogeneous dephasing is caused by the distribution of individual atomic resonance frequencies,
which depends on their environment and thermal energy. Due to these different resonance frequencies
the atoms lose their relative phase relationship, which results in a macroscopic dephasing because of
ensemble averaging. In our case the inhomogeneous dephasing is dominated by the thermal distri-
bution of the trapped atoms: depending on their energy the atoms see a different trap depth, which
results in a distribution of the accumulated phase [11]. The total transverse relaxation time is re-
lated to the homogeneous dephasing time T

′
2 and the reversible inhomogeneous dephasing time T ∗2

via [11]:
1

T2
=

1

T
′
2

+
1

T ∗2
. (15)

The independent treatment of the various decay mechanisms is justified by the very different timescales
of these processes: T1 � T

′
2 � T ∗2 [15]. In the rest of this thesis all fluctuations will be considered

independently.
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Figure 4: Ramsey with spin echo; OP stands for optical pumping of the |4, 4〉 state

3.1 Ramsey contrast and spin echo visibility

To gain information about the time evolution of our superposition state’s phase we employ Ramsey
phase spectroscopy [13, 18]. It is based on the application of two rectangular, resonant (microwave)
π
2 pulses, with a relative phase of φMW , separated by a time τ (see Fig. 4). The first pulse creates a
50/50 superposition state of |3, 3〉 and |4, 4〉: 1√

2
(|4, 4〉 + eiφ |3, 3〉). This precesses along the equator

of the Bloch sphere, with an angular frequency δ depending on the atomic transition frequency. The
second pulse then projects the superposition onto the w-axis of the Bloch sphere, where the population
in the |F = 4〉 state is imaged. By scanning the relative phase φMW of the π

2 pulses, we map the
phase of the ensemble: such an image is called a Ramsey Fringe. Through combination of many
Ramsey Fringe images for different values of τ , the time evolution of the Ramsey contrast C(τ) can
be measured. By studying the Ramsey contrast we can gain insight into the dephasing and the T2

time of our ensemble.

The probability to find a particle in |F = 4〉 is given by [13, 18]:

P|F=4〉(τ) =
1

2
(1 + C(τ) · cos(φMW + φ(τ))). (16)

Here φ(τ) is the phase collected during τ

φ(τ) =

∫ τ

0
δ(t)dt (17)

Due to dephasing, the contrast C(τ) of a Ramsey phase scan decays as a function of time τ . This decay
is dominated by inhomogeneous dephasing: its envelope is the Fourier-transformation of the atomic
energy distribution [11, 15]. However, there are methods to counteract inhomogeneous dephasing
effects: a spin echo sequence is a Ramsey sequence with an additional π-Pulse midway (at τSE)
between the two π

2 pulses. This flips the states by 180◦, and causes them to precess in the opposite
direction. As such, differential phases which are effectively constant during τSE are eliminated [1].
This only works for deviations that are either constant on the time-scale of the spin echo, or fluctuate
so quickly that they are averaged over time and can be seen as effectively constant (in that case the
effects of the last oscillation period are not countered, but these will be small). Fluctuations that take
place on the same time scale as the spin-echo pulses are impossible to null with this method. In our
case, the time used for a spin-echo step is typically 20µs, therefore inhomogeneous fluctuations with
a frequency of ≈ 50 kHz will have most impact on the system. Such irreversed dephasing manifests
itself in the decay of spin-echo visibility, together with homogeneous dephasing. Spin-echo visibility
is the analogue of Ramsey contrast: the effectivity of the spin-echo pulse decreases as the time τSE
increases.

