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Introduction

The idea of quantum information processing attracted much attention in recent years. A quantum
computer works with qubits, which, as opposed to classical bits with only two defined states, are
any coherent superposition of two states. Quantum computing opens a new range of possibilities,
especially parallel processing of information. Recently developed quantum algorithms [Shor94]
show that quantum computers can solve specific problems within polynomial time for which
classical computers take exponential time.

The experimental realization of such systems, however, encounters severe technical prob-
lems. First, one must be able to control quantum systems. Some examples which are related to
our field are ions [Lieb03], neutral atoms, even “artificial” atoms (quantum dots). Besides the
experimental challenge to store them, we need to control their quantum states. Here, the greatest
difficulty is the preservation of quantum coherence. Any coherent superposition of states must
last much longer than the computation time. This means that the dissipation and thus the in-
teraction with the environment must be suppressed. The charge of the ions leads to Coulomb
interaction with the environment which quickly destroys the coherence. Quantum dots are incor-
porated into solid material and suffer the same problem.

Our experiment is an approach to an implementation using individual neutral atoms. The
advantage of uncharged particles might be the longer coherence time. The required ability to
store individual atoms and to control their external and internal degrees of freedom was realized
in our group within the last years. We are able to store a desired number of neutral Cs atoms, to
move them with sub-micrometer precision and to manipulate their internal quantum states. Also,
the coherence time of internal states was measured [Kuhr03]. The next step towards quantum
information processing is the interaction between two atoms. In this case the lack of Coulomb
interaction requires additional effort to establish such interaction. In free space, neutral atoms
interact considerably strongly only at very short distances. Our approach is to use an optical
resonator in which the atom-atom interaction is mediated via the exchange of a photon.

The subject of this work is the preparation of suitable optical resonator which continues the
work of Y. Miroshnychenko [Mir02]. In order to perform experiments with atoms in a cavity,
the system must fulfill the condition of strong coupling, where the coherent interaction between
the atom and the intracavity field dominates over the dissipation. The dissipation is due to the
limited lifetime of photons in the cavity and atomic decay. Quantitative understanding of the
interaction of an atom with photons within the cavity requires advanced theoretical treatment.
By solving the master equation of a two level atom interacting with the single mode cavity in
presence of dissipation I have calculated the spectrum of the system.
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The experimental challenge is to achieve a strong atom-photon interaction while keeping the
dissipation low. The interaction increases when the photons are confined to a smaller volume,
whereas the photon lifetime in the cavity can be improved by increasing the reflectivity of the
mirrors. Altogether, the resonator must have a microscopic mode volume and high mirror reflec-
tivity.

In order to sort out mirrors with best reflectivity from our set we need a quick method of
mirror characterization. For these means I have implemented a cavity ring-down setup which
measures the lifetime of a photon in a cavity.

The precise control of interaction parameters requires the ability to tune the cavity resonance
frequency and to keep it stable for the time of the experiment. Since the resonance frequency
depends on cavity length changes on a picometer scale, an active feedback scheme is required
to achieve the necessary stability. Our scheme is based on stabilization of the cavity to a laser
and incorporates the Pound-Drever-Hall method. This scheme was completed, optimized and
characterized.



Chapter 1

Theory

1.1 Optical resonators

An optical resonator is a “container” for light, it is able to store photons for a certain time within
its volume.

1.1.1 Basic properties

An optical resonator basically consists of two opposing mirrors. First we consider a simple
model, the so called Fabry Perot resonator of two plane mirrors, fig. 1.1. It describes most of the
properties of real resonators.

The relevant parameters are the resonator length L and the mirror reflectivities R1 � R2 and
transmissions T1 � T2. For convenience we set R � �

R1R2 � T � �
T1T2 �

Ein

Ein

i φ

R1

Ein T1T2

Ein T1T2 R1R2
i φ

Ein T1T2R1R2
i φ2

Ein

R2T1 T2

Ein R1R2

L

1R

R2e1
e

eφ2i
e

T

T R21

−

Figure 1.1: Fabry-Perot resonator. An incident electromagnetic wave leads to a series of partial
reflections.
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1.1. OPTICAL RESONATORS 7

A laser beam of frequency ω and wave-vector k � ω
c � 2π

λ incident on one mirror is partially
transmitted and partially reflected. The transmitted part enters the resonator and is reflected forth
and back many times. On each reflection a fraction escapes the resonator, see fig. 1.1. Since this
process is coherent, the amplitudes of the reflections will interfere.

The transmitted field amplitude is the sum of all amplitudes after the second mirror:

Et � Ein � T � T Reiφ � T R2ei2φ � �����	� � Ein
T

1 
 Reiφ
�

where φ � 2Lk is the round-trip phase of the light wave in the resonator.
Similarly, the reflected field is

Er � Ein � 
 � R1 � T1eiφ � R2 � T1
�

R2Re2iφ � ������� � Ein � T1

�
R2eiφ

1 
 Reiφ 
 �
R1 ��� (1.1)

The transmitted intensity is proportional to the square of the field:

It 
��Et � 2 � E2
in

���� T
1 
 Reiφ

���� � E2
in

T 2� 1 
 R � 2 1

1 � 4R�
1 � R � 2 sin2 � φ

2 � � (1.2)

frequency

tr
an

sm
is

si
on

∆ωFSR

∆ω
FWHM

ω
res ω

res
‘

Figure 1.2: Transmission of an optical resonator.

Maximal transmission of T 2�
1 � R � 2 occurs at the resonance frequencies ωres when all reflections

interfere constructively, i.e. the round trip phase is a multiple of 2π:

2L
c

ω � φ !� 2π � q � q � 1 � 2 � �������
The resonance frequencies are then

ωres � 2π
c

2L
q � : ∆ωFSR � q � q � 1 � 2 � �������

The spectrum is periodic, with a period of ∆ωFSR : � 2π c
2L , called the free spectral range.
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From eq. (1.2) we calculate the linewidth ∆ωFWHM of the resonances:

∆ωFWHM � ∆ωFSR
1 
 R

π
�

R
� :

∆ωFSR

F �
The factor

F : � π
�

R
1 
 R

� ∆ωFSR

∆ωFWHM
(1.3)

is called the finesse of the resonator, and depends only on the mirror reflectivity.
The field in the resonator is a standing wave. We consider the case of resonance for a sym-

metric resonator: R1 � R2 � R � T1 � T2 � T . At an anti-node all forth and back reflections
interfere constructively and give the resonant intra-cavity field strength

Ecavity � Ein

�
T � 1 � �

R � � 1 � R � R2 � �����	� � Ein

�
T � 1 � �

R �
1 
 R �

For a high reflectivity without losses we have R � 1 � T � 1 
 R and thus

Ecavity � Ein
2�

1 
 R
�

The resonant intra-cavity intensity in an anti-node is then

Icavity � Iin
4

1 
 R
� 4

F
π

Iin � (1.4)

The cavity enhances the intensity by a factor 4
πF . This is one reason for the usage of cavities

in experiments with atoms. If one is able to obtain a high finesse, the interaction of atoms with a
laser beam is enhanced by several orders of magnitude compared to interaction in free space.
If an atom is not localized to an anti-node along the resonator axis (as will be the case in our
setup) it will see an average intensity over one or several periods of the standing wave:

I
�
mean �

cavity � 2
F
π

Iin �
1.1.2 Eigenmodes

Real resonators are typically built with spherically concave mirrors. Here, the field is confined
in three dimensions to a mode of a finite volume.
We consider a symmetric resonator of two identical mirrors. The resonator is radially symmetric,
has the length L and mirror curvature radius Rc. We call the resonator axis z and set z � 0 in the
center, see fig. 1.3.

The field inside the resonator is the solution of Maxwell equations with boundary conditions
(mirrors). The eigenmodes can be described in the paraxial approximation by standing wave
Hermite-Gaussian modes (see e.g. [Sie86]):
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2w0

z

y

x

L

Figure 1.3: Fundamental TEM00 mode.

Em � n � x � y � z � t � � E0Xm � x � z � Yn � y � z � e � ik
�
z � L

2 � ei
�
ωt � � c � c �

Xm � x � z � � 1�
w � z � Hm � � 2

x
w � z � � exp ��
 x2

w2 � z � 
 i
kx2

2R � z � � i
2m � 1

2
ψ � z ���

Yn � y � z � � 1�
w � z � Hn � � 2

y
w � z � � exp � 
 y2

w2 � z � 
 i
ky2

2R � z � � i
2n � 1

2
ψ � z � �

with

w0 : modewaist � w � z � � w0 � 1 ��� z
zR  2 : mode radius (1.5)

zR � π
λ

w2
0 : Rayleigh range

R � z � � z � z2
R

z
: wavefront curvature

ψ � z � � arctan � z
zR  : Guoy phase �

Here H j � x � � j � 0 � 1 � 2 � ����� are the corresponding Hermite polynomials of the order j. The so-
lutions for different m � n !#" have different field distribution in radial direction and are called
TEMm � n transversal modes.
The boundary condition is, that on reflection the curvature radii of the wavefront and the mirror

must be equal, i.e. R � L
2 � !� Rc. This determines the waist w0:

w2
0 � λ

π
� L

2
� Rc 
 L

2  � (1.6)
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The most important mode is TEM00 or fundamental mode:

E0 � 0 � x � y � z � � E0
1

w � z � exp � 
 r2

w2 � z � 
 i
kr2

2R � z � � iψ � z � � e � ik
�
z � L

2 � � c � c � (1.7)

with r2 : � x2 � y2. This corresponds to two counter-propagating Gaussian beams. We will work
with this mode in the resonator since it has the most homogeneous radial intensity distribution
without nodes.

Because of the Guoy phase the different transversal modes are non-degenerate. The round
trip phase is

φn �m � 2Lk 
 2 � m � n � 1 � � ψ � L2 � 
 ψ � 
 L
2 �  �� 2π

∆ωFSR
ω 
 2 � m � n � 1 � arccos � 1 
 L

Rc
���

The resonance condition is φn �m !� 2πq � q � 1 � 2 � ����� . We get

ωn �m � ∆ωFSR � q � 1
π � m � n � 1 � arccos � 1 
 L

Rc
� � � (1.8)

The resonance frequencies of transversal modes are equidistant. q is the longitudinal order,
i.e. the number of antinodes in the resonator. The modes with equal � m � n � are degenerate. The
mode separation depends on the length of the resonator, we will use this relation later to measure
the mirror distance of an assembled cavity.

In the experiment we often scan the mirror distance and not the laser frequency. A change
of λ

2 in the distance corresponds to ∆ωFSR. For ∆L $ λ
2 % L we have ∆ω ∝ ∆L in very good

approximation.

1.1.3 Quantization of the electromagnetic field

Up to now we dealt with classical electromagnetic fields in the resonator. In order to understand
the quantum optical phenomena we need a treatment on a single photon level. The quantum
field will be used to analyze the interaction of an atom with the cavity mode. The method for
introducing photons is the canonical field quantization (see e.g. [Sho90], [Scu97]).

We consider monochromatic light of the frequency ω in the fundamental mode of the cavity.
Suppose, it is linearly polarized, then there are only two mutually orthogonal components E and
B of the field. The idea of the quantization is that for the standing wave fields in the resonator
this problem has the structure of a harmonic oscillator. E plays the role of the “position” and B
is the “momentum”.

