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Chapter 1

Introduction

Quantum mechanics is one of the most important and successful theories science has ever
produced. In spite of its over 100 years of success in describing various physical phenomena
over a wide range of scales, there are still unresolved questions concerning the interpreta-
tional and philosophical aspects of quantum mechanics. These lead to the immense progress
in experiments to confirm the theory [1]. Without being very much bothered by these and
just following the “shut up and calculate!” approach, in our group, we rather concentrate
ourself on exploitation of counter-intuitive quantum mechanical features of superposition
and entanglement for new possible technologies, one of which for applications in quantum
computing [2, 3, 4]. In quantum computing, logical information is represented by physical
quantities governed by the laws of quantum mechanics. These physical quantities are two-
level quantum systems called qubits (quantum bit) which can be in coherent superposition
states according to the laws of quantum mechanics. A quantum computer allows several
quantum algorithms which can solve certain problems much faster using qubits compared to
conventional digital computers. The most popular example of these is integer factorization
[5], which is hard to implement on any present or future classical computer. Several physical
realizations of quantum computation have been proposed such as the ones based on ions
[6], cavity QED [7], NMR [8], SQUID [9], and neutral atoms [10]. In 1996, DiVincenzo [11]
has proposed five general criteria that any logical qubit candidate for a quantum computer
implementation must fulfill. They are

• A scalable system with well characterized qubits.

• The ability to initialize the state of the qubits to a simple fiducial state.

• Long coherence times, much longer than the time required for logic gate operations.

• Having a universal set of quantum gates.

• A qubit-specific measurement capability.

In this introductory chapter, based on the above criteria, I briefly review the present state
of the art achieved in our group towards physical realization of a quantum computer, as
well the current limitations which this thesis work aims to overcome.
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1.1 Quantum computing with neutral atoms

In our group we focus on coherent manipulation and control of neutral atoms which rep-
resent our qubits. One of the motivations of using neutral atoms as physical carriers of
quantum information is that since they are neutral they interact very weakly with the en-
vironment, which leads to a long coherence time. The possibility to manipulate systems of
neutral atoms owes to the techniques developed over the last decade for high precision spec-
troscopy that allow neutral atoms to be cooled to ultralow temperatures and subsequently
trapped in conservative potentials. Until this time, the most promising trapping potentials
for neutral atoms are optical lattices which are periodic optical potentials formed by the
interference of two or more far-detuned intense laser beams. By controlling the parame-
ters (e.g power, polarizations) of the trapping lasers, trapped atoms can be dynamically
manipulated and controlled.

Figure 1.1: (a) Standing wave pattern formed by two counter propagating laser beams. Due to the
AC Stark shift, this acts as a potential for neutral atoms. (b) Fluorescence image of atoms trapped
in an optical lattice.

1.1.1 A scalable system with well characterized qubits

We use neutral Caesium (Cs) atoms as our physical carriers of quantum information. These
atoms are trapped in a 1D optical lattice formed by the interference of two counter prop-
agating linearly polarized laser beams at a wavelength of 865.9 nm, which is red detuned
with respect to the D2-transition. Due to the AC-Stark shift, the atoms are trapped in the
intensity maxima of the periodic intensity pattern. A prerequisite for trapping the atoms
in the optical lattice is to cool the atoms to a temperature of several milikelvin. Using the
standard magneto optical trapping (MOT) technique, Cs is relatively easy to cool since the
relevant transition (around 852 nm) can be addressed with commercially available diode
lasers. Owing to their nuclear spin, Cs has many stable long-lived hyperfine ground states
which can be used to encode our qubit states. Our qubit states are stored in the following
two appropriately chosen hyperfine states

|0〉 ≡ |F = 4,mF = 4〉
|1〉 ≡ |F = 3,mF = 3〉 . (1.1)
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Figure 1.2: Zeeman splitting of the magnetics sublevels in the 62S1/2 ground state manifold of Cs.
Our qubit states are stored in the outermost sublevels. Coherent transitions between the two states
are driven by microwave radiation at a frequency of around 9.2GHz.

1.1.2 The ability to initialize the state of the qubits to a simple fiducial

state

When the atoms are loaded in our optical lattice from the MOT, they populate any of the
magnetic sublevels of the F = 3 state with equal probability. In order to initialize the
atoms to one of the two qubit states prior to further manipulation, an optical pumping
technique is employed. Our atoms are initialized to the state |0〉 by illuminating them with
a σ+-polarized laser beam which is resonant to the F = 4 → F ′ = 4 transition. At the
same time, a laser beam resonant to the F = 3 → F ′ = 4 is applied to bring the atoms to
the pumping cycle. A weak magnetic field of 3G is applied along the beam axis to define
the quantization axis. Due to the selection rules, the atoms can only undergo transitions
to the excited states F ′ = 4 with higher magnetic sublevels and decay back to the ground
states. After several transitions, all atoms occupy the state |0〉 which cannot undergo fur-
ther transitions and just stay in the so-called dark state.