3Changes in the relative position of the trapping beams, that arise due to variations of the optic path, will influence
the interference contrast in the trap and thus the light shift [11]. The pointing instabilities will not be considered
separately in the remainder of this thesis.
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If one assumes a gaussian distribution of the accumulated phases, p(φ(τ)) = N (0, σφ(τ)) where
σφ(τ) = σflucτ , the spin-echo visibility V is given by [11]:

V (τ) = C0

∫
dφ(τ) cos(φMW + φ(τ))p(φ(τ))

= C0

∫
dφ(τ) cos(φMW + φ(τ))

1

2πσ2
φ(τ)

e
− φ(τ)2

2σ2
φ(τ)

= C0 cos(φMW )e−
σ2
φ(τ)
2

= C0 cos(φMW )e−
1
2
τ2σ2

fluc . (18)

V (T ′2) = C0e
−1 ⇒ T ′2 =

√
2

σfluc
(19)

Therefore we can predict the homogeneous T ′2 time, based on knowledge of the RMS value of the
combined homogeneous fluctuations. However, since the detuning is not constant, equation 19 is only
truly predictive if the used RMS value is an average over many, measured at different moments in
time.
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4 Noise

From the previous chapters we can surmise that a thorough understanding of our dephasing noise
is needed to explain and even predict our decoherence time. Noise, in its widest sense, stems from
any experimental parameters deviating from their ideal value. Specifically, we are only interested
in noise that induces a differential light-shift: an uncertainty of ω0 will directly translate into an
uncertainty of φ(t), and thus into dephasing. In this chapter different kinds of noise are considered,
and their influence on our atoms. In the entire chapter all inhomogeneous effects are assumed to
be counteracted; the considered homogeneous fluctuations include intensity and phase noise, as well
as fluctuations of the magnetic field. In general the strongest dephasing effects are caused by vector
differential light shifts, which occur due to an imbalance between the σ+ and σ− lattices. These effects
that degrade the purity of the synthesized polarization, as characterized by the minimal extinction
ratio, will be studied to a greater extent in section 4.2.

4.1 Fluctuations

Since constant experimental imperfections are absorbed into the definition of the |3, 3〉 ↔ |4, 4〉 tran-
sition frequency, dephasing comes solely from fluctuations of our experimental values. It is useful
to categorize these fluctuations based on the amount of correlation between them: we differentiate
between common mode (CM) and non-common mode (NCM) fluctuations upon our trapping beams.
Within the set-up there are three beams we have to take into account: DT2, and DT1L and DT1R,
where the last two are combined to form DT1. Although the light comes from the same laser source,
the three beams take different optical paths and the intensity and phase of DT1L and DT1R are in-
dependently electronically stabilized, with the result that we have both CM and NCM noise portions
on all beams.

The noise can be described by its root-mean-square (RMS) value, or its power spectral density (PSD).
The RMS is an effective value for the magnitude of the variation from our desired value. The PSD
however, gives information about the power of the noise at distinct frequencies. Proper knowledge of
the frequency of noise is relevant for both homogeneous and inhomogeneous dephasing: by measuring
the PSD, or calculating the RMS for a distinct bandwidth, we can find out the magnitude of the
fluctuations that influence our atoms during a sequence of a specific length T . Though the atoms will
not be effected by very fast fluctuations because these average out statistically, slower fluctuations and
drifts, a monotonous increase or decrease on the time-scale of the experiment, are irreversible. The
biggest effect is seen by fluctuations on the time-scale of the experimental sequences. Therefore, when
describing the dephasing, the gaussian distribution of the detunings should be weighted in regard to
the sequence-time4. Additionally, insight in the PSD might serve as a method to distinguish different
types of noise: it offers a way to determine the correlation between noise on different beams (CM
vs. NCM), and it gives an indication of peak frequencies associated with distinct noise sources. In
equation 18 the phase resulting from time-dependent homogeneous fluctuations was assumed to follow
a gaussian distribution. By assuming a gaussian distribution of phases, we have assumed a gaussian
distribution of the underlying noise. The assumption of gaussian noise is prompted whenever one
describes serially uncorrelated random variables with zero mean and finite variance. Thus it seems a
valid description for intensity and phase fluctuations caused by the laser. However, we also have other
forms of noise in addition to this (shot noise, flicker noise). In general we can describe the collected
differential phase during our Ramsey phase scan as:

φT (τ) =
1

h̄

∫ T

0
δ(τ + t)dt (20)