The quantum mechanical formalism expresses the field operators in terms of creation and
annihilation operators â† and â:&

E � x � y � z � � E00 � x � y � z � � â† � â � �&
B � x � y � z � � iB00 � x � y � z � � â† 
 â � �
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where the spatial parts E00 � x � y � z � and B00 � x � y � z � are the same as in eq. (1.7).
The operators â† � â add and remove monochromatic, polarized photons in the resonator. The

quantum mechanical expression for the energy is&
H �(' ω � â†â � 1

2 ���
The operator â†â counts the number of photons, ' ω is the energy of a single photon. The energy
eigenstates are photon number states � 0 ) � � 1 ) � � 2 ) � �������
In this picture the field in the resonator consists of photons which are reflected forth and back
between the mirrors.

1.1.4 Photon lifetime

Since the reflectivity of the mirrors is limited, the photon will stay in the resonator only for a
limited period of time. We can find it as follows:

The round trip time of the photon is ttrip � 2L
c � 2π

∆ωFSR
. The intensity loss during half a

round-trip (one reflection) is:

I � t � 
 I � t � 1
2 ttrip �

1
2 ttrip

� I � t � 1 
 R
π

∆ωFSR

� I � t � � � R
∆ωFSR

F
�� I � t � � � R∆ωFWHM � I � t � � ∆ωFWHM �

Since the cavity is traversed at the velocity of light, ttrip is small and thus

I � t � 1
2ttrip � 
 I � t �

1
2ttrip

� dI
dt

� I � t � � ∆ωFWHM* I � t � � I0e � ∆ωFWHMt � I0e � t
τ � (1.9)

The intensity decays exponentially and

τ : � 1
∆ωFWHM

� F
∆ωFSR

(1.10)

is the photon lifetime.
One defines the photon loss rate as:

κ : � 1
τ � (1.11)

The mean number N of reflections in the cavity is given by:

N � 2
τ

ttrip
� 2

∆ωFSR

2π∆ωFW HM
� F

π �
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1.2 Atom-cavity interaction

With the basic properties of the resonator we can now analyze what happens with atoms in the
cavity.

1.2.1 Atom-cavity coupling strength

To describe the atom in a way similar to the photon picture we use the second quantization
formalism. We consider a two level atom with ground and excited states � g ) � � e ) and introduce
the operators σ̂† : � � e ),+ g � and σ̂ : � �g ),+ e � which create and annihilate atomic excitation.

Suppose the atom is placed in an antinode of the standing wave, such that the spatial depen-
dence of the interaction can be omitted. The dominating part is the interaction of the atomic
dipole moment with the electric field component (dipole approximation).
The interaction Hamiltonian in the Heisenberg picture is&

Hint � &
d � &E � d � σ̂†eiω0t � σ̂e � iω0t � � E � â†eiωct � âe � iωct � �

where ω0 is the atomic transition frequency, ωc is the cavity photon frequency, â† � â create/annihilate
cavity photons, d is the electrical dipole moment of the atom, and E is a constant which depends
on the mode volume V (see [Scu97]):

E � ' ωc

2ε0V

V � π
4

w2
0L � λ

4
L � L

2 � Rc 
 L
2 ���

The expression for the mode volume is valid for L % zR.
In the rotating wave approximation � ω0 
 ωc � % � ω0 � ωc � the Hamiltonian reduces to:&

Hint � dE � σ̂†â � σ̂â† � ��' g � σ̂†â � σ̂â† � �
where

g : � dE' � d2ω
2 ' ε0V

(1.12)

is the atom-cavity coupling rate. This interaction Hamiltonian is also known as Jaynes-Cummings
Hamiltonian [Jay63].

1.2.2 Jaynes-Cummings model

In the Jaynes-Cummings model we consider the interaction of a two level atom with a single
mode optical cavity. The system shall be ideal, the atom can not decay spontaneously from the
excited state to the ground state, and also photons do not escape the resonator.
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The full Hamiltonian including the atomic and cavity energy is given by:&
H �(' ω0σ̂†σ̂ �-' ωc � â†â � 1

2 � �-' g � σ̂†â � σ̂â† � �
The atom can be excited by absorbing a cavity photon or go to the ground state giving its excita-
tion to the cavity. Since

σ̂†â � σ̂â† � � e � n )�+ g � n � 1 � � � g � n � 1 ).+ e � n � �
the interaction couples the states � g � n � 1 ) and � e � n ) for each photon number n. In the sub-
manifold of these two states we can write the Hamiltonian:&

Hn � '
2

/01 � ωc 
 ω0 � 2
�

n � 1 � g
2
�

n � 1 � g 
 � ωc 
 ω0 �
2.34 �

which can be easily diagonalized giving the energy eigenvalues 5762 � � ωc 
 ω0 � 2 � 4 � n � 1 � g2.

The interaction lifts the degeneracy between the atom and the cavity. The eigenstates are
split, see fig. 1.4, which is called vacuum Rabi splitting. In resonance, i.e. ωc � ω0, the
splitting is 2

�
n � 1 �8' g. The coupled atom and cavity become one system with two resonances.

g

g

|0〉
|g |0〉 〉

|1〉

g|2〉

( |1 +|e |g |2 )〉 〉 〉 〉
2
1

( |1 -|e |g |2 )〉 〉 〉 〉
2
1

( |0 +|e |g |1 )〉 〉 〉 〉
2
1

( |0 -|e |g |1 )〉 〉 〉 〉
2
1

2

g2

|g〉

|e〉

+atom cavity =

E

combined and coupled
atom-cavity system

Figure 1.4: Eigenstates of the resonant atom-cavity system.



14 CHAPTER 1. THEORY

1.2.3 Dissipation and strong coupling

In the real atom-cavity system, the mirrors have a limited reflectivity and the atomic excited state
has a finite lifetime. There are 3 important processes :

1. coherent atom-photon interaction at the rate g,

2. incoherent photon leakage from the cavity at the rate κ,

3. incoherent spontaneous decay of the atomic excited state at the rate Γ.

Γ

κ g

Figure 1.5: Parameters of atom-cavity system.

The two last processes lead to loss of coherence. In a cavity QED experiment one often wants
to study or to use the coherent interaction with as little damping as possible. It means that the
coherent evolution must be fast compared to the decoherence processes. One has to get into the
regime of strong coupling:

g 9 κ � Γ �
This enables coherent energy exchange between atom and cavity within the lifetime of the atom-
cavity system. For a large g the mode volume has to be small according to eq. (1.12). A low
photon loss rate κ is achieved by a high reflectivity of the mirrors.

1.2.4 Density matrix approach

The dissipation does not only make the experiment difficult, its theoretical treatment also requires
advanced tools. One has to consider the interaction of the system with the environment which
leads to a thermal statistical equilibrium. This can be done in the density matrix formalism.

Our atom-cavity system is now coupled to the environment. The evolution of the whole
system including the environment can be described by a Schrödinger equation. Since the exact
quantum state of the environment is not known, one traces (takes the mean value) over environ-
mental states and obtains the master equation [Car93]:

d
dt

&
ρ � 1

i ';: &H � &ρ <,� κ
2 � 2âρ̂â† 
 â†âρ̂ 
 ρ̂â†â � � Γ

2 � 2σ̂ρ̂σ̂† 
 σ̂†σ̂ρ̂ 
 ρ̂σ̂†σ̂ ��� (1.13)
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Here,

&
ρ is the density matrix for the atom-cavity system, κ are cavity losses, Γ is the decay rate

of the atomic excited state. The first part of the master equation describes coherent evolution,
the terms with κ and Γ are responsible for the dissipation processes which lead to decoherence.
The Hamiltonian contains the atom and cavity energies, the atom-cavity interaction and coherent
driving of the cavity by a laser field of frequency ωl&

H ��' � ω0 
 ωl � σ̂†σ̂ �-' � ωc 
 ωl � â†â �=' g � σ̂†â � σ̂â† � �=' ε � â† � â ���
In the presence of decoherence the master equation has a steady state d

dt

&
ρ !� 0. This is a

system of (infinitely many) homogeneous linear equations. Numerical tools for solving the mas-
ter equation exist, e.g. [Tan02]. They provide the spectra of the system and expectation values
of atom and cavity states by restricting the dimension of the Hilbert space to a computationally
affordable value. The structure of the solution, however, remains hidden in this approach.

My goal was to find an analytical solution of the problem in a reasonable approximation. I
have solved the master equation analytically in the case of a weak driving field. For details see
Appendix A.

In case of resonance between atom and cavity, ωc � ω0, the result is

ρ11 � ε2 � Γ
4

2 � ω2
l  

ω4
l �(� 1

4 � κ2 � Γ2 � 
 2g2  ω2
l � � κΓ

4 � g2 � 2
ρ22 � ε2g2

ω4
l � � 1

4 � κ2 � Γ2 � 
 2g2  ω2
l � � κΓ

4 � g2 � 2 �
where ρ11 is the probability of finding a photon in the cavity and ρ22 is the population of the
excited state of the atom. The photon flux from the cavity is then κρ11. The approximation
requires that the driving laser field ε must be small, such that ρ11 � ρ22 % 1.

The figure 1.6 shows the Rabi splitting in this solution. The two curves are ρ11 � ωl � � ρ22 � ωl � ,
i.e. the populations of cavity and atom excited states as functions of the driving laser detuning
to atomic resonance. The first one is equivalent to the transmission spectrum of the cavity with
an atom inside, when probed by a weak laser. The width of the lines is a sign of the presence of
dissipation.

Analysis

To connect this result to the Jaynes-Cummings model, we determine the splitting of the peaks
and the linewidth of the cavity transmission. For this purpose we rewrite the expression for ρ11

into two separate peaks:

ρ11 � ωl � � ε2

2δ
� α � ωl� ωl 
 β � 2 � γ2 � α 
 ωl� ωl � β � 2 � γ2 � �

where α � β � γ � δ are expressions in terms of g � κ � Γ. The peaks are asymmetrically broadened but
in the regime of strong coupling still well separated. The vacuum Rabi splitting can be found by
determining the positions of the maxima. The approximate expression is
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Figure 1.6: Rabi splitting in density matrix solution. Shown is the case of cavity resonant with
the atom (centered at the origin). The parameters are � g � κ � Γ � � 2π � � 40 � 14 � 5 � 2 � MHz. The dark
curve is the cavity population vs. laser detuning, the grey curve shows the atomic excitation.

∆Rabi � 2 � g2 � κΓ
4
�

which for strong coupling (κ � Γ % g) becomes 2g as in Jaynes-Cummings model.
Because of the peak asymmetry, an effective linewidth is defined as the area under the peak

divided by the peak height:

∆
�
eff �

FWHM: � 2
π

area
height �

For a Lorentzian function this expression yields the FWHM linewidth. Using this definition we
obtain the approximate expression:

∆
�
eff �

FWHM � κ � Γ
2 �

Another important property is the dependence of energy eigenstates on the detuning of cavity
with respect to atomic resonance. Figure 1.7 shows the eigenstates of the Jaynes-Cummings
model (a) compared to the cavity spectra (b). The x axis is the cavity detuning from atomic
resonance, the y axis is the energy (a), or detuning of the probe laser (b). One can see that the
behavior of energy states is similar in both models.
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Figure 1.7: (a) Energy levels of the Jaynes-Cummings model vs. cavity detuning. (b) Cav-
ity photon number of density matrix solution vs. cavity- and probe laser detuning. The white
area corresponds to 0 photons, black area to 0 � 02 photons in the cavity for ε � 1. The atomic
resonance is centered at the origin. The parameters are � g � κ � Γ � � 2π � � 40 � 14 � 5 � 2 � MHz.
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1.2.5 Interaction between two atoms

Two atoms which simultaneously couple to the same cavity mode become mutually coupled and
can exchange energy (information) via a cavity photon.