Coherent transitions between the states |0〉 and |1〉 are then driven by microwave radiation
at a frequency of around 9.2 GHz. The corresponding Rabi frequency is given by

ΩMW = − d̂ · BMW

~
(1.2)

where d̂ is the magnetic induced dipole moment of the atom and BMW denotes the magnetic
field vector. To prepare the atoms in the state |1〉, a π-pulse, which satisfies the condition

∫ τ

0
ΩMW(t)dt = π , (1.3)

is applied to the atoms. Here τ is the irradiation time. Analogously, to prepare the atoms
in a balanced superposition state |Ψ〉 = 1√

2
(|0〉) + i |1〉, a π

2 -pulse is applied.

1.1.3 Long coherence times, much longer than the time required for logic

gate operations

The coupling of the system with its enviroment leads to decoherence. As a consequence,
qubit information that has been stored would be lost. Owing to their neutrality, neutral
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Figure 1.3: Schematic of the setup of our optical lattice and optical pumping system.

atoms are relatively weakly coupled to the environment, thus reducing decoherence. This
serves as one of the advantages of neutral atoms over other candidates for physical im-
plementations of qubits. The time characterizing the timescale on which the stored qubit
information is preserved is refered to as coherence time. It can be classified into two catog-
aries: longitudinal coherence time, Tl and transversal coherence time, Tt.

Tl describes the decay of the population of the qubit states. In our system, the main mech-
anism that leads to the decay is the scattering of photons from the laser of the dipole trap
in which our atoms are trapped. In the current situation, the photon scattering rate in our
system is of the order of 100 photons per second, equivalent to a coherence time of 10 ms.
It is considerably long for our qubit operations and plays a minor role.

Tt on the other hand, describes the more dominant decoherence mechanism caused by
technical imperfections of the experimental setup, for examples, fluctuations in the power
of the dipole trap lasers and in the strength of the magnetic field defining the quantization
axis.

1.1.4 Having a universal set of quantum gates

Any operation on a register of qubits can be constructed from a combination of one-bit gates
and two-bit gates [12]. An example of a two-bit gate is the “controlled-NOT” (CNOT) gate
which is based on entangled states.

The task of entangling neutral atoms is quite challenging since they interact weakly with
each other. In 1999, a physical realization for entangling neutral atoms in optical lattices
by means of cold controlled collisions has been proposed [13]. In the proposed scheme, two
atoms in neighbouring lattice sites, each in a superposition of their internal states, are split
to the right and to the left depending on the state until the wavepackets of different states
are brought into a single lattice site and interact with each other (see Fig.1.4). Due to
elastic collision the atoms acquire some collisional phase ϕint depending on the interaction
time τ :
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ϕint =
1

~

∫ τ

0
dt∆E(t)

∆E(t) =
4πas~

2

m

∫

dx|ψ|1〉(x, t)|2|ψ|0〉(x, t)|2
(1.4)

where as denotes the s-wave scattering length between the states |0〉 and |1〉, ψ|i〉 is the
wavepackets of the state |i〉, and m the mass of Cs. The wavepackets are then brought back
to the initial position by reversing the potential shift. The transformation of the states
after a complete sequence has the following form

|0〉 ⊗ |0〉 → |0〉 ⊗ |0〉
|0〉 ⊗ |1〉 → |0〉 ⊗ |0〉
|1〉 ⊗ |0〉 → |1〉 ⊗ |0〉 · eiϕint

|1〉 ⊗ |1〉 → |1〉 ⊗ |1〉 .

(1.5)

If the duration of the interaction time is chosen carefully and by combining with two addi-
tional 1-qubit gates, a CNOT gate can be constructed [14].

Experimentally, this scheme can be accomplished with the aid of a so-called state dependent
lattice potential, in which atoms are state-selectively trapped and transported. In the last
decade, state-selective transport of Bose-Einstein condensates of Rubidium atoms has been
realized [15], demonstrating entanglement via controlled cold collisions [16].

Figure 1.4: Scheme for creating entangled states of atoms. Two atoms in the initial state |0〉
in neighbouring lattice sites are prepared in a superposition of their internal states by applying a
microwave π

2
-pulse. Subsequently, the two states are split to the left and to the right by displacing

the potentials until the wavepackets of differet states occupy the same lattice site and interact with
each other. After some interaction time, the atoms are brought back to the initial position by
reversing the displacement.
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State dependent lattice

In our case, a state dependent optical lattice can be realized by tuning the linearly polarized
optical lattice laser between the D1- and D2-transitions of the Cs atom. As a result, for an
atom in the state |J = 1

2 ,mJ = −1
2〉, the σ+-component of the laser is red and blue detuned

with respect to the D1- and D2-transitions, respectively, whereas the σ−-component is only
red detuned (see Fig. 1.5). There exists a certain wavelength, called the magic wavelength
λm, at which the contributions from the σ+-component cancel out and the atom only
experiences an attractive contribution from the σ−-component. By the same token the
state |J = 1

2 ,mJ = 1
2 〉 experiences the same effect but with the opposite light polarization.