=
1

h̄

∫ ∞
−∞

XT (τ − t′)δ(t′)dt′ = 1

h̄
(XT ∗ δ)(τ) (21)

4Not only the time of the experimental sequence, but also the time between two repetitions of sequences (shot-to-shot
time) should be regarded.
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Where X is a rectangular window function from [−T
2 + τ, T2 + τ ] :

X = rect(
t+ τ

T
) (22)

F (XT )(ω) =
1√
2π

∫ ∞
−∞

rect(
t+ τ

T
) exp(−iωt)dt =

1√
2π

sinc(ω
T

2
) (23)

F (δ)(ω) =
1√
2π

∫ ∞
−∞

δ(t) exp(−iωt)dt (24)

The power spectral density is defined as:

Sδ(t) = lim
T→∞

1

T
|F (δ(t))(ω)|2 (25)

With the result that we can express the variation of our phase as:

σ2
φ(T ) = 〈φ2

T 〉τ = lim
T→∞

1

T

1

h̄2

∫ T
2

−T
2

(XT ∗ δ)2(τ)dτ

= lim
T→∞

1

T

1

h̄2

∫ ∞
−∞

dω

2π
|XT (ω)|2 · |δ(ω)|2

=
1

h̄2

∫ ∞
−∞

dω

2π
sinc2(ω

T

2
) ·Sδ(t) (26)

By measuring the PSD of the detuning, Sδ(t), one can estimate the relative influence of different
experimental parameters on decoherence. However, in the current set-up this has only been done for
the phase noise so far.

4.1.1 Intensity noise

Fluctuations of the laser beam intensity directly effect the trap depth and thus the homogeneous de-
phasing of our atoms. NCM fluctuations between σ+ and σ− will create vector differential light shifts,
whereas CM fluctuations contribute only to scalar differential light shifts (see equation 12).

4.1.2 Phase noise

A shift in phase can be equated with a transport step. A phase between DT1 and DT2 will shift the
trap; between DT1R and DT1L will shift the potentials. Phase noise can be described in the time
domain if one uses the Allan deviation, or else by using the power spectral density in the frequency
domain [3, 19].

Common mode phase fluctuations between DT1 and DT2 will cancel out. NCM fluctuations between
DT1 and DT2 on the other hand, will cause the entire trap to jiggle along the longitudinal direction. If
there are inhomogeneous effects that depend on the absolute position of an atom, such as magnetic field
gradients, the NCM1↔2 phase fluctuations will introduce time-dependent inhomogeneous dephasing.
In general, NCM1↔2 could be problematic if one has to target lattice sites at an absolute position in
space. However these fluctuations lead to only 60 pm displacement, whereas the lattice sites are 433
nm.

NCML↔R phase noise will shift the σ+ and σ− lattices apart. Since |3, 3〉 sees a different lattice than
|4, 4〉, the noise induces an intensity modulation of the |3, 3〉 lattice and thus a vector differential light
shift.

We measured the PSD of the (NCM1↔2) phase noise in our set-up: it proved to be mostly non common
mode. The error signal was calibrated in angle units, and it turned out that the RMS phase noise is
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quite low: it is on the order of ∆φ = 1/20 of a degree. This would correspond to an RMS value of
maximally

2 · cos(π + ∆φ) + 1

180
= 2 · cos(π + 1/20) + 1

180
= 1.2 · 10−5

when measuring the minimal extinction ratio (see section 4.2).

4.1.3 Magnetic fields

The magnetic fields used to lift the degeneracy of the cesium ground state may also fluctuate in time,
and can cause a differential shift of the energy levels. Fluctuations of the magnetic guiding field are
caused by noise on the driving current in the coils used for its production. They are < 1kHz [18]. An
estimation of the magnetic dephasing effects has been made by measuring the T2 time with switched-
off dipole trap. In this case the atoms start falling because the earth’s gravitational field is no longer
compensated, however the resulting displacement is sufficiently small to measure the T2 time without
light-induced dephasing, before the atoms move out of the trap. We achieved a T2 time of 400 µs:
approx. 3 times longer than the current T2 time. As such it seems we are currently limited by other
sources of dephasing, and I will not consider the influence of magnetic fields any further.