Suppose the atoms are at different positions within the mode and thus have in general differ-
ent couplings g1 � g2. The interaction Hamiltonian with the cavity is the sum of two single-atom
interactions: &

Hint �(' g1 � σ̂†
1â � σ̂1â† � �-' g2 � σ̂†

2â � σ̂2â† ���
If the cavity is tuned far from the atomic resonance, the exchange of excitation between atom
and cavity becomes negligible. Two atoms can still exchange their excitation via the cavity. The
effective second order interaction Hamiltonian is&

H
�
2 �

int ��' g1g2� ωc 
 ω0 � � σ̂†
1σ̂2 � σ̂1σ̂†

2 ���
This is a two-photon process, where one atom emits a (virtual) photon into the cavity mode
and the other one absorbs it. Both processes happen simultaneously, the excited state popula-
tion remains small and can be adiabatically eliminated. One gets a cavity induced atom-atom
interaction.

|e,g〉 〉|0 | ,g e |0〉 〉

| ,g g |1〉 〉

g
1

g
2

ω ω-
0 c

Figure 1.8: Cavity which is detuned far from the atomic resonance couples two atoms via a
virtual cavity excitation.

The interaction described above has a long range because the radiation is concentrated into a
single mode. For close distances between the atoms it is also possible to observe cavity amplified
dipole-dipole or van der Waals interaction (see for example [Osn01]).

This scheme is only one possibility for coupling of two atoms via the cavity. There exist dif-
ferent schemes which propose to use the cavity for conditional quantum logic and entanglement
(e.g. [Yi02]). The goal of future work in our group will be to implement one of those schemes
to entangle two atoms.



Chapter 2

Cavity setup

The task to achieve strong coupling represents an experimental challenge. In order to perform
experiments with Cs atoms, where the excited state decay rate is Γ � 2π � 5 � 2MHz, to achieve
g 9 Γ we need a mode volume V $ 7 � 8 � 105 � µm � 3. To minimize the photon loss rate κ, the mirror
reflectivity should be as high as possible. We have set up a resonator with the goal to fulfill these
requirements. At the same time, the resonator has to be combined with our setup which delivers
single cold Cs atoms. A suitable mechanical mounting system was built up and tested together
with the cavity.

2.1 Resonator assembly

The first resonator was built for testing purposes by Y. Miroshnychenko in [Mir02]. Our next
task was to set up a new resonator which can be integrated in our setup.

2.1.1 High reflectivity mirrors

The mirrors are manufactured by the company Research Electro Optics, Boulder, USA. The high
reflectivity is achieved by a stack of several ten dielectric λ > 4 layers. The specified reflectivity
of the mirrors is R � 99 � 997% for the wavelength of the Cs D2 line (852nm), corresponding to a
finesse of 104000. The spherical concave surface has a diameter of 1mm and radius of curvature
of Rc � 10 mm, see fig. 2.1. The special conical shape of the substrate is needed because of the
limited space in our setup as shown in sec. 2.3.4.

We have ordered a set of 30 mirrors. In [Mir02] two resonators were built showing a fi-
nesse of 77000 and 94000, both below specification. This shows that a careful inspection and
characterization of the mirrors is needed before assembling a resonator.

At this point the tools for such a characterization were quite limited. At the beginning we
inspected the mirrors visually with a 100x microscope. It provides light-field and dark-field ob-
servation. Using this microscope we have seen spots of different sizes on almost all mirrors.
Those were ranging from macroscopic dust or glass particles down sub micrometer surface de-
fects. By illuminating the surface from the side we were also able to see thin scratches on many

19
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Figure 2.1: High reflectivity mirror, manufactured by the REO company.

mirrors. Then we used another microscope with 500x magnification which provides light-field,
dark-field and better resolution. The closer look revealed more scratches and even more spots of
sub-micrometer size, one example is shown in fig. 2.2. All visible defects reduce the finesse by
scattering or absorbing light.

Figure 2.2: Microscope picture of the mirror surface, 500x magnification, dark-field observation.
One sees a thin scratch, one clearly visible spot on the lower left and 3 smaller spots on the upper
right. The dark objects in the lower part are defects of the camera.

In order to achieve the best finesse, we looked for mirrors which were free from defects in
the center part of the mirror surface ( 
 0 � 25 mm radius). Since the TEM00 mode will have a
radius of about 15 µm this should guarantee that the defects do not limit the finesse. Since all
mirrors have at least several spots in the center part, we chose mirrors without scratches in this
region. Scratches are permanent, while spots can be small dust or glass particles, thus it might
be possible to remove them. Due to the small mirror size and sensitivity of the mirror coating,
special care has to be taken when trying to clean the surface.
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We investigated the following methods for removing spots:? OptiClean: a droplet of special polymer (manufactured by Merchan Tek Inc., San Diego,
USA) is placed on the surface and covered with a piece of cleaning tissue. The polymer
flows over the surface as a homogeneous layer and embeds the particles. After the drying
(15-20 min) the tissue is easily removed together with the polymer. Bigger particles can
be removed this way. Only a part of smaller particles is removed, several repetitions of the
procedure are needed and it does not guarantee the removal of all particles. In rare cases
the polymer can stick to the side of the mirror if too much was used, this residue has then
to be removed with acetone. In general, using the polymer is fast and safe, since there is
almost no risk of damaging the surface.? mechanical cleaning: a piece of lens cleaning tissue is folded, wet in acetone and swept
with a tweezer from the center to the border of the mirror. This method is difficult and
dangerous since it is possible to produce additional scratches by dragging a piece of glass
over the surface. We tried this method but decided not to use it because it had nearly no
effect on smaller spots.? bathing in acetone or methanol: the mirror is placed into warm acetone or methanol of ultra
high purity. After about 5 minutes the mirror is taken out holding the surface vertical such
that no liquid drop can stay on the surface. If some liquid would dry out on the surface, it
would leave the dissolved dirt behind. This method is able to remove some of the spots,
even small ones, but it can also add spots on some cases. It also removes the residue of the
OptiClean polymer which could stick to the side of the mirror and cause problems with the
ultra high vacuum needed in the experiment.? ultrasonic bath: the mirror is placed into a small vessel filled with pure acetone and put into
an ultrasonic bath for about 5 min. This device is filled with water and produces ultrasonic
vibrations of the liquid which remove particles from the surface. However particles can
produce scratches. Small spots are not removed.

After considering all methods we decided to clean selected mirrors by applying OptiClean several
times and then doing both an acetone and a methanol bath. The surfaces were inspected after
cleaning with the 500x microscope and the procedure was repeated when necessary. By these
means we were able to find a mirror pair with no visible scratches and almost no spots in the
center region of the surface.

2.1.2 Assembly

Piezo elements

For precise control of the resonator length the mirrors are glued onto piezo elements. We use
shear piezos (PI Ceramic, 6x6x1 mm), which perform a shear movement of 5 300 nm when a
voltage of 5 500 V is applied. This is enough to scan over a free spectral range of λ

2 � 426 nm
even when only one piezo is used.
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Holder

The holder for the mirrors is designed for precise positioning of the cavity in our setup. It is
described in all detail in sec. 2.3.4.

The procedure of assembly is almost the same as described in the diploma thesis [Mir02].
First, the piezo elements are glued onto the holder. The holder also provides electric ground
contact. Before gluing, the mirrors are fixed to the piezo surfaces with a positioning tool which
aligns them coaxially in a V-groove, see fig. 2.3. This ensures that the mode is well centered to
the axis of both mirrors.

The next step is gluing of the mirrors to the piezo elements. The previous method was to put a
glue droplet under the mirror, where it distributes as a thin layer. The problem of this approach is
that the glued surface is big. When the glue cures it can contract introducing mechanical tension
to the mirror substrate. This tension leads to a birefringence and should be avoided. The general
rule is to reduce the contact area of the glue, presumably to only one or two points. The idea
is to put the glue not directly between the mirror and the piezo but rather to use an additional
glass cylinder (glass fiber) of few hundred micrometer diameter lying parallel to the mirror side.
It is glued with one side to the piezo and with the other side to the mirror (see figure). Using
the cylinder has also an additional advantage that it might be possible to remove a glued mirror.
When glued directly, the removal destroys the mirror and the piezo, because of the large contact
area with the glue. Figure 2.4 shows the assembled cavity on the holder.

cavity holder

shear piezo

glue

mirror

positioning tool

view from
above

glass cylinder
(optional)

V-groove

side view

Figure 2.3: Assembly of the cavity.
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Figure 2.4: Assembled cavity in the glass cell of the test vacuum setup.

2.2 Characterization of the cavity

The most important parameters of the resonator are its length and the linewidth. Knowing them
one can calculate the values of g and κ which are important for future cavity QED experiments.

Cavity test setup

For characterization and testing purposes the cavity was placed inside a vacuum chamber which
is geometrically identical to the vacuum chamber of the main experiment. By doing so we are
able to test the interplay of the cavity holder with the chamber geometry. This is important for
later integration of the resonator into the main setup, for details see section 2.3.4. The optical
part of the setup is shown in fig. 2.5.

There are two lasers in the setup, the probe laser (852 nm) and the lock laser (836 nm). The
probe laser is resonant with the Cs atom, the second is used for cavity stabilization as described
in the next chapter. Both lasers are delivered by the same fiber in orthogonal polarizations and are
thus perfectly overlapped which reduces the amount of work for coupling them into the cavity.

The laser beams pass a specially designed mode matching telescope (see [Mir02], p. 23)
which tailors their waist to match the fundamental TEM00 cavity mode. The geometrical cou-
pling into the cavity mode is done with two mirrors. The transmitted light is imaged onto a CCD
camera, which enables us to distinguish transversal modes. The transmitted power is measured
with a photo-multiplier (Hamamatsu H7712-03). In order to reduce the straylight, a 200 µm
pinhole is placed in front of the detector.

The reflected beam passes back through the telescope, is coupled out with an unpolarizing
beam-splitter and is focussed onto a fast photodiode (Newport amplified silicon PIN, 818-BB-
21A). Its signal is used for the Pound-Drever-Hall stabilization of the QED cavity.

The voltage for the piezo elements is a triangle scan with variable amplitude and offset, which
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Figure 2.5: Optical setup for characterization and stabilization of the cavity.

is amplified to the necessary high voltage ( 5 400V) by a low noise amplifier (FLC Electronics,
A800-40).

Mode matching

In order to achieve the coupling of the laser into the fundamental cavity mode it is necessary
to adjust the focus and the geometrical position of the beam to match the mode. The piezos
are scanned at an amplitude of about 100 V at 10 Hz. The incidence position and angle of the
beam are changed with a mirror and one tries to see some transmission on the camera. The
laser can be approximately adjusted to the center of the cavity mirror. If no transmission is
seen, the voltage offset for the piezo is changed and the procedure is repeated. If at least one
higher transversal mode is visible, one can look in its vicinity for the neighboring lower mode
by slightly changing the coupling angle. For identifying the individual transversal modes, the
scan amplitude is reduced. By these means one moves down to the fundamental mode which is
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then optimized with both mirrors. A coupling efficiency of 50% in the fundamental mode can be
usually reached without additional effort. For a better coupling one can also adjust the telescope
with and change its focus.