Figure 1.5: Zeeman sublevels of the ground state and the first two excited states of cesium under
neglect of the influence of the nucleus spin. At the magic wavelength λm, each of the ground state
sublevels experiences only the contribution from one of the circularly polarized components which
is indicated by the solid line.

With the help of the Clebsch Gordon coefficients, the states |0〉 and |1〉 can be decomposed
in terms of the basis of the nuclear spin I and electronic spin J :

|0〉 ≡ |F = 3,mF = 3〉 =

√

1

8
|I =

7

2
,mI = −5

2
〉 ⊗ |J =

1

2
,mJ = −1

2
〉

+

√

7

8
|I =

7

2
,mI = −7

2
〉 ⊗ |J =

1

2
,mJ = +

1

2
〉

|1〉 ≡ |F = 4,mF = 4〉 = |I =
7

2
,mI = −7

2
〉 ⊗ |J =

1

2
,mJ = −1

2
〉.

(1.6)

From this relation, we infer that the state |1〉 consists of only one fine structure state
(|J = 1

2 ,mJ = −1
2〉) which is only coupled to σ−-polarized light, whereas the state |0〉 is

coupled to both polarizations with dominant contribution from σ+-polarized light. Thus,
by using a linearly polarized standing wave light at the wavelength λM , which can be de-
composed into σ+ and σ−-polarized light, each qubit state is coupled almost exclusively
to one of the two circularly polarized light. The two confining potentials can be moved in
the opposite directions relative to each other by changing the relative polarization angle
between the two linearly polarized counterpropagating laser beams forming the optical lat-
tice. In our setup, an Electro-Optical Modulator (EOM), in combination with a fixed λ/4
wave-plate is used to precisely control the relative polarization angle [17].

Eventhough we are already equipped with a state dependent lattice, creation of entangled
states as described previously has not been demonstrated in our group. This owes to the fact
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that in order to perform such cold controlled collisions, it is mandatory to have the atoms
occupying the motional ground state of the trapping potential in all 3 dimensions. Different
from experiments with Bose-Einstein condensates loaded in optical lattices in which atoms
are already in the ground state of the trapping potentials [18], in our experiment we load
our lattice with laser cooled atomic gases with a temperature of around 10µK. The atoms
occupy various vibrational states after the loading process. Further cooling technique which
is a resolved sideband cooling is required to cool the atoms to the ground state. Since the
difference between the frequency spacings in the axial and the radial direction is very large,
sideband cooling in both directions need to be performed seperately. We have demonstrated
ground state cooling of the atoms along the axial direction but not along the radial direction
due to some constraints as described below.

Axial ground state cooling

We have demonstrated a novel technique to sideband cool the atoms to the ground state
by utilizing our state dependent optical lattice and microwave radiation [19]. In the typical
sideband cooling technique based on lasers, arbitrary pairs of vibrational states are coupled
via the recoil of the laser photons. This is not true in case of microwaves since thier pho-
tons have a negligible recoil. Nevertheless, in our state dependent optical lattice, microwave
radiation can still drive transitions between any pairs of vibrational states, whose wavefunc-
tions are controllably overlapped by state-selectively displacing the |0〉 and |1〉 states by a
distance ∆x. By tuning the microwave frequency to the sideband that lower the vibrational
quantum number, we are able to cool the atoms to the ground state with a population of
97%.

Radial sideband cooling

The same microwave cooling technique is not applicable for motional ground state cooling
along the radial direction because along this direction the potentials for the two internal
atomic states cannot be spatially displaced with respect to each other. The most commonly
used scheme for motional ground state cooling is resolved Raman sideband cooling which
is a laser driven scheme [21]. In Fig. 1.6, this scheme is summarized.

In this process, the atom will inevitably acquire a recoil energy, ǫrec = ~νrec from each
spontaneously emitted photon of frequency νrec. This could result in excitation of a vi-
brational quantum which will prevent the atom from ending up in the ground state |g, 0〉.
To avoid this, the energy spacing between vibrational levels needs to be large enough so
that the recoil energy provided by the emitted photons is not sufficient to excite a vibra-
tional quantum. This is possible in the so-called Lamb-Dicke regime in which the condition
η2 = ǫrec

~Ω ≪ 1 is satisfied, where η is known as the Lamb-Dicke parameter.