4.2 Minimal extinction ratio

We trap our atoms state-dependently with σ+ or σ− light. Differences in phase, intensity or the
transverse profile of the σ+/σ− beams cause a difference in the trapping lattices, which we shall
call polarization impurity, and create a vector differential light shift. The indicator of choice for the
polarization purity is the minimal extinction ratio. It is given by:

εmin =
Imin
Imax

. (27)

Where Imin and Imax denote the minimal and maximal light intensity in a beam behind a linear
polarizer. An extinction ratio of 0 means that the incident light is perfectly linearly polarized: we
would like to come as close to 0 as possible. In the previous version of the set-up, which used an
electro-optic modulator (EOM) instead of acousto-optic modulators (AOMs) for polarization synthesis
(see section 5 for a description of the set-up), the extinction ratio was 4 · 10−4 with bests of 2.5 · 10−4.
Our current set-up is already slightly better, at 1 · 10−4.

There are several things that can cause an imperfect minimal extinction ratio, εmin > 0:

• DT1L and DT1R are not purely σ+ or σ− respectively, rather they are contaminated with some
of the other polarization
• DT1L and DT1R differ in intensity
• DT1L and DT1R differ in phase
• DT1L and DT1R’s wavefront and transverse coordinates are imperfectly overlapped.

The NCM fluctuations in phase and/or intensity of DT1L and DT1R cause the AC component of
the minimal extinction ratio: the measured value of these fluctuations is therefore an upper bound
of the NCM phase/intensity noise in our system. The DC value of the minimal extinction ratio can
be equated with a defilement of the two orthogonal polarizations. It is created by imperfections of
components in the beam, such as wavefront errors in waveplates and birefringence in the fiber. The
resulting imbalance in the strength of the σ+ and σ− lattice causes a vector differential light shift.
If the system is at rest, a static change in the transition frequency between |3, 3〉 and |4, 4〉 due to
crosstalk will be incorporated in the ‘zero’ transition frequency. This changes in the case of atom
transport: due to the contamination the σ+/σ− lattices can not be moved perfectly independently,
which introduces an extra intensity modulation of the lattice as seen by the different states.
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Additionally, such static polarization contamination will bring about phase and intensity fluctuations
in the set-up, due to the stabilization loops. Since the ILL or PLL can influence but one beam, and see
but one polarization, static polarization crosstalk will appear as noise in the locked loop. Crosstalk
of -40 dB causes phase noise of 0.03 ◦ [19], which is a significant percentage of our total phase noise
(0.05 ◦).

If ADT1L/R is the amplitude of the DT1L/R beam5:

IDT1L =
ADT1L√

2
(αL |σ+〉+ βL |σ−〉)

IDT1R =
ADT1R√

2
(αR |σ+〉+ βR |σ−〉) (28)

Where α2
L + β2

L = 1 = α2
R + β2

R and αL � βL, βR � αR, then

εmin =
1√
2

ADT1L(αL + βL) +ADT1R(αR + βR)

ADT1L(αL − βL) +ADT1R(αR − βR)
. (29)

If we assume that βL = 06 then we can simplify these equations to:

βR =
(1− εmin)(ADT1L +ADT1R)

2

αR =
√

1− β2
R. (30)

Which would mean we could infer the polarization contamination from values measured at the set-
up.