2.2.1 Voltage-travel relation of piezo elements

For precise control of the cavity resonance frequency one has to know precisely how the piezo el-
ements change the resonator length with applied voltage. Their voltage-travel correspondence is
in general nonlinear, given by the properties of the piezo material. As we know from eq. (1.8) the
transversal modes of the resonator are equidistant and thus define a frequency scale. Therefore,
we can measure the voltages corresponding to resonance of different transversal modes.

In order to get some intensity into the higher transversal modes, the coupling of the laser
into the cavity was slightly misaligned. The piezo voltage was scanned slowly (1 Hz) over the
maximal range ( 5 400 V) and the transmission peaks were recorded.

The transmission curve is shown in the figure 2.6, (a). It shows two free spectral ranges of
the resonator. One can identify a large number of clearly visible transversal modes and assign
them corresponding frequencies (transversal mode numbers). Due to the large scan range, the
time during which the intensity of each mode is recorded is small, resulting in strong variations
of the peak height.

The resulting response curve is shown in 2.6, (b). The displacement is slightly non-linear
and depends quadratically on the voltage within this scan range. Additionally it has a hystere-
sis feature. Another important parameter is the voltage distance of two neighboring transversal
modes for a small scan range (i.e. of the order of the mode separation itself). This distance was
measured to be constant, its slope is shown in the curve. This is an important result, since the
voltage-frequency relation is then linear and constant for small scan ranges used in the experi-
ment or for stabilization.

2.2.2 Resonator length

The control of the mirror distance during the assembly process is not very precise. The final
distance is only known after the assembly is finished. It can, however, be deduced with high
precision from the free spectral range or the frequency distance between transversal modes. The
latter alternative is easier to measure since the transversal mode distance is small and thus still
in the linear range of the piezo response. One problem is that the correspondence between the
voltage scan and the frequency is unknown at this point. To get the absolute scale of frequency
the laser beam is modulated by an AOM which produces a sideband at a defined distance from
the main line, see fig. 2.7.

The procedure of measuring the distance between transversal modes is the following: both
piezo elements are scanned in parallel at about 50 Hz, the scan amplitude is adjusted to be just
above the spacing between neighboring modes. Then the mode distance is measured, together
with the AOM sideband distance. Setting both values in relation one gets the result in frequency
units. We measured the following value:
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(a)

(b)

Figure 2.6: Measurement of the voltage-travel relation of the piezo elements. Figure (a) shows
the transmission of transversal modes vs. mirror scan, figure (b) shows the response curve. The
y-axis in (b) is proportional to the resonator length changes. For a small scan range between two
neighboring modes one obtains a different response, which is also shown.
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Figure 2.7: Measurement of the transversal mode distance (schematic). One sees the transmis-
sion of two neighboring transversal modes and the AOM sidebands.

∆ωtrans � 2π � 70 � 38 GHz �
The error of this measurement is due to the limited resolution of the oscilloscope. It is of the order
of 1 
 2%. A possible systematic error might be caused by the non-linearity of the piezo elements
at the small scan range. This effect could not be measured, since there are no transmission lines
between the neighboring transversal modes.
In order to calculate the cavity length L we use eq. (1.8) to get

∆ωtrans � 1
π

∆ωFSR arccos � 1 
 L
Rc
� � c

L
arccos � 1 
 L

Rc
���

This transcendent equation is solved numerically for L. The resulting cavity length is:

L � 92 � 2 µm �
and the free spectral range is ∆ωFSR � 2π � 1 � 63 THz.
The obtained value L is the effective cavity length. Since the mirror surface is a stack of dielectric
layers, the light penetrates about 2µm into the mirror, thus the physical mirror distance is slightly
shorter.

2.2.3 Cavity linewidth and finesse

In order to obtain the photon loss rate κ and finesse F , we have to determine the spectral linewidth
of the cavity. The cavity is scanned over the resonance of the TEM00 mode and the AOM side-
band, see fig. 2.8. Similar to the previous measurement, the FWHM linewidth is compared to
the distance of the AOM sideband. Knowing the AOM frequency, we directly get the linewidth.

The main difficulty of this measurement is the required stability of the resonator. All kinds of
mechanical (acoustical) and electronical noise make the line move, fluctuate or change its shape.
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Figure 2.8: Cavity transmission showing the TEM00 line and its AOM sideband, averaged over
64 measurements.

Parts of the equipment, especially those which produce vibrations (e.g. vacuum pumps), have to
be switched off.
We obtained the following values:

κ � ∆ωFWHM � 2π � 13 � 77 MHz �
F � ∆ωFSR

∆ωFWHM
� 118000 �

The errors produced by the reading of the instrument are again 1 
 2%. The environmental noise,
however, has a substantial impact on the linewidth. Performing this measurement in a somewhat
noisier situation we obtained a larger linewidth of about 16 MHz.

The finesse is just above the specification of the manufacturer (Fspec � 104000) and is higher
than the finesse achieved by the previous resonators (F � 77000 � 94000 � 66000). The shift of the
resonance frequency of ∆ωFSR corresponds to a resonator length change of only λ

2 � 1
F � 3 � 6 pm,

thus the length stability becomes an important issue.

2.2.4 Resulting parameters

Knowing the mirror distance of L � 92 µm we can calculate the waist w0 and the coupling pa-
rameter g.

According to eq. (1.6) : w2
0 � λ

π @ L
2 � Rc 
 L

2 � . For λ � 852 nm � L � 92 µm � Rc � 10 mm we
get
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w0 � 13 � 5 µm �
The mode volume is V � π

4 w2
0L � for our parameters we get

V � 1 � 3 � 104 � µm � 3 �
Finally we calculate the coupling parameter according to eq. (1.12):

g � d2ω
2 ' ε0V

using the values (see [Ste98]):
d � 2 � 698 � 10 � 29 Cm � ω � 2π � 351 � 7 THz we obtain

g � 2π � 40 � 3 MHz �
Altogether we have: � g � κ � Γ � � 2π � � 40 � 3 � 13 � 8 � 5 � 2 � MHz �
i.e.

g2

κΓ
� 22 � 6 �

which indicates that we should be able to achieve the strong coupling regime.

2.3 Single-atoms setup

Our main experimental setup allows us to deterministically deliver single cold Cs atoms to a
defined position [Kuhr01]. Furthermore it is capable of preparation, coherent manipulation and
measurement of the atomic hyperfine states, see [Kuhr03].

2.3.1 Single-atom MOT

Our source of single cold Cs atoms is a magneto-optical trap (MOT). It consists of three pairs of
counter-propagating red detuned laser beams which constitute a so called optical molasses. The
atoms from the dilute background Cs gas are Doppler cooled to a temperature of about 100 µK.
A high-gradient magnetic quadrupole field creates position dependent Zeeman splitting of the
atomic hyperfine sub-levels. Together with the circular polarization of the beams this gives the
position dependent restoring force needed for trapping. Details of the MOT are described in
[Kuhr03]. The fluorescence light of the atoms in the trap is monitored by an avalanche photodi-
ode. This enables us to count the exact number of atoms.
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Figure 2.9: Experimental setup of our main experiment for the manipulation of single Cs atoms.

2.3.2 Optical conveyor belt

In order to control the position of the atoms, a second trap was set up. It is a far red-detuned
dipole trap where atoms are attracted to regions of high laser intensity. It consists of two counter-
propagating Gaussian beams of Nd:YAG laser (1064 nm � 4 W) which create a standing wave
interference pattern with periodical potential wells of 532 nm separation. The dipole trap is
overlapped with the MOT and the atoms can be efficiently transfered between the two traps.
Thus, we can load the dipole trap with a desired number of atoms, from one to several ten. By
changing the frequencies of the beams by means of two AOMs, the interference pattern is set
into motion and carries the atoms. This optical “conveyor belt” is able to transport atoms over
macroscopic distances (up to 10mm) with sub-micrometer precision. Details about the conveyor
belt can be found in [Sch01].

The atoms in the dipole trap can be observed spatially resolved by means of an intensified
CCD camera. It observes the atoms via diffraction limited imaging optics enabling us to resolve
atoms which are separated by more than 2 µm. With this tool it becomes possible to determine
the position of an atom on the camera picture and to program the transport parameters such that
it is moved to a defined position. This realizes an absolute position control which is one current
work topic in our group.
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2.3.3 Manipulation and measurement of internal states

The Cs atom has two hyperfine ground levels, 6S1 A 2 F � 3 and 6S1 A 2 F � 4, which can serve
as a storage of quantum information (see fig. 2.10). The atoms can be initially prepared in
either state in the MOT and then loaded into the dipole trap. For cavity QED experiments one
must also coherently manipulate atomic hyperfine states. This is performed with microwaves at
the hyperfine splitting frequency of 9 � 2GHz. By applying resonant microwave pulses we can
observe transitions between the ground states, also coherent superpositions of the states can be
obtained this way. Another technique which we use are adiabatic passages, where a microwave
frequency sweep efficiently transfers atoms from one state to the other. Alternatively we can also
use optical Raman transitions (see [Dot02]).
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|g 〉2

6S  F=3
1/2

6S  F=4
1/2

6P1/2
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1/2

λ=852.3 nm

9.2 GHz

Figure 2.10: Cs atom as a three-level system. Shown are two long-lived hyperfine states and the
excited state of the D2 line. Hyperfine splitting of the P1 A 2 state is omitted.

The measurement of the hyperfine state is performed by applying a laser which is resonant
with the transition of one of the ground states to an excited level, removing the atoms in this
state from the dipole trap. Details about microwave manipulation of the states and coherence
properties of the atoms in the dipole trap can be found in [Kuhr03].

The manipulation techniques described above affect all atoms simultaneously. Current work
in our group aims towards individual addressing of atoms in the dipole trap. With the help of
microwave adiabatic passages in a magnetic field gradient it is possible to change the internal
state of an atom on a defined position without affecting atoms on other positions. Using these
methods we will prepare several atoms in different states. Their interaction within the cavity can
then realize quantum logical operations.
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2.3.4 Integration of the cavity into current setup

The goal is to combine our setup with the cavity such that the atoms can be transported from
the source (MOT) into the interaction zone within the resonator by the optical conveyor belt. In
order to transport the atoms into the cavity one has to align the conveyor belt laser from the side
through the slit between the mirrors through the cavity mode. By properly adjusting the transport
parameters, the atoms will be moved into the center of the mode which has a radius of 14 µm.
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Figure 2.11: Planned setup geometry. The atoms will be transported over the distance of 5 mm
from the MOT into the cavity mode through the slit between the mirrors. The conical mirror
shape leaves more space for the x-y MOT laser.
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Figure 2.12: Top view of the chamber.
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The integration shall follow the tactics of minimal invasion, i.e. the cavity has to be added into
the setup without changing or disturbing the other parts. We aim a distance of 5 mm between the
MOT center and the cavity center. The transportation has an efficiency over 80% for this distance
and the conically shaped mirrors will not block the MOT lasers, see fig. 2.11.

The position of the MOT within the setup is fixed by the magnetic field zero and can not be
changed. The position and direction of the optical conveyor belt also can not be changed without
much effort. Thus the cavity has to be placed in the glass cell leaving the ability to change its
position with high precision.

For these means the cavity is assembled on a specially designed holder. Its task is to transfer
the movement of a precision 3D motional vacuum feed-through to the cavity. This positioning
unit is controlled from outside the vacuum chamber giving the possibility to adjust the cavity
position. The geometry is shown in fig. 2.12. The handling of the cavity with the holder is
relatively tricky because of limited space in the vacuum chamber and the glass cell. Still, this is
the only possibility to integrate the resonator without rebuilding the whole experiment. Figure
2.4 shows the cavity in the glass cell.
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Figure 2.13: Kinematics of the cavity holder.