Currently, our atoms are confined radially by the Gaussian profile of the lattice beams.
With typical parameters of 120 mW optical power and 20µm waist radius, it provides a
weak confinement with a trapping frequency of 2π×1.1 kHz, much weaker compared to that
along the axial confinement. The situation can already be seen from Fig. 1.1(b), where one
can think of the sites of the lattice as having a pancake-like shape. The Lamb Dicke
parameter in this case is equal to 0.97, which is not small enough to permit any ground
state cooling scheme to be carried out [20].
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Figure 1.6: Schematic illustration of resolved Raman sideband cooling technique. A pair of Raman
lasers off-resonant from a transition to an auxiliary state |a〉 drives a dipole forbidden transition
between two internal atomic states |g〉 and |e〉. The frequency difference between these two lasers
is chosen to resonantly couple |g, n〉 and |e, n − 1〉. In this way, one motional quantum number is
removed for each transition. To close the cooling cycle via a spontaneous emission process, a third
laser field, the repump laser, which is resonant with the |e〉 to |a〉 transition is employed. Over
several of this absorption emission events, the atom ends up in the ground state |g, 0〉 which is dark
to the laser fields.

1.2 This thesis

In order to overcome the current limitions described above, the energy spacing in the
radial direction needs to be increased by having a tighter confinement. This can be ac-
complished by introducing an additional blue-detuned laser beam with a dark region in the
center, overlapped with the exiting standing wave optical lattice. In addition to increas-
ing the energy spacing, the tighter confinement provided by such a laser beam would also
benefit the demonstration of controlled cold collisions since a tighter confinement implies
smaller wavepacket spreads. Refering to Eq (1.4), this means that the ovelap integral of
the wavepackets can be increased, which shortens the interaction time required for atoms
to acquire the desired collisional phase.

In Chapter 2, several methods to generate a laser beam with a center dark region is dis-
cussed. The most appropiate one for our purpose is chosen and discussed in more detail.

The dipole potential for Cs atoms formed by the laser beam is evaluated in Chapter 3.
The trapping frequency of the potential as a function of the laser parameters is estimated.
The photon scattering rate in the potential is calculated. This will exhibits one of the
advantages of using the laser beam to trap atoms.

In Chapter 4, the experimental setup towards integrating the generated laser beam into the
main experiment is proposed and discussed.



Chapter 2

Laser beam with a center dark

region

A laser beam with a dark region in the center (which is from now on called a donut beam)
arises whenever the beam posseses an azimuthal phase structure exp(ilφ). The presence of
this azimuthal phase indicates that the phase of the beam changes continuously from 0 to
2lπ with a round trip on any circle around the center in the (ρ, φ)-plane. The integer l is
called the topological charge. Thus, for every source point (ρ, φ) there is an accompanying
source point (ρ, φ+π/l) and they interfere destructively along the beam axis. This gives rise
to a dark region in the center of the beam. Examples of such beams are Laguerre-Gaussian
beams and high-order Bessel beams.

Figure 2.1: Phase distribution corresponding to the multiplier exp(ilφ) with l = 1, and the
corresponding intensity profile of a donut beam.

9
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2.1 Generation of a donut beam

There exist several experimentally proven methods to produce a donut beam:

• Mode-conversion

• Computer-generated hologram

• Spiral phase plate

I have investigated these methods in detail and choose the most practical one for our
purpose.

2.1.1 Mode-conversion

Laguerre-Gaussian (LG) modes form a complete set of solutions of the wave equation in
cylindrical coordinates. Their field amplitudes are given by [24]

uLG
p,l (r, φ, z) =

CLG
pl

(1 + z2/z2
R)1/2

[

r
√

2

w(z)

]l

Ll
p

[

2r2

w2(z)

]

exp

[

− r2

w2(z)

]

× exp

[

ikr2z

2(z2 + z2
R)

]

exp(ilφ) exp

[

i(2p + l + 1) arctan

(

z

zR

)]

,

(2.1)

where Ll
p denotes the associated Laguerre polynomial, CLG

pl is a normalization factor and
the integers variables p and l represent the radial and azimuthal mode indices, respectively.
The presence of the factor exp(ilφ) implies that LG modes have a center dark region. The
LG modes can be written as a superposition of another set of solutions of the wave equation
which is Hermite-Gaussian modes

uHG
n,m(x, y, z) =

CHG
nm

w(z)
exp

(

−ik (x2 + y2)2

2(z2 + z2
R)

)

exp

(

−x
2 + y2

w2(z)

)

× exp
[

−(n+m+ 1) arctan
(y

x

)]

Hn

(√
2x

w(z)

)

Hn

(√
2y

w(z)

)

,

(2.2)

where Hn(x) and Hm(y) are Hermite polynomial of orders n and m, respectively. The
transformation from LG modes to HG modes reads [28]

uLGp,l(ρ, φ, z) =
m+n
∑

k=0

ikb(,m, k)uHG
m+n−k,k(x, y, z), (2.3)

with the transformation coefficient

b(n,m, k) =

√

(n+m)!k!