5In this calculation I assumed that the linear polarization coincides with the x-axis, and the minimal intensity is
therefore measured along the y-axis (orthogonal polarization); this polarization vector may be rotated due to phase noise

6In general this assumption is not valid: in case of contamination both beams are no longer orthogonal in any
reference frame.
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5 Set-up

AOM
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Figure 5: The set-up for direct synthesis of light polarization

Figure 5 shows the experimental set-up. Experiments take place in the vacuum cell, which is held at
a pressure of 10−10 mbar to minimize scattering of our cesium atoms on background gas. Entering
the vacuum cell from the left is the normal linearly polarized beam DT2. From the right comes
the synthesized beam DT1, which consists of two superimposed, independently operated, σ+- and
σ−-polarized beams, and is composed of light from the same TiSa as is used for DT2. To create the
circularly polarized beams, the beam coming from the TiSa is initially separated in two orthogonal
linear polarizations by passing through a polarizing beam splitter (PBS) cube. These beams are
entered into acousto-optic modulators (AOMs), which can control both phase and frequency, as well
as the amplitude of the beam. The linear polarizations are recombined using a Wollaston Prism.
This is then fed into the ‘combining fiber’, a polarization maintaining (PM) fiber that makes sure
both polarizations have the exact same transversal mode before being transformed into σ+- and σ−-
polarized light by a λ

4 plate. Per beam the fluctuations of phase and amplitude are counteracted by
the use of a phase and intensity lock, to which end some light is diverted before the beams proceed
into the vacuum cell. There the optical lattice is formed by the counter-propagating beams of DT1
and DT2.

An AOM uses the acousto-optic effect to diffract and shift the frequency of light using sound waves:
a piezoelectric transducer driven by a radio frequency (RF) signal creates sound waves in a quartz
crystal, which function as a ‘diffraction grating’ for the incoming laser light. By modulating the
intensity, frequency and phase of the RF signal the same parameters of the laser light can be controlled.
The response of the AOM is limited by the transit time of the sound wave across the laser beam - it
can typically switch within 100 ns - which also sets a limit to the speed of our phase and intensity
lock loops (see sections 5.1 and 5.2): our bandwidth is ≈ 1MHz.

In our current set-up Wollaston prisms (WP) are used to clean the polarization of the DT1L and
DT1R (here still linearly polarized) beams and overlap them into the combining fiber. They are also
employed in the intensity and phase lock loops to split the combined beam into its two components.
The Wollaston prisms were specially chosen because they combine the a high extinction ratio of 10−6,
with a low wavefront distortion in each axis [19]. This extinction ratio is not limiting in our current
set-up, since it is 102 better than allowed by the combining fiber.

Also the λ-plates used in our set-up do not introduce a significant error. Homogeneous polarization
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errors in the waveplates mutually compensate another: with a series of three λ plates it is possible to
transfer an arbitrary polarization into an arbitrarily different one. However, if the linear polarizations
are not completely orthogonal before the λ/4-plate, the retardance error of the waveplate will lead to
crosstalk between the polarizations [19].

The spatial overlap of DT1 and DT2 is optimized by making sure that the DT2 beam couples into
the combining fiber, and counterpropagates throughout the DT1 set-up. The intensity coupled into
the fiber is approximately 80 %.

5.1 Phase Lock

Figure 6: Phase Lock Loop

Phase noise of the σ+ and σ− beams is individually stabilized with the help of two separate phase
lock loops (PLL). To detect and stabilize the phase and frequency of the σ+/σ− light, the laser-light
is superimposed by an optical reference beam: the resulting beat-signal is measured by a fast (10 GHz
bandwidth) photodiode. The signal is amplified and, to eliminate an amplitude-phase dependency
of the signal (introduced by the Schmitt-trigger in the phase frequency discriminator), a limiting
amplifier was included in the set-up. The electronic signal from the limiting amplifier is then fed into
a phase frequency discriminator (PFD) which detects the difference between the beat-signal and an
electronic reference. The electronic reference comes from a direct digital synthesizer (DDS), which
enables us to program arbitrary phase and frequency ramps. Subsequently a fast lock box transforms
the error signal of the PFD into a control signal for the voltage controlled oscillator (VCO) that drives
the AOM (see Fig. 6).

5.2 Intensity Lock

The intensity lock loop (ILL) stabilizes the intensity of the σ+/− beams. It utilizes a custom-made,
low-noise, photodiode to detect the intensity. After the photodiode subtracts this signal from an
electronic one, which can be set with an ‘Arbitrary Waveform Generator’ from Agilent Technologies,
the signal is passed on to the lock box. The error signal from the lock box controls the amplitude of
the AOM’s RF signal, and thus the intensity of the DT1L and DT1R beams.