The holder consists of two parts which are connected by a cardan joint (see fig. 2.13). The
part which holds the cavity rests on a support in the glass cell, the other part is attached to the 3D
positioner. The support has the possibility to move along the base which is fixed in the glass cell.
The 2 axes of movement of the positioner which are orthogonal to the cell axis are translated
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around the support point by 1:5. The movement along the axis together with the support is
translated 1:1.

The specified precision of the 3D positioner (Thermionics Northwest XY-B450/T275-1.39
precision XY manipulator + FLMM133 precision Z feed-through) is 10 µm. Thus the position
of the cavity with respect to the MOT should be adjustable with precision of 10 µm along the
cell axis and with a precision of 2 µm along the two other axes. To avoid eventual contact of the
holder with the walls of the chamber or glass cell which might lead to jamming and damage, the
positioner features a customizable travel limit. We were able to test the function of the holder and
positioning of the cavity. The cavity could be moved along all three axes and fixed to a defined
position.

The alignment of the dipole trap beam through the slit between the mirrors is a critical point.
Since the mirrors are curved, the slit is smaller than the measured effective resonator length L.
Knowing the mirror surface radius r and the radius of curvature Rc (see fig. 2.1) one can calculate
its size dslit:

dslit � L 
 2 � Rc 
 @ R2
c 
 r2 � � L 
 r2

Rc
�

For r � 0 � 5 mm, Rc � 10 mm, the slit is 25 µm smaller than the resonator. For L � 92 µm its
size is dslit � 67 µm. The dipole trap laser has currently the waist diameter of 2w0 � 40 µm,
with the focus in the center of the cavity the beam size on the slit is then about 42 µm. First
measurements showed that about 95% of the power of the beam can be put through the cavity
slit and glass windows in the test chamber. The power absorbed by mirror edges causes a strong
thermal expansion of the mirrors which makes the spectral lines shift by a distance of several
transversal modes when the laser is switched on. This has to be further examined and optimized.

2.4 Conclusion

We have set up and characterized a cavity with a length L � 92 µm and a finesse F � 118000.
The cavity was assembled on a holder which enables its integration into our main experimental
setup.

To achieve the best performance in cavity QED experiments the g2

κΓ parameter has to be
maximal. The current resonator with � g � κ � Γ � � 2π � � 40 � 3 � 13 � 8 � 5 � 2 � MHz has the ability to
achieve the strong coupling regime. To further improve the performance, one has to increase the
coupling g and to decrease the photon loss rate κ. As we have seen in the previous section the
high power conveyor belt laser has to fit through the slit between the mirrors and thus sets a lower
boundary to the mirror distance. The current slit size of dslit � 67 µm already causes problems
with power absorbed by the mirrors. Thus the coupling rate g can not be increased. The only
parameter which can be improved is κ, by increasing the mirror reflectivity. In this respect a
quick and reliable method of characterizing mirrors before could be useful. Such a method will
be presented in chapter 4.



Chapter 3

Active stabilization of the cavity

Cavity QED experiments require precise control of the cavity resonance frequency with respect
to an atomic transition. This requires a very high mechanical stability of the resonator, since due
to high finesse, fluctuations of the cavity length shift the resonance frequency by more than its
width. The fluctuations are caused by thermal drifts and inevitable mechanical vibrations. The
passive mechanical stability is not sufficient, an active feedback scheme is required to compen-
sate for the fluctuations. In this chapter a scheme is presented which is capable of stabilizing the
cavity length to a fraction of a picometer.

Active stabilization implies the use of a stable reference frequency (e.g. that of a laser). A
servo loop then holds the cavity resonant with the laser thus stabilizing its resonance frequency
to the laser frequency. In order to achieve this, an error signal must be extracted. This signal
contains the information about magnitude and sign of deviation of the resonance frequency from
the desired value. After suitable filtering and amplification the signal is fed back to the cavity. In
our setup the extraction of the error signal is accomplished using the Pound-Drever-Hall method
[Dre83].

3.1 Pound-Drever-Hall method

The basic idea of this method is to use the property of the laser beam reflected from the cavity to
derive an error signal, see fig. 3.1. The phase of this reflection is dispersive, i.e. it changes sign
around resonance. When the laser frequency matches the cavity resonance, the phase is zero; for
small deviations it is proportional to the difference of the laser and cavity resonance frequencies.
This property is used for an error signal, which can then be used to stabilize a cavity to a stable
laser, or vice versa.

The PDH method extracts the relative phase of three different frequencies which will experi-
ence different phase changes. A PDH setup for stabilizing a cavity to a stable reference laser is
shown in fig.3.2. The laser frequency ω is modulated with the frequency Ω, generated by a local
oscillator. The field amplitude of the modulated laser beam is then:

E � t � ∝ exp � i � ω � αsin � Ωt � t ���
35
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Figure 3.1: Intensity and phase of a laser field reflected from the cavity.
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Figure 3.2: Basic PDH setup for stabilization of a cavity to a laser.

To first order it produces two sidebands with opposite phases at frequencies ω 5 Ω, for conve-
nience we set the amplitudes of the sidebands equal to the carrier amplitude:

E � t � ∝ eiωt � ei
�
ω B Ω � t 
 ei

�
ω � Ω � t �

This laser field is sent to the cavity. The cavity has a free spectral range ∆ωFSR (which for
small length changes can be considered constant), its resonance frequencies are ωres � ∆ωFSRq,
q � 1 � 2 � ����� . Suppose the laser frequency is near one of the resonances, we call the detuning of
the laser frequency from the cavity resonance ∆ω : � ω 
 ωres. From eq. (1.1) we know

A � ∆ω � : � �
R � T e

i 2π
∆ωFSR

∆ω

1 
 Re
i 2π

∆ωFSR
∆ω


 1 � �
the complex response from the cavity. The reflected amplitude is then

Er ∝ A � ∆ω � eiωt � A � ∆ω � Ω � ei
�
ω B Ω � t 
 A � ∆ω 
 Ω � ei

�
ω � Ω � t �
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The resulting intensity is measured by a fast photo-detector:

Ir ∝ Er � E Cr ∝ �A � ∆ω �D� 2 � �A � ∆ω � Ω �D� 2 � �A � ∆ω 
 Ω �D� 2 �� : A � ∆ω � A C � ∆ω � Ω � e � iΩt 
 A � ∆ω � A C � ∆ω 
 Ω � eiΩt 
 A � ∆ω � Ω � A C � ∆ω 
 Ω � ei2Ωt <,� c � c �
For phase detection, this signal is multiplied by the modulation frequency ei

�
Ωt B γ � , where γ is

the phase of the local oscillator relative to the photodiode signal. The non-oscillating components
of the result are:� Ire

i
�
Ωt B γ �  DC ∝ eiγ � A � ∆ω � A C � ∆ω � Ω � 
 A C � ∆ω � A � ∆ω 
 Ω �  �� eiγR � T e

i 2π
∆ωFSR

∆ω

1 
 Re
i 2π

∆ωFSR
∆ω
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Figure 3.3: Real part of PDH signal for γ � 0 � 99 � π (left) and γ � 1
2 π (right) vs. the relative

detuning ∆ω �
The real part of the resulting signal is shown in the figure 3.3. Around ∆ω � 0 it has a

dispersive feature which we want for the error signal. Its shape depends on the phase γ which is
in experiment determined by the path length of the signals from the generator and photodiode to
the mixer (multiplier). The steepest slope is obtained for γ � π

2 ; γ can be adjusted by varying the
cable length from the local oscillator to the mixer.

The resulting error signal can be used for stabilization. After necessary amplification it is
applied to the cavity piezo, closing the feedback loop. This loop (lock) stabilizes the resonance
frequency of the cavity to the laser frequency. Since the signal depends only on the difference of
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the laser and cavity frequencies, one can use it as well for stabilizing the laser frequency to the
resonance of a stable cavity.

For the case γ � π
2 we are interested in the steepness of the slope. For ∆ω % Ω and small

cavity linewidth (high finesse) the sidebands are far from the cavity resonance and thus

e E i 2π
∆ωFSR

�
∆ω F Ω �

1 
 Re E i 2π
∆ωFSR

�
∆ω F Ω �;G 0 �

Furthermore we note that for ∆ω near 0 one obtains in the first order

Te
F i 2π

∆ωFSR
∆ω

1 
 Re
F i 2π

∆ωFSR
∆ω

� T � 1 5 2π
∆ωFSR

∆ω �� 1 
 R � 2 � � 5 R
2π

∆ωFSR
∆ω ���

Setting T � 1 
 R for the case of no losses, the linear part of the signal near resonance is

PDH � ∆ω % Ω � � 4
∆ω

∆ωFWHM
� (3.1)

As expected, the sensitivity of the error signal increases with decreasing linewidth. This means
that a high finesse cavity produces a more sensitive error signal and can be stabilized more
accurately.

3.2 Stabilization setup

For the application of the PDH method for cavity stabilization a stable reference laser is required.
One possibility would be to use the laser at 852 nm, which is stabilized to a atomic resonance.
But the presence of such a laser within the cavity would continuously excite the atom and thus
disturb its interaction with the cavity mode. Continuous stabilization requires a far detuned lock
laser at low intensity which interacts only weakly with the atoms inside the cavity.

Therefore a stable laser is required which is far detuned from the 852 nm Cs resonance. In
order to provide accurate stabilization, the mirrors should still have a high finesse for this laser,
see eq. (3.1). This limits the possible detuning to few tens of nm. There is no simple method
of stabilizing the laser to an atomic resonance in this wavelength range (e.g. Rb D1 � 794 nm is
already too far away). Our way to solve this problem is to take a laser at 836nm and to stabilize it
to the stable resonant 852 nm laser via an additional (transfer) cavity. This solution incorporates
a “chain” of 3 locks.

The figure 3.4 shows a simplified scheme of the lock chain. It begins with the resonant
“probe” laser which is already stabilized to the atomic transition by means of polarization spec-
troscopy and serves as a stable reference for the lock chain.

In the first step the probe laser stabilizes the transfer cavity. The laser is phase modulated
with an EOM at 20 MHz and its reflection off the cavity is detected with PD1.

The second step is the stabilization of the lock laser. The sidebands are produced by a direct
modulation of the laser diode current at 86MHz. The reflection of the lock laser from the transfer
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Figure 3.4: Stabilization scheme of the QED cavity using an off-resonant lock laser. PDH elec-
tronics are omitted.

cavity is detected by the same detector PD1. Since the modulation frequencies of the two laser
beams are different, the two signals do not interfere.

Finally, the lock laser is used for stabilization of the QED cavity. The frequency modulation
is the same 86 MHz as for the stabilization of the lock laser itself and is detected with PD2.

Before entering the QED cavity the lock laser passes an additional AOM. This AOM shifts
the frequency of the lock laser to match the QED cavity resonance. When the transfer cavity is
stabilized to the probe laser its resonance frequencies are fixed. Since the lock laser is continu-
ously tunable with the current within a wide range, one can tune it into resonance with the transfer
cavity. But at the same time it must be resonant with the QED cavity whose resonance frequency
is defined by the atom. The solution is the big length of transfer cavity (1 � 23 m) which leads to
a free spectral range of only about 120 MHz. Then one can find a lock laser frequency which is
resonant with the transfer cavity and at most 60MHz away from the QED cavity resonance. This
remaining gap is bridged by the AOM.