2n+mn!m!
× 1

k!

dk

dtk
[(1 − t)n(1 + t)m]t=0. (2.4)

For example the LG01 mode can be written as a superposition of the HG01 and the HG10

modes with a phase difference of π/2:

uLG
0,1 (ρ, φ, z) =

1√
2

(

uHG
1,0 (x, y, z) + iuHG

0,1 (x, y, z)
)

. (2.5)



2.1. GENERATION OF A DONUT BEAM 11

Figure 2.2: Cylindrical lens mode converter used to transfrom HG modes into LG modes.

Experimentally the mode-conversion of Eq. (2.5) can be accomplished by using a combi-
nation of two cylindrical lenses with a HG10 mode, oriented at 45o with respect to the
cylindrical axis of the lens, as the input [25]. This HG10 mode at 45o can be written as a
superposition of the HG10 and HG01 modes which are in phase. The role of the cylindrical
lenses is to exploit the Gouy phases of the two modes such that the difference between them
is equal to π/2. This can be achieved if the following conditions are satisfied [28]

d =
f√
2

z = (1 +
1√
2
)f

(2.6)

Here d is the separation between the two lenses of focal length f and zR denotes the Rayleigh
range of the incident beam. The complexity of this method is that the input beam in not
the fundamental mode but instead the HG10 mode which is not that easy to produce with
high efficiency.

2.1.2 Computer-generated hologram

A hologram is essentially a record of the interference pattern of two fields, a reference field
and an object field, which are coherent. Typically this is done by splitting a laser beam to
obtain the two coherent beams. One is used as a reference field and the other one is reflected
from the object of interest. The two are then interfered and recorded on a recording plate.

Since producing a hologram requires only the superposition of the reference field and the
object fields, it is possible to calculate the resulting interference pattern using a computer.
Such a hologram is usually called a computer-generated hologram (CGH). It has been shown
in several papers how CGHs can be designed [26, 27]. In our case, the field of interest is the
one that carries an azimuthal phase factor, Eobj = eilφ. When interfered with a reference
plane wave Eref = eikzz tilted at an angle θ = kz/k, the resulting interference pattern has
the form

H = |ψobj + ψref|2 = |eiφ + eikzz|2 = 2[1 + cos(kzz − lφ)] (2.7)

The holographic pattern H for topological charge l = 1 is shown in Fig. 2.3. When illumi-
nated with a Gaussian beam, the output consists of several beams with different diffraction
orders. A donut beam with topological charge ±l can be obtained from the ±1-st order
diffracted beam.
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Figure 2.3: (a) Computer generated hologram for producing donut beams with topological l = ±1.
(b) By illuminating this hologram with a Gaussian beam, a donut beam with topological charge
l = ±1 is produced in the ±1 diffraction order.

A disadvantage of employing this method of creation is that, since it relies on a diffracted
beam, the highest efficiency one would expect is around 70 - 80%. Nevertheless, a donut
beam with topological charge l is known to carry orbital angular momentum equal to l~
[24]. Owing to its flexibility in generating donut beams of various topological charges, this
method might be useful for generating a donut beam which can be used as an auxiliary
laser field which can manipulate the orbital angular momentum of an atom trapped in a
conservative potential [29].

2.1.3 Spiral phase plate

Figure 2.4: Spiral phase plate. The thickness of the plate increases proportional to the azimuthal
angle.

A more straightforward way of imprinting a phase factor exp(ilφ) into any beam is by
employing a phase plate that has an increasing thickness proportional to the azimuthal
angle. Since the phase of the light leaving the plate is directly proportional to the length
of the time it takes for the light to pass through it, this so-called spiral phase plate (SPP)
introduces a phase factor, that is a function of the azimuthal angle exp(ilφ), to any beam
incident on it. The topological charge is determined by the following expression [28]

l =
∆n · h
λ

. (2.8)

Here h is the step height, ∆n denotes the difference of refractive index between the SPP
and its surrounding and λ is the wavelength of the incident beam. Commercial SPP’s (RPC
photonic), made of polymer replicated on a glass substrate, have a sufficiently high damage
threshold (> 1W). It also converts nearly 100% of the incident beam into a donut beam.
Based on these robutness, this method of creation will be employed in pursuing the goal of
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Figure 2.5: SPP’s by RPC photonics. The 24 SPP’s with various step heights are replicated on a
glass substrate. Each SPP is hardly seen by eyes. The upper right picture is a cartoon illustration
of each SPP.

this project. The rest of this chapter will mainly concentrate on a donut beam created by
a SPP manufactured by the company RPC photonic.

The commercial SPP’s from the company RPC photonics are produced using lithographic
techniques. There are 24 of them with various step heights replicated on the same glass
substrate. According to the manufacturer’s specification, the SPP’s introduce a phase factor
exp(iφ) (topological charge l = 1) to an incident beam with various wavelengths, as shown
in Fig. 2.5. The most relevant one for this project is that for a wavelength of 849.9 nm.
This wavelength will be denoted by λ1. A donut beam generated by the SPP is discussed
in detail in the following.