5.3 Fiber

As shown in section 4.2, the static polarization purity, measured by the DC value of the minimal
extinction ratio, has a significant effect on the decoherence of our quantum states. Currently our
biggest limitation in this regard is the optical fiber used to overlap the σ+ and σ− components of
our beam. The intensity difference between two gaussian beams, as created by a difference of δ in
their waist, scales with δ2. In order to achieve relative intensity differences less than 10−4, we have
to overlap our two beams better than 99 %, which proves quite impossible in free space. The fiber
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removes this problem, however, it causes a mutual crosstalk between the orthogonal polarizations sent
through it.

Currently a single-mode, polarization maintaining (SM-PM) fiber from Thorlabs is built into the
set-up. PM fibers maintain the polarization of linearly polarized light that is send through their
core, with little cross-coupling of optical power between the polarization modes. The extent of this
crosstalk can be quantified with the polarization extinction ratio (PER): when linearly polarized light
is sent in, perfectly aligned with the fast axis of the fiber, then all power detected in the orthogonal
polarization mode will have been transferred there by cross-coupling processes in the fiber. The fiber
we currently use has a PER of 1 · 10−4, which is much better than specified by the manufacturer. In
order to check if all fibers were better than specified, and to see if we had a better fiber, I measured
the extinction ratio of several SM-PM fibers: two other Thorlabs fibers with the same specifications,
as well as a Schäfter und Kirchhoff fiber with slightly better specifications (specifically bought for this
purpose).

λ/4λ/2 λ/4
Polarizer Polarizer

Figure 7: Set-up to measure the extinction ratio of a fiber

For these measurements I used the set-up shown in Fig. 7: light coming from a laser is given a certain
polarization axis with help of a λ/2-plate and a first polarizer. The λ/4 is used to precompensate a
potential elliptic deformation caused by the lens of the fiber in-coupler. The second λ/4 after the fiber
is used correspondingly to compensate the polarization distortions due to the fiber out-coupler. A
second polarizer (the analyzer) is used to check the minimal extinction ratio. To be limited solely by
the extinction ratio of the fiber, one has to make sure that the two polarizers are of sufficient quality:
the codex plates used had an extinction ratio of 10−6. Most PM fibers work by inducing stress in the
core: if the polarization of the incoming light is not aligned with the stress direction in the fiber, the
output will vary between linear and circularly polarized light, and is highly sensitive to variations in
temperature and stress in the fiber. This can be used to find the right axis and thus the true minimal
extinction ratio: after a rough first adjustment while looking at the linear extinction ratio, the second
polarizer is turned to 45◦, the fiber is heated, and the temperature induced fluctuations are minimized
by adjusting the first polarizer (and λ/2-plate). Here should be noted though, that not each fiber
mantel reacts to heating in a similar manner. The Schäfter und Kirchhoff fiber seemed to allow for
less homogeneous and direct heat transfer than the Thorlabs fibers: for this fiber it was difficult to
optimize the minimal extinction ratio with help of the temperature-induced differential phase shift.
After the temperature-based optimization, the linear extinction ratio was measured as before.

Fiber Extinction ratio specified Experiment

PM Fibers

Thorlabs PM#001 5 · 10−3 1.2 · 10−4

Thorlabs fiber PM#002 5 · 10−3 2.4 · 10−4

Schäfter und Kirchhoff fiber PM#003 5 · 10−4 7.2 · 10−5

Old DT1 fiber (Thorlabs PM#004) 5 · 10−3 2.5 · 10−4

SM Fiber

Thorlabs SM 900 µm - 1.6 · 10−5

Table 1: Fiber extinction ratios

As can be seen in Table 1 it seems that SM-PM fibers are limited to an extinction ratio of approx-
imately 10−4. The experimental limit of PM fibers is at least -52 dB [4], which is higher than what
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we currently have built-in. Nonetheless most commercial retailers specify a polarization crosstalk of
-40 dB at best, which corresponds to the values I have measured. The best commercial PM fiber I
could find was from Nufern: they specified (−48 ± 8) dB for the FUD-3397 PM780-BK-S-BN [20].
This would be slightly better than the current PM fibers, although it would have to be connectorized
and polished by ourselves.