This setup was already implemented in the previous work [Mir02]. It was shown that the
individual stabilizations work, but the system was not tested as a whole.

3.3 Improvement of the stabilization system

In order to achieve the performance of the stabilization system which is required by future cavity
QED experiments, several problems had to be overcome. The two most important issues were
the mechanical resonance of the piezo elements and the reduction of the necessary lock laser
power in order to minimize its influence upon the atoms in the QED cavity.
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3.3.1 Compensation of resonances

Resonances in the response of a feedback loop can be either electronical (between some parasitic
capacitances and inductivities) or mechanical. At a resonance the gain profile of the feedback
loop has a π phase jump, which causes oscillations of the loop. Additionally, any driving (includ-
ing noise) at the resonance frequency is enhanced by a large factor. We encountered a significant
mechanical resonance of the piezo elements at a frequency of 40 kHz.

diode
laser

670 nm

QED cavity

network Analyzer

amplifier

PD

freq. sweep
cavity scan

tr
an

sm
is

si
on

offset

fringes

offset

Figure 3.5: Setup for measuring the piezo resonance. The interference fringes of the cavity
transmission provide a measure for the response of the piezo to a given signal.

In order to measure the frequency response of the piezo element we used the setup shown
in fig. 3.5. A beam of a diode laser (670 nm) is sent through the cavity. For this wavelength
the mirrors are practically transparent (only few % reflection). Thus, by scanning the cavity one
observes broad interference fringes instead of narrow resonance lines. Applying a voltage offset
to one piezo one can set the working point at the slope of a fringe.

After this, a small signal of a certain frequency is applied to the other piezo. The changes in
the transmitted intensity are then proportional to the displacement of the mirror. The advantage
of a far detuned laser is that these changes are not as sensitive as a resonance line. The response
can be measured automatically with the help of a network analyzer. This device generates a
sweep of frequencies, injects it into a given “network” and measures the amplitude and phase of
the output for each frequency. Figure 3.6 shows the power spectrum around the resonance. The
resonance has a significant enhancement of about 30 dB at 40 kHz.

Once the parameters of the resonance are known, the task is to compensate it. The resonance
is an intrinsic property of the piezo element due to its geometry and material. Changing the shape
of the piezo elements is not an option with an assembled resonator and also would only change
the resonance frequency but not avoid it completely. The only way of compensation is to reduce
the gain of the feedback loop in the range of resonant enhancement by electronic means.

One possible solution is to use a low-pass filter, cutting off all frequencies near and above the
resonance. The disadvantage is that it limits the bandwidth of the feedback loop. A better way is
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Figure 3.6: Resonance of the piezo element. The upper curve shows the response of the piezo.
The lower curve shows the response compensated with a notch filter.

the use of a so called notch filter. This filter blocks frequencies only within a certain range. We
use a simple passive design shown in the figure 3.7.
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Figure 3.7: Schematic of a notch filter and calculated frequency response for the parameter set
R � 470 Ω, L � 1 mH � C � 16 � 3 nF � RL � 4 Ω �

The idea is to use a series LC circuit, where the resonance of the coil and capacitor makes
their joint resistance go to zero for a defined frequency ωres. The condition for the resonance is

iωresL 
 i
ωresC

!� 0 * ωres � 1�
LC

�
The residual resistance is given by the ohmic resistance RL of the coil. It determines the resonant
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damping factor and the width of the resonance. The damping is given by:

Uout � ω � ωres �
Uout � ω � 0 � � RL

R �
Inserting the filter after the high voltage amplifier before the piezo element removes all 40 kHz
signals, including noise of the amplifier. We have chosen the parameters:

R � 470 Ω � L � 1 mH � C � 16 � 3 nF �
The coil has an intrinsic resistance of RL � 4 Ω. Figure 3.6 shows the response with the notch
filter; the resonance is very well compensated.

To reduce minor electronical resonances we have added a resistor (10 kΩ) in series with the
piezo element. Its purpose is to damp the resonances of the piezo capacitance and inductivities
in the amplifier and cables. These resonances usually have high frequencies, but still influence
the feedback. The resistor reduces their Q factors making the gain profile of the feedback loop
smoother. The complete loop is shown in the fig. 3.8.
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Figure 3.8: QED cavity lock with resonance compensation.

3.3.2 Resonantly amplified APD

The laser stabilization of the QED cavity must operate without disturbing the actual experiment.
This limits the maximal power of the lock laser which can be present within the cavity before
its influence upon the atoms becomes significant despite its detuning. One criterion is that atoms
should not scatter more photons of the lock laser than of the dipole trap laser (which is inevitable
for transporting the atoms into the cavity). The detuning ∆ of the lock laser (836 nm) from
the atomic resonance (852 nm) is 13 times smaller than the detuning of the dipole trap laser
(1064 nm). The scattering rate Γsc 
 1

∆2 gains a factor of 169. Additionally, the intensity of

the lock laser is enhanced within the cavity by the factor 2
πF , see eq. (1.4). To be sure that the

scattering criterion is fulfilled even for a finesse of F � 500000, the lock laser power must be
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about 5 � 107 times smaller than the power of the dipole trap. For a 4 W dipole trap, the limit is
80 nW. This requires a sensitive detector with a high signal-to-noise ratio.

We decided to use a resonantly amplified APD. This is an avalanche photo-detector with
frequency selective amplification. The output signal of the detector is sent to an LC circuit
which is tailored to be resonant with the Pound-Drever-Hall modulation frequency of 86 MHz.
This makes the detector sensitive especially to this frequency, and at the same time suppresses
all other signal sources at other frequencies, especially noise.

The performance of the home-built resonant APD prototype was compared to the previously
used commercial photo-detector (Newport amplified silicon PIN, 818-BB-21A). With a 400 nW
laser power the commercial photo-detector produces an error signal with a signal-to-noise ratio
of 1. The stabilization worked insufficiently under such conditions.

The resonant APD, however, is able to perform a lock with less than 200 nW coupled into
the fundamental mode of the cavity and less than 100 nW at the detector. The final version of
the detector will have an improved electronics part and it will also use a photodiode with better
characteristics. With these improvements it will fulfill the requirement of low lock laser power
for future cavity QED experiments.

3.4 Performance of the stabilization system

After implementation of the improvements described above, the lock chain is finally complete
and we are interested in the resulting performance. As we have already seen, the requirements
for the system are:? frequency stability: the residual fluctuations of the cavity resonance frequency must be

well below the linewidth? low lock laser intensity: to keep the influence on the atoms small, the lock laser power at
the cavity should be below 80 nW? robustness: the lock should be able to withstand considerable external distortions, includ-
ing the thermal effect of the dipole trap laser

In this section we present the current state of the system.

3.4.1 Characterization of the chain of locks

Our method to measure the frequency stability is to observe the fluctuations of the error signal
while the feedback loop is active. They are directly related to the resonance frequency fluctu-
ations. For this measurement one scans the cavity and displays simultaneously the error signal
and the transmission of the corresponding laser on an oscilloscope. One measures the width of
the transmission line together with the slope of the error signal, see fig. 3.9. These two values
allow us to relate the error signal to the frequency deviation. Finally the stabilization is activated
and the residual root-mean-square (rms) fluctuations of the error signal are measured. With the
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known linewidth it is then possible to determine the real cavity resonance frequency fluctuations
via the fluctuations of the error signal.
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Figure 3.9: Transmission and error signal of the QED cavity at 200 nW lock laser power.

The lock chain was characterized according to the procedure described above. We began with
the lock of the transfer cavity to the probe laser. Then, the lock laser was measured with locked
transfer cavity and, finally, the QED cavity with the rest of the lock chain active. We obtained
the following values:? Transfer cavity to the probe laser (linewidth 480 kHz):

frequency fluctuation rms: 32 � 6 kHz �? Lock laser to the transfer cavity:

frequency fluctuation rms: 27 � 3 kHz �? QED cavity to the lock laser (linewidth 16 MHz):

frequency fluctuation rms: 2 MHz � 12 � 5% of FWHM ���
which corresponds to resonator length fluctuations of only 450 fm.

The laser power used for the QED cavity stabilization was 200 nW coupled into the fundamental
mode and 100 nW arriving at the resonant APD (see also fig. 2.5).

One should note that the given values depend on environmental conditions. Acoustical noise,
vibrations, etc. increase the frequency fluctuations. The values were measured in a typical
situation, with people working in the lab and various devices switched on. Additionally, the
QED cavity lock suffers from 50 Hz noise as will be discussed later.
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3.4.2 Scanning of the stabilized cavity

With the complete lock chain active one has the possibility to tune the lock laser frequency with
an AOM before it enters the QED cavity. This is necessary to achieve any desired detuning of
the locked cavity with respect to the atomic resonance. If the detuning process is slow enough,
the cavity will follow the changing lock laser frequency while staying stabilized, see fig. 3.10.
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Figure 3.10: Scheme of cavity detuning. The locked cavity follows the detuning of the lock laser.

As a test of this statement we scanned the QED cavity over the probe laser line. In order
to do this we adjusted the current of the lock laser such, that it was resonant with the transfer
cavity and its line in the QED cavity was only few MHz apart from the probe laser line. Then
the lock laser was stabilized to the transfer cavity and the QED cavity to the lock laser. Finally,
by scanning the AOM we have scanned the stabilized QED cavity over the probe laser line with
the frequency of 100 Hz. The probe laser transmission during this scan is given in fig. 3.11.

The scan range is not the full AOM range since the transmitted power is not constant over the
detuning. Since the changing intensity of the lock laser changes the error signal offset it is not
possible to maintain the lock under strong intensity variations ( 
 50%).

The linewidth in this picture is about 20 MHz. It is larger than the 14 MHz measured earlier,
and also the line shape is asymmetric, possibly due to strong averaging and limited photo-detector
speed. Still, the system is able to compensate external perturbations even if scanned with 100 Hz
over a 60 MHz detuning range for over 30 minutes.

3.5 Conclusion

The stabilization system was completed and optimized to match the experimental requirements.
It is capable of reducing the resonance frequency fluctuations of the QED cavity to a few percent
of its linewidth. The system works at 200 nW lock laser power already with the first prototype
of the resonant APD. The required value of 80 nW for future cavities with higher finesse will be
realized with the improved resonant APD. The lock is also able to restore the initial resonance
frequency even after strong knocks on the optical table and loud acoustical distortions.
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Figure 3.11: Scan of the locked cavity over the probe laser resonance. The scan rate is 100 Hz,
the average of 64 tracks was taken.

One of the main problems is the effect of the conveyor belt laser. Having large power (4 W),
even a small part of the beam absorbed by the mirrors disturbs the stabilization due to thermal
effects. Preliminary experiments in the test chamber showed that the lock was unable to com-
pensate for the mirror expansion when the laser was switched on. It has to be further considered.

Another issue remains the 50 Hz noise. It can be produced by practically any device in
the lab and is induced electronically over ground loops. Being induced onto the error signal it
causes periodic fluctuations of the resonance frequency on the order of 10% of the linewidth. A
possible way to solve this problem is the proper grounding of all involved electronic devices. We
grounded most of the devices in direct vicinity of the setup and switched off unnecessary ones,
this reduced the noise but this issue still has to be improved.



Chapter 4

Cavity ring-down

In order to achieve the best experimental parameters for our cavity, we have to select mirrors with
the best possible reflectivity. As we have seen, the characterization of the mirrors by measuring
the linewidth requires a stable resonator and a time-consuming assembly process. In our case the
mirrors are glued onto piezo elements and thus can not be reused. In view of the strong variations
of the mirror quality, a quicker and simpler method for measuring the finesse would be of great
advantage. In this chapter I present a method which enables us to quickly test the mirror finesse
and sort out good mirrors before the resonator is assembled.