Figure 2.6: (a) Beam profile image of a donut beam generated by the SPP. (b) One dimensional
radial intensity distribution of the donut beam taken along a straight line passing through the beam
center (green line in (a)).
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2.2 Donut beam generated by the SPP

A donut beam generated by the SPP is shown in Fig. 2.6. The experimental setup to
generate the donut beam is discussed in Sec. 2.2.2. To be able to carry out later analysis
of atoms trapped in the donut beam, it is necessary to obtain a mathematical expression
that describes its intensity distribution.

Figure 2.7: Spiral phase plate illuminated by a Gaussian beam at position z′ from the position of
the beam waist.

Let us consider the SPP illuminated with a Gaussian beam with wavelength λ1

E(ρ, φ, z) = E0
w0

w(z)
exp

( −ρ2

w2(z)

)

exp

(

−ikz − ik
r2

2R(z)
+ iζ(z)

)

, (2.9)

where

k =
2π

λ1
, wave number

w(z) = w0

√

1 +

(

z

zR

)2

,
1

e2
− beam radius

R(z) = z

(

1 +
(zR
z

)2
)

, curvature radius of the wavefront

ζ(z) = tan−1

(

z

zR

)

, Gouy phase

zR =
πw2

0

λ1
, Rayleigh range,

E0 =

√

2P

πw2
0

, and

P , power.

(2.10)

Assuming the beam hits exactly at the center of the SPP, immediately behind the spiral
phase plate, the field amplitude takes the form

E(ρ′, φ′, z′) = E0
w0

w(z′)
exp

( −ρ′2
w2(z′)

)

exp

(

−ikz′ − ik
ρ′2

2R(z′)
+ iζ(z′)

)

exp(iφ′), (2.11)

where we assume that the SPP is illuminated at position z′ from the position of the beam
waist (see Fig. 2.7). Eq. (2.11) is our intial field which we want to propate to any later
point (ρ, φ, z) behind the SPP. This can be done with the help of scalar diffraction theory.
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2.2.1 Scalar diffraction theory

According to the Huygens-Fresnel principle every point on the wavefront of a disturbance
acts as a secondary point source whose wavelet then mutually interferes with each other
to form the wavefront at a later instant, as illustrated in Fig. 2.8. This principle was
summarized into a mathematical foundation by Gustav Kirchhoff which is then known as
Kirchhoff’s diffraction theory [30]:

E(x, y, z) = − iA
2λ

∫∫

A

eik(r+s)

rs
[cos(n, r) − cos(n, s)]dS (2.12)

It allows one to calculate the field distribution of a light emerging from a diffracting object
as well as to propagate a known field amplitude at an initial point (x0, y0, z0) to any de-
sired observation point (x, y, z). From Eq. (2.12), with appropriate approximations, several
simplified diffraction integrals can derived such as the Fresnel integral

E(x, y, z) = − i

λz
eikz

∫∫

E(x0, y0, z0)e
ik
2z

[(x−x0)2+(y−y0)2]dx0dy0 (2.13)

which can be used to propagate an initial field amplitude at point (x0, y0, z0) to a final
point (x, y, z) through free space.

Figure 2.8: Huygens-Fresnel principle. Every point on the wavefront of a disturbance acts as a
secondary point source whose wavelet then mutually interferes with each other to form the wavefront
at a later instant.

In most experiments it is necessary to focus, modify, or shape the laser beam using lenses
and other optical elements. In the paraxial approximation, the effects of these optical
elements on paraxial beams are best described by 2× 2 matrices known as the ray transfer
matrices. The ray transfer matrices for some optical elements which are relevant to us
are given in Table 2.1. For an optical system consisting of n elements, whose ray transfer
matrices are M1,M2, ...,Mn, the total ray transfer matrix of the system, Mtot can be
obtained by taking the matrix multiplication of the ray transfer matrices of the individual
optical elements

→ M1 → M2 → · · · → Mn → Mtot = Mn · · · · · M2 ·M1 . (2.14)

Let us now consider the propagation of a beam through an optical system of total ray

transfer matrix Mtot =

(

A B
C D

)

. We would like to know the field distribution after the
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Element Matrix

Free space propagation

(

1 d
0 1

)

Reflection from a flat mirror

(

1 0
0 1

)

Thin lens with focal length f

(

1 0
−1/f 1

)

Telescope with magnification M = − f2

f1

(

M f1 + f2

0 1/M

)

Table 2.1: Some important ABCD matrices [31].

optical system from the knowledge of the intial field distribution before the optical system,
i.e., we want to propagate any initial field amplitude through the optical system. This can
be accomplished with aid of the Collins integral [32]

E(x, y, z) = − i

λB
eikz

×
∫∫

E0(x
′, y′, z′)ei

π
λB

[A(x′2+y′2)+D(x2+y2)−2(x′x+y′y)]dx′dy′
(2.15)

which is a generalized Kirchhoff integral written in terms of the elements of the total ray
transfer matrix of the system. Note that for a system that consists of just free space,

whose ray transfer matrix is given by

(

1 z
0 1

)

, the Collins integral just becomes the Fresnel

integral (Eq. (2.13)). In polar cylindrical coordinates, the Collins integral takes the form

E(ρ, φ, z) = − i

λB
eikz

×
∫ ∞

0
E(ρ′, φ′, z′) exp

[

ik

2B
(Aρ′2 +Dρ2)

]

×
∫ 2π

0
exp

[−ikρρ′ cos(φ− φ′)
B

]

ρ′dρ′dφ′.