5.3.1 The Box

Figure 8: The Box Figure 9: Inside the Box

Buying an alternative PM fiber was but one option we looked into: another possible solution is to
investigate the properties of single mode, non polarization maintaining fibers. For this type of fiber a
special system can be used instead of normal waveplates: The Manual Fiber Polarization Controller
(MFPC) from Thorlabs utilizes stress-induced birefringence to create fiber-internal waveplates. By
looping the fiber (1-2-1 times) around three independent spools a series of λ/4 - λ/2 - λ/4 waveplates
is created. The fast axis of each plate, which is in the plane of the spool, can be adjusted with respect
to the transmitted polarization vector by manually rotating the paddles [21].

The fiber diameter has to be compatible with the MFPC paddles: the used fiber is a custom-ordered
900µm Ø SM Fiber P3-780AR-2 from Thorlabs. Measured in the same way as explained above, the
linear extinction ratio seemed almost an order of magnitude better than that of the PM fibers (see
Table 1). However, unfortunate though expected, the system was very susceptible to temperature and
pressure fluctuations. Therefore I built a temperature stabilized box for the MFPC, loosely securing
the fiber inside with EPDM rubber. The fiber collimators are also on the inside and the box is
designed so that it does not have to be opened again once the MFPC has been adjusted correctly
(see Fig. 8, and 9). The temperature stabilization is achieved by 4 serially connected Peltier elements
attached to the underside of the box and a heatsink, in a feedback loop with a temperature sensor
and a Thorlabs TED 200C temperature controller. Connected in series to ensure the same current
and thus the same cooling properties along the box, 4 Peltier elements proved quite strenuous for the
temperature controller: its current had to be limited to 0.2 A so that the voltage would suffice.

While setting up the box and fiber for the stability measurement, it became clear that the fiber had
been damaged close to one of the ferrules, possibly during the box’s assembly. Given the cost and
waiting time associated with ordering a new custom-made fiber, I decided to connectorize and polish
the fiber anew. During this process, it turned out that the fiber did not contain an internal layer of
protective Kevlar threading, as is customary for 3mm Ø Thorlabs fibers [22]. This is probably the
reason for the fiber’s fragility, and would be reason to advice against the use of such fibers.

Unfortunately it seems that the new connectorization and set-up had a negative influence on the
fiber’s minimal extinction ratio: the second measurement of the fiber’s minimal extinction ratio
yielded values of only 1.6 · 10−4. This value, and especially this decrease is surprising. Theoretically
a SM fiber should have an almost perfect minimal extinction ratio: especially for the length of fiber
used here (1 meter), factors such as anisotropic rayleigh scattering within the fiber etc. are negligibly
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small. The initial minimal extinction ratio of 10−5 was probably limited by impurities within the
core or the fiber endfacets. However, homogeneous imperfections of the fiber endfacets, which induce
ellipticity in the polarization, should be possible to cancel with waveplates before and after the fiber.
Thus the cause of the minimal extinction ratio’s deterioration must be sought in the new polishing of
the fiber, or the rolled-up configuration of the fiber inside the box, rather than the connectorization
alone.

Despite the deteriorated minimal extinction, it was possible to characterize the stabilization of the
fiber. To this end the intensity stability in minimal extinction was measured over a longer period
of time. A photodiode before the box (‘Initial’), after the box and a polarizer (‘Final’), as well as
a temperature sensor in the box were connected to a MBED, which saved the mean and standard
deviation value of these parameters every ten seconds.