4.1 Basic principle

The task of measuring the finesse of a mirror pair is equivalent to measuring the photon lifetime
within the cavity. Using an assembled resonator it was done by measuring the spectral linewidth
together with the free spectral range, see sec. 2.2.3. However, this method requires a stable
resonator, mechanical and electronic noise sources make the line move or change its shape.
Another possibility to infer the finesse quickly, is to directly measure the photon lifetime by
observing the decay of cavity transmission. The cavity is filled with photons by tuning it into
resonance with the laser before we switch the laser off. The photons start to leak out and the
cavity field decays exponentially. The time evolution of the intensity leaking out of the cavity is
given by eq. (1.9):

I � t � � I � t � 0 � e � t
τ �

where τ � 1
κ is the (resonator length dependent) photon lifetime. As already shown in eq. (1.10),

τ is directly connected to the finesse:

F � ∆ωFSRτ � π
c
L

τ �
Thus, the observation of the intensity decay of the cavity transmission allows us to determine the
time constant τ and the finesse F .
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The main advantage of this method is its insensitivity to external perturbations. Mirror dis-
tance fluctuations of 10 � 5 fraction of the wavelength make the linewidth measurement difficult
(see sec. 2.2.3). On the other hand, the lifetime change caused by such fluctuations is negligible
because these length changes are small compared to the total cavity length. Therefore one does
not need to stabilize the resonator for this measurement.

4.2 Setup

The experimental task is to couple the laser into the cavity, to switch it off and to observe the
decay of transmission.

For this purpose I have built the setup is shown in fig. 4.1. The laser beam (852nm) passes an
AOM which serves as a fast switch. The beam is led to the setup via an optical single-mode fiber
which additionally serves as a spatial mode filter. Two mirrors couple the laser beam into the
cavity. The last element before the cavity is a lens ( f � 80 mm) which mode matches the beam
with the fundamental mode (waist 35µm). The cavity transmission is observed by a camera and a
fast APD, the observation optics consists of a lens ( f � 100mm). The camera is a simple compact
CCD, it enables us to distinguish the different transversal modes. The APD has a bandwidth of
9 MHz, which is fully sufficient to perform measurements on a microsecond time scale.

The mirror distance is chosen to be 10 mm to ensure a lifetime in the range of microseconds
which can be measured without especially fast detectors and electronics. Given the mirror cur-
vature Rc � 10 mm, the waist of the fundamental mode is then 35 µm and its radius on the mirror
is about 50 µm.

laser
852 nm

fast storage
oscilloscopeAOM

camera

voltage
scan

fast APD

10 mm

trigger

switch off

piezo

mode matching
lens

coupling
mirrors

driver

observation
lens BS

fiber coupler

fiber coupler

Figure 4.1: Cavity ring-down setup.

The whole optical setup except for the AOM fits on a 30x30 cm breadboard and is placed
under a flow-box to avoid pollution of the mirrors. To avoid a set up of an additional AOM I used
the laser and AOM from the cavity stabilization setup (fig. 3.4, “detuning” AOM).
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4.2.1 Mirror holder

Special care was taken to design the mirror holder. In order to simplify the coupling into the mode
it should be possible to place the mirrors coaxially without much effort. This can be achieved by
putting them into a V-groove. Additionally, one must also be able to scan the mirror distance to
tune the cavity in resonance with the laser.

The design and view of the holder are shown in fig � 4.2. It is an aluminum block in which
a slit of 5 mm is cut. The slit almost cuts the whole block, only a small rest of metal holds the
two halves together. On one side a small layer of the lower part is removed, such that this part
can be tilted. In order to scan the mirror distance, a piezo element is fixed in the slit, which is
able to push the two halves apart. This piezo element (Piezomechanik PSt 150/2x3/5) is pressed
with a screw against one wall of the slit such that if the piezo contracts, the two halves approach.
For better force transmission to the screw it has a spherical corundum end piece. The maximal
stroke is 7µm for 150 V and with 5 10V one can scan about 1µm which covers two free spectral
ranges.

The main part of the holder, the V-groove, is cut in the last fabrication step to go straight
through both halves. Now the mirrors can be simply put into the groove and are lying coaxially,
assuming their shape is well cylindrical. If the mirrors had to be placed on separate holders it
would increase the degrees of freedom by 2x2, making mode matching nearly a hopeless task.
With our coaxially positioned cavity mirrors the mode matching is done using two mirrors while
scanning the piezo voltage, which constitute 5 degrees of freedom in total.

mirrors
piezo

V - groove

50 mm

5 mm

slit

15 mm

38
 m

m

Figure 4.2: Holder for mirrors.

In order to scan the cavity we apply to the piezo a triangle signal with variable amplitude and
offset (max. 5 10V). By these means we can tune the cavity in resonance with the laser.

When putting mirrors into the holder their distance is set manually to 10 mm with the help of
two reference marks on the side of the holder. This distance of 10mm is also convenient, because
1µs decay time corresponds approximately to a finesse of 100000. The manual adjustment of the
distance limits the precision of the finesse measurement to 5 5%, this will be discussed later.
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4.2.2 Laser switching

In order to observe photon decay one has to bring the cavity in resonance with the laser and switch
it off much faster than the photon lifetime. This is accomplished by scanning the cavity distance
slowly (10 
 100 Hz) over the laser resonance, resulting in an increase of the transmission. The
transmission signal of the APD is sent to a storage oscilloscope. When its level reaches some
defined threshold, the oscilloscope generates a trigger signal. This signal is a standard TTL
voltage step from 0 V to +5 V. It is sent to an inverting unit (DM74LS00 logical NAND) and
becomes a step from +4 V to 0 V. This voltage is fed through an buffer amplifier (Buf634),
which is a gain 1 amplifier for high power. Its output signal controls the driver (Neos N21125-
1AMVCO) of the AOM (Neos 23125) which serves as a fast switch.

in outNOT BUF
logical inverter buffer amplifier

t

V

0

+5
TTL trigger pulse

t

V

0

+4

to AOM driver

Figure 4.3: Inverter for laser switching.
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Figure 4.4: Laser switch-off behavior. Overview of the process on the left, zoom in on the right.

Figure 4.4 shows the switching process, taken without cavity. It shows the transmission signal
of the APD and the signal one obtains without laser (zero level). Switching time below 100 ns
is achieved, which is fully sufficient for our purpose. Two parameters influence the switching
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time. First is the speed of electronics (inverter unit). The inverting unit was measured to give
switching time below 25 ns. The second is the speed of the AOM driver and the relaxation in the
AOM crystal itself. There a sonic wave creates a refraction index Bragg grating. This moving
pattern diffracts the laser beam, the first order diffraction can be controlled by the power of the
sonic wave. After the power is switched off, the grating starts to fade. The fading crosses the
site of the beam focus at the sonic velocity. For typical parameters of 30 µm waist and 3 km

s sonic
velocity it takes about 20 ns for the wave to traverse the focus.

One can see the delay of about 1 µs between the trigger signal and the beginning of the
switching process. It results from the fact that the fading has to traverse a part of the crystal (few
mm) to reach the beam focus site. Additionally there is a small run time in the cables.
The laser is not completely extinguished, there is a residual intensity of less than 3%. This is due
to voltage offset produced by the inverting unit, such that the AOM control voltage does not go
to zero.
Additionally the APD produces a negative offset of 7mV. Another feature is that the transmission
signal at some point falls below the the zero level. This is due to the APD which has a bandwidth
of 9MHz and is working at its speed limit in this case. During the actual experiment with fall off
times in a microsecond range this effect does not occur.

4.3 Measurements

4.3.1 Procedure

After the mirrors are put into the holder, there are two tasks to accomplish: mode matching and
the observation of decay.

Mode matching: We work with the fundamental mode of the cavity, which illuminates a well
defined spot on the mirror surface in a homogeneous way. In order to do this we need to couple
most of the intensity into this mode to ensure high transmission. It is achieved by means of two
mirrors placed before the resonator and controlling beam position and angle. The transmission is
observed with a camera making possible to distinguish between the different transversal modes.

Practically, we switch to a small scan range and slow scan rate (at 10 Hz the eye can see even
weak mode transmission blinks). We change the offset slowly, moving through the free spectral
range and observing the transmission with the camera. Usually at least one higher transverse
mode should be visible without adjustments. Then we can optimize this mode using one mirror
and look in its vicinity for the neighboring lower transversal mode. We optimize this mode and
moves on. By these means one can proceed to the fundamental mode. The scan is switched to
100 Hz and the fundamental mode coupling is then optimized with both mirrors.

This procedure requires some experience, the time needed for one measurement strongly
depends on how easy one can find and optimize the fundamental mode. Typical times range
between 5 and 20 minutes.

Observation of ring-down: After optimizing the coupling, the trigger of the storage oscillo-
scope is set to a possibly high value. This means that the transmission of the fundamental mode
when scanning over the resonance should hardly reach this level. This provides a high signal
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level and also the other modes do not trigger the measurement. Each time the transmission goes
beyond trigger level the laser is switched off. The decay of the transmission is recorded with
the storage oscilloscope and averaged over 64 measurements to increase the signal to noise ratio.
Recording 64 decay curves takes less than one minute.

Accumulating and taking the mean value over several measurements with (in principle) vary-
ing intensity and trigger time is possible because of the properties of the exponential:

I1e � t
τ � I2e � t

τ � � I1 � I2 � e � t
τ

and

Ie � t H t0
τ � Ie � t1 H t0

τ � e � t H t1
τ � I I e � t H t1

τ �
Therefore the measurement of the time constant is not influenced by the absolute intensity and
the time of the trigger. The residual intensity of the laser produces a (constant) offset which is
again of no importance for the measurement.

4.3.2 Analysis

Figure 4.5 shows a typical measured decay curve, averaged over 64 measurements. The trigger
signal is sent at t � 0 and after about 1 µs the transmission begins to decay. As expected, the
decaying part of the curve has an exponential shape.

Figure 4.5: Decay of the transmission. The big points show the exponential fit.

We fit a function of the form f � t � � A � e � t
τ � y0 to the decay, where y0 counts for the APD

offset and residual laser intensity. The range of the fit begins about 500 ns after the switch-off
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to exclude the switching process and to observe pure decay. The resulting quality of the fit is
extremely high and does not limit the precision as we will see later.

4.3.3 Precision limits and reproducibility

In the following we will consider the factors which influence the measurement the lifetime.? Mirror distance: Since the distance of 10 mm between the mirrors is adjusted manually
with the help of reference marks on the holder, variations on the distance will occur. To
estimate this error, the decay time τ was measured several times, one mirror being moved
a bit and then readjusted again to the 10 mm distance.

# 1 2 3 4 5 τ̄ σ
τ : ns < 855 833 833 883 942 869.2 40.7

Table 4.1: Distance reproducibility measurement (βB3 vs βA3).

One can see that the reproducibility in this case is pretty high. The standard deviation of this
set is σ � 40 � 7 ns which is about 5% of the mean value. This corresponds to length deviation of
0 � 5mm. Still, this is the main limit of the precision of the finesse measurement, since the fit error
is order of a magnitude smaller.? Mirror rotation: If the mirrors are not perfectly coaxial within the groove, the mode is

not exactly centered. Thus the mirror rotation exposes a different spot on the surface. Our
experience with these mirrors shows, that the surface quality is extremely inhomogeneous
(scratches, dust particles, etc.). The measurement below shows an example of repeated
measurements after rotations of one of the mirrors (about 30 J ).