(2.16)

2.2.2 Propagation of the donut beam through optical components

To see the propagation of the donut beam produced by the SPP through an optical system

with ray transfer matrix M =

(

A B
C D

)

, we insert the initial field Eq. (2.11) into Eq. (2.16)

E(ρ, φ, z) = − i
1

λ1B
E0

w0

w(z′)
eikzei

kDρ2

2B e−ikz′eiζ(z′)

×
∫ ∞

0
exp

(

− ρ′2

w2(z′)

)

exp

(

−i kρ′2

2R(z′)

)

exp

(

i
kAρ′2

2B

)

ρ′dρ′

×
∫ 2π

0
exp

[−ikρρ′ cos(φ′ − φ)

B

]

exp(iφ′)dφ′ .

(2.17)
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This integral can be solved analytically and the final analytical expression has the following
form (for detail calculation for general topological charge l, see Appendix B)

E(ρ, φ, z) =
1

λ1B
E0

w0

w(z′)
(2π)

√
πb

8a3/2
eikzei

kDρ2

2z e−ikz′eiζ(z′)eiφ

× exp

(

− b2

8a

)[

I0

(

b2

8a

)

− I1

(

b2

8a

)]

.

(2.18)

where Im is a modified Bessel function of the first kind and m-th order and

a =

(

1

w2(z′)
+

ik

2R(z′)
− iAk

2B

)

,

b =
kρ

B
.

(2.19)

The intensity distribution is then just given by

I(ρ, φ, z) = |E(ρ, φ, z)|2 . (2.20)

In the following I investigate the propagation of the donut beam through free space and
through a relevant lens system.

Free-space propagation

The ray transfer matrix for free space has the following form

M =

(

1 z
0 1

)

. (2.21)

For this case, Eq. (2.18) becomes

E(ρ, φ, z) =
1

λ1z
E0

w0

w(z′)
(2π)

√
πb

8a3/2
eikzei

kρ2

2z e−ikz′eiζ(z′)eiφ

× exp

(

− b2

8a

)[

I0

(

b2

8a

)

− I1

(

b2

8a

)]

,

(2.22)

with

a =

(

1

w2(z′)
+

ik

2R(z′)
− ik

2z

)

,

b =
kρ

z
.

(2.23)

In Fig. 2.9, the experimental setup for measuring the beam profile of the donut beam after
propagating through free space is shown. The laser source is an external cavity diode
laser (ECDL). After passing through a Faraday isolator which avoids optical feedback, the
output beam is split into two parts using a beam splitter. One is sent to a wavemeter for
monitoring the wavelength of the laser and the other one is used for generating the donut
beam. The latter is coupled into a single mode fiber in order to clean the mode, so that after
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the fiber we have a clean Gaussian beam. Only a small percentage of the laser is needed
to be coupled into the fiber, so that a telescope for mode matching is not necessary here.
After the fiber the laser power is approximately 7.5µW and the beam is linearly polarized.
The beam is then passed through the SPP to generate the donut beam. The beam profile
of the generated donut beam is measured using a beam profile camera and analysed using
a computer software Spiricon. A typical image of the generated donut beam detected by
the beam profile camera is shown in Fig. 2.6.

Figure 2.9: Experimental setup for measuring the beam profile of the generated donut beam after
propagtion through free space. ECDL: external cavity diode laser; FI: Faraday isolator; BS: beam
splitter; FC: fiber coupler; SMF: single-mode fiber; SPP: spiral phase plate; CCD: beam profile
camera. After the fiber beam beam power P = 7.5µW. The postion of the CCD can be varied to
measure the beam profile at different propagation distances.

In order to to determine the beam waist radius of the output Gaussian beam and its
position, I measure the beam size size at two different positions, w(z) ≡ w1 = 1.198mm
and w(z + zsep) ≡ w2 = 1.275mm, seperated at a distance zsep = 200mm, using the beam
profile camera. The beam waist radius can be then evaluated using the following formula

zR =
λ

π

2zzsep + z2
sep

w2
2 − w2

1

, (2.24)

w0 =

√

zRλ

π
, (2.25)

where the position z from the beam waist position is determined by solving the quadratic
equation
(

w2
2 − w2

1 +
λ2

π2

4z2
sep

w2
2 − w2

1

)

z2 +

(

λ2

π2

4z3
sep

w2
2 − w2

1

− 2w2
1zsep

)

z+

(

λ2

π2

z4
sep

w2
2 − w2

1

− w2
1z

2
sep

)

= 0 .