First observations seem to indicate a close correlation between the noise on ‘Initial’ and ‘Final’ (see
Fig. 10). This lack of additional noise after the box suggests that time-dependent crosstalk in the fiber
has been effectively reduced. Here it must be noted though, that the stability without the box was
not electronically logged over a longer period: because of obvious instability of the fiber, I refrained
from such detailed measurements in the initial set-up. Therefore a comparison to previous values is
impossible.

A following step in the box’s characterization should be a simultaneous measurement of the total
intensity in both orthogonal polarizations after the fiber. This would allow to substract effects due
to fiber coupling, and retain information about only polarization-dependent fluctuations. It could
be achieved by including a glan-laser to split the light into two orthogonal polarizations before the
polarizer in the ‘Final’ measurement. The glan-laser has a minimal extinction ratio of 10−6 in one
axis, which would not obstruct the measurement of the fiber’s minimal extinction ratio. In the other
axis the polarization purity might worsen, but a measurement of the total intensity would not be
hindered.

Further optimization is also possible in case of the temperature control: no long-term stability (on the
order of days) has been achieved yet, since the low maximal current greatly impairs the tunability of
the temperature controller. The most recent measurements show strong oscillations over the course
of several hours (see Fig. 11). Presumably this is caused by faulty adjustment of the PID controller.
If the controller does not prove further tunable, the number of serially connected Peltier elements
should be reduced.
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Figure 10: The minimal extinction ratio over the course of 1 hour, during which the temperature was
stable to 0.1 %

Figure 11: The minimal extinction ratio over the course of 4 hours, after adjustment of the temperature
controller
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6 Conclusion

We perform quantum experiments with ultracold cesium atoms in a standing wave dipole trap. Uti-
lizing light at λ = 866 nm atoms are transported depending on their spin state, because they couple to
either σ+ or σ− components of the light field. This is exploited to conduct quantum walks and single
atom interferometers with the qubit formed by the |F = 3,mF = 3〉 and |F = 4,mF = 4〉 hyperfine
levels of the cesium ground state. The qubit can be manipulated with microwave pulses of different
length, on resonance with the transition frequency between both states. However, physical processes
that shift the energy levels of |3, 3〉 and |4, 4〉 will affect the transition frequency. This can be registered
as a change in the collected phase of the superposition state as it precesses on the Bloch sphere. If
the magnitude of these light shifts is non-predictable, we lose knowledge about the quantum system.
The phase relation of the atomic ensemble is lost, and we speak of dephasing.

The dephasing mechanisms are subdivided into homogeneous and inhomogeneous effects, whereby
the latter are reversible with the help of spin echo techniques (section 3.1). The homogeneous effects
studied in this thesis were primarily the intensity and phase fluctuations of the trapping beams, since
the influence of magnetic fields does not limit our current T2 time. The RMS phase noise is quite
low: it is on the order of ∆φ = 1/20 of a degree; the intensity noise RMS is on the same order of
magnitude.

In chapter 5 the current experimental set-up was explained. The phase and intensity noise have been
minimized by phase and intensity locks to an RMS value of 10−5. However, other components such
as waveplates, Wollaston prisms, and fibers worsen the static minimal extinction ratio. This causes
dephasing in case of atom transport and is transformed into noise by the locks even in the static case
(see Table 2). Currently the biggest contribution to the static polarization impurity comes from the
combining fiber.

Therefore I studied the fiber in more detail: I measured several PM fibers, none of which are sig-
nificantly better than the 10−4 achieved by the built-in fiber. Then I tested a non-PM fiber, which
had a minimal extinction ratio of 10−5. To minimize the effects of temperature and pressure fluctua-
tions on this fiber I built a stabilization box. Unfortunately the extinction ratio deteriorated to 10−4

before the stability measurement. Nonetheless an initial characterization of the box was possible.
Although some issues with the temperature stability remain, it seems the stability of the fiber has
been improved. Therefore I advise further investigation in this area.

Component RMS

Wollaston Prism 10−6

Waveplates < 10−6

Intensity Lock Loop 10−5

Phase Lock Loop 10−5

Fiber 10−4

Table 2: Minimal Ext. Ratio per component
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