# 1 2 3 4 5 τ̄ σ
τ : ns < 925 886 913 354 806 776.8 215.4

Table 4.2: Measurement with rotation of one mirror, mirror pair βB3 vs βA3.

The large spread in the values shows that different spots of the mirror surface have different
quality. Since the mirrors are not exactly coaxial, the rotation of one mirror moves the position of
the surface a bit, which can also be seen with the camera. The resulting difference in finesse can
be larger than 50% for a mirror pair. It can be due to the presence of single larger dust particles
on the surface within the mode, but also a larger number of small spots may have the same effect.

We repeated the measurement with another mirror pair. Here the spread is very small and lies
within the length precision. These mirrors have better finesse together a better homogeneity.
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# 1 2 3 4 5 τ̄ σ
τ : ns < 1020 1019 1050 1064 1119 1054.4 36.6

Table 4.3: Measurement with rotation for the mirror pair βD3 vs βB3.

One important observation is the correlation of transmission and finesse: in most cases high
transmission was accompanied by better finesse. The absolute transmission depends on the de-
gree of mode matching, so this effect was not observed systematically. On the other hand mirror
pairs with low transmission usually show relatively low finesse. This indicates that the dominat-
ing factor for the finesse are the losses. These could be either inherent (within the coating) or
due to surface damage or pollution.

4.3.4 Characterization of a mirror set

Now we apply the method to our set of mirrors. We possess 18 mirrors which were cleaned by
the manufacturer. We divided them into 3 sets of 6 mirrors, each set in a separate box. The boxes
contain 5x5 grid of holes where mirrors can be placed. The boxes are signed α � β � γ and the grid
chess-board-like A-E, 1-5.

The first step is to inspect the mirror surface with the help of a microscope (500x, dark-
field). This is necessary to find a mirror with as homogeneous surface as possible. This mirror
can then be used as a reference, i.e. we can measure all the other mirrors with this one. Finesse
variations due to different mode spot positions will then mostly depend on the other tested mirror.
Another reason for visual inspection is to try finding the dependence of measured finesse on
visible surface condition. The inspection showed that most of the mirrors have many small spots
and/or scratches in the center region (radius 
 0 � 25 mm). Many of them had even macroscopic
particles. All mirrors had at least a few spots in the center. According to our previous criteria of
the old visual method even the best mirrors are imperfect. Still we found a mirror with only few
spots in the center region which also were more or less equally distributed. We took this mirror� βE3 � as a reference.

In the box β each of the five remaining mirrors was tested with the reference mirror 4 times,
rotating the mirror after each measurement. The mirrors with the best performance in this test
were then measured together. The results are shown in tab. 4.4.

As discussed above, the error of this measurement is about 5%. We see, that the mirror βE3
showing good surface quality which was chosen as the reference does not have the best finesse in
this case. This shows that the visual inspection of the mirror surface gives only a coarse measure
for the finesse.

Then we tested the boxes α and γ versus the reference mirror. The results are given in the
tables. As one can see, 10 out 18 mirrors are far below the specification of 100000. If it is due to
bigger dust particles on the surface which were visible under the microscope, the situation may
be improved by cleaning.

The pair � αE1 � αD2 � yields a finesse of 180000. This is 50% better than the mirrors which
are currently assembled in our test vacuum setup.
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βA3 βB3 βC3 βD3 βE3 βA4
βA3 83500
βB3 94100
βC3 98500
βD3 111900 108500 117000
βE3 -
βA4 89200

Table 4.4: Best finesse for mirror set ß

αA1 αC1 αE1 αB2 αD2 αA3 βE3
αA1 106400
αC1 44600
αE1 182900 111000
αB2 46900
αD2 131800
αA3 51500

Table 4.5: Best finesse for mirror set α

γA1 γC1 γE1 γB2 γD2 γA3 βE3
γA1 82400
γC1 111200
γE1 81200
γB2 63200
γD2 51500
γA3 118900 103900

Table 4.6: Best finesse for mirror set γ

Conclusion

I have implemented a compact and easy to use setup for fast mirror characterization. It is capable
of measuring the mirror finesse quickly and with precision of about 5%. Applying it to the set
of our mirrors I found a mirror pair with a considerably better finesse, than we currently have in
our assembled resonator. The process of finding good mirrors for future resonators will be fast
and reliable.



Summary and outlook

The goal of this work was to prepare a high finesse optical resonator for cavity QED experi-
ments. The preparation includes finding mirrors of best reflectivity, building and characterizing
the resonator and achieving the necessary stability for future experimental conditions.

Considering the amount of work for visually inspecting the mirrors and assembling the res-
onator we needed a method to characterize the mirrors quickly. I have implemented the setup
for cavity ring-down, which measures the lifetime of photons in the cavity. It has the advantage
that it does not require a stable assembled resonator. Instead, the mirrors are put into a specially
designed holder which allows to align them reducing the amount of work substantially. With this
setup we characterized our whole mirror set within a short time. It allows us to sort out mirrors
with the best reflectivity and will be of a great advantage for setting up new resonators.

We have set up and characterized a resonator with length L � 92µm and finesse F � 118000.
The obtained parameter set is � g � κ � Γ � � 2π � � 40 � 3 � 14 � 5 � 2 � MHz, which means that we can
achieve the regime of strong coupling where the coherent atom-photon interaction g is larger
than the incoherent loss processes κ � Γ.

Continuing the work of Y. Miroshnychenko [Mir02], we completed, optimized and charac-
terized the cavity stabilization scheme. We have solved the problem of mechanical resonances
of the piezo elements and implemented the resonantly amplified APD which is a highly sensitive
detector for stabilization purposes. Finally we have shown that the system is able to stabilize the
cavity to 12% of the linewidth under conditions of low lock laser power (200 nW).

The next steps will be the placement of the cavity into the main setup and transport of an atom
into the cavity. The detection of an atom in the resonator can be performed by a measurement of
the Rabi splitting of atom and cavity resonances. A major difficulty of this experiment will be
the alignment of the conveyor belt laser which must fit through the small slit between the mirrors
and connect the MOT with the cavity mode which have both a size of only about 30 µm and are
5 mm apart. Finally, after the deterministic transport of two atoms into the cavity mode, we will
be able to realize a controlled atom-atom interaction which is a step towards a quantum logic
gate.

56



Appendix A

Solution of the master equation

Enter the matrix

We begin with the master equation (1.13).

d
dt

&
ρ � 1

i ';: &H � &ρ <,� κ
2 � 2âρ̂â† 
 â†âρ̂ 
 ρ̂â†â � � Γ

2 � 2σ̂ρ̂σ̂† 
 σ̂†σ̂ρ̂ 
 ρ̂σ̂†σ̂ � �
with &

H ��' � ω0 
 ωl � σ̂†σ̂ �-' � ωc 
 ωl � â†â �=' g � σ̂†â � σ̂â† � �=' ε � â† � â ���
Now we use the weak field approximation. In this regime the driving field ε is so small, that
at most one excitation in the system is present. Therefore we consider only three states of the
system: � g ) � 1 ) � � e ) � 0 ) � � g ) � 0 ) �
Here, � g ) � � e ) are the atomic ground and excited state, � 0 ) � � 1 ) are states with zero and one photon
in the cavity.
Calling these states 1, 2, 3 respectively, we define the 3 by 3 density matrix:/1

ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

ρ31 ρ32 ρ33

24 �
This matrix is Hermitian, i.e. ρmn � ρ Cnm.
The corresponding creation and annihilation operators are:

â† � � g ) � 1 )K+ g � + 0 � � /1
0 0 1
0 0 0
0 0 0

24 � â � � g ) � 0 )L+ g � + 1 � � /1
0 0 0
0 0 0
1 0 0

24 �
σ̂† � � e ) � 0 )K+ g � + 0 � � /1

0 0 0
0 0 1
0 0 0

24 � σ̂ � � g ) � 0 )K+ e � + 0 � � /1
0 0 0
0 0 0
0 1 0

24 �
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The dissipation in the system leads to a stationary state with

d
dt

&
ρ � 0 �

This leads to a system of 9 homogeneous complex equations from which 6 are independent:
 κρ11 � i � g � ρ12 
 ρ C12 � � ε � ρ13 
 ρ C13 �  � 0
 ig � ρ12 
 ρ C12 � 
 Γρ22 � 0

κρ11 � Γρ22 
 iε � ρ13 
 ρ C13 � � 0
 1
2 � Γ � κ � ρ12 � i � g � ρ11 
 ρ22 � 
 ερ C23 � � ω0 
 ωc � ρ12  � 0
 κ

2
ρ13 � i � ε � ρ11 
 ρ33 � 
 gρ23 
 � ωc 
 ωl � ρ13  � 0
 Γ
2

ρ23 � i � 
 gρ13 � ερ C12 
 � ω0 
 ωl � ρ23  � 0 �
Now we separate the real and imaginary parts, ρmn � Rmn � iImn, getting 9 real equations,

which can be written as a matrix:MNNNNNNNNNNNNNNNNO
κ
2 0 0 0 g 0 ε 0 0

0 Γ
2 0 0 P g 0 0 0 0

κ
2

Γ
2 0 0 0 0 ε 0 0

0 0 0 PRQ Γ
2 S κ

2 T PRQ ω0 P ωc T 0 0 0 P ε
g P g 0 Q ω0 P ωc T PRQ Γ

2 S κ
2 T 0 0 P ε 0

0 0 0 0 0 P κ
2 Q ωc P ωl T 0 g

ε 0 P ε 0 0 PRQ ωc P ωl T P κ
2 P g 0

0 0 0 0 ε 0 g P Γ
2 Q ω0 P ωl T

0 0 0 ε 0 P g 0 PRQ ω0 P ωl T P Γ
2

UWVVVVVVVVVVVVVVVVX
Y
MNNNNNNNNNNNNNNNNO

R11

R22

R33

R12

I!2

R13

I13

R23

I23

UWVVVVVVVVVVVVVVVVX
Z
MNNNNNNNNNNNNNNNNO

0

0

0

0

0

0

0

0

0

UWVVVVVVVVVVVVVVVVX
This system was solved with the help of a mathematics program. The resulting expressions

are long and contain different combinations of the matrix coefficients. We do not write them
down here. In the next step all terms which contain ε in a higher than first order are consequently
neglected .

To obtain the populations of atom and cavity we need only R11 � R22 and R33. We see that in
our approximation R11 � R22 % R33, thus we can norm the density matrix by setting ρ11 � R11

R33
and

ρ22 � R22
R33

.
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The result is then:

ρ11 � ε2 � Γ
4

2 � ω2
l  

ω4
l 
 2ωcω3

l � � � κ2

4 � Γ
4

2 
 2g2 � � ω2
c � ω2

l � 2 � g2 
 Γ
4

2 � ωcωl � � � κΓ
4 � g2 � 2 � Γ

4
2ω2

c �
ρ22 � ε2g2

ω4
l 
 2ωcω3

l � � � κ2

4 � Γ
4

2 
 2g2 � � ω2
c � ω2

l � 2 � g2 
 Γ
4

2 � ωcωl � � � κΓ
4 � g2 � 2 � Γ

4
2ω2

c �
This result is valid in the weak-field limit, i.e. the driving field ε must be so weak, that both
populations are well below 1.
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