(2.26)
We finally obtain

z = 2.138m ,

zR = 1.366m ,

w0 = 0.6mm .

(2.27)
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From the knowledge of the chosen position z relative to the beam waist position, the posi-
tion where the SPP is located relative to the beam waist position, z′ can also be determined.
In this measurement the SPP is located at the position z′ = 1.4 m from the position of the
beam waist.

In Fig. 2.10, the 1D radial intensity distributions of the donut beam behind the SPP at
different propagation distances are shown, measured by varying the distance of the beam
profile camera from the SPP. We observe that the beam profile changes dramatically upon
propagation. At the beginning the beam has a high peak intensity and there are wiggles
appearing in the intensity distribution. As the beam propagates the peak intensity decreases
significantly and also the wiggles start to disappear.
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Figure 2.10: One-dimensional radial intensity distributions of donut beams generated by the
SPP after propagating through free space at different propagation distances. The red and black
curves represent calculated and measured intensity distributions, respectively. The parameters of
the incident Gaussian beam are: w0 = 0.6 mm, λ = 849.9 mm, P = 7.5µW. The SPP is illuminated
at the distance z′ = 1.4 m from the position of the beam waist.
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Propagation through a lens system

We are particularly interested in the lens system sketched in Fig. 2.11. This is the lens
system the beam has to pass through when integrated in the main experiment [33]. The total

Figure 2.11: Schematic representation of the lens system used in the main experiment to focus
down the lattice and the donut beams. Lens 1 and lens 2 form a Galilean telescope.

ray transfer matrix of the lens system can be obtained by taking the matrix multiplication
of the individual relevant ray transfer matrices

Mtot = Mfree1 ·Mtel · Mfree3 ·Mlens3 · Mfree

=

(

1 d1

0 1

)

·
(

− f2

f1
f1 + f2

0 − f1

f2

)

·
(

1 d3

0 1

)

·
(

1 0
− 1

f3
1

)

·
(

1 z
0 1

)

=







−
f2

“

1− z
f3

”

f1
−

d1f2

“

1− z
f3

”

f1
+ (f1 + f2)

(

1 − z
f3

)

−
f1

“

z+d2

“

1− z
f3

””

f2

f2

f1f3
−

f1

“

1− d2

f3

”

f2
+ d1f2

f1f3
− f1+f2

f3







. (2.28)

The experimental setup for measuring the beam profile of the donut beam after propa-
gating through the lens system is illustrated in Fig. 2.12. It is the same to that for free
space propagation with the additional lens system in between the SPP and the beam profile
camera.

The beam profile at different propagation distances behind the last focusing lens is shown
in Fig. 2.14. In order to get a good fitting between the calculated and measured intensity
distributions, the theoretical distances have been commonly shifted within 15 mm. This
adjustment is justified since we do not know the exact position of the chip of the CCD
camera neither the real focal length of each lens. The beam profile at the focal plane of the
last lens cannot be measured since the beam diameter at this position is too small to be
resolved by the CCD camera. The calculated one 1D radial intensity distribution at this
position is illustrated in Fig. 2.13.
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Figure 2.12: Experimental setup for measuring the beam profile of the generated donut beam
after propagtion through the lens system. ECDL: external cavity diode laser; OI: optical isolator;
BS: beam splitter; FC: fiber coupler; SMF: single-mode fiber; SPP: spiral phase plate; CCD: beam
profile camera. The position of the CCD can be varied to measure the beam profile at different
propagation distances.

Figure 2.13: Calculated 1D radial intensity distribution at the focal plane of the last lens.
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Figure 2.14: One dimensional radial intensity distributions of donut beams generated by the SPP
after propagating through the lens system at different propagation distances. The red and black
curves represent calculated and measured intensity distributions, respectively. The parameters of
the incident Gaussian beam are: w0 = 0.6 mm, λ = 850 mm, P = 7.5µW. The SPP is illuminated
at the distance z′ = 1.4 m from the position of the beam waist. Due to the limitation of the camera
resolution the beam profile at the focal plane of the focusing lens (z = 250 mm) cannot be measured.
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2.2.3 Wavelength dependence

So far we have only consider illumination of the SPP with wavelength λ1 = 849.9 nm which
causes the SPP to introduce the topological charge l = 1 to the incident beam. We have
calculated the intensity distribution behind the SPP which has a perfect donut shape. It is
also instructive to see what happens if the SPP is illuminated with a Gaussian beam with
a wavelength λα 6= λ1.

When illuminated with a Gaussian beam with the wavelength λα 6= λ1, the SPP introduces
a topological charge α to the beam which is not equal to 1 but fractional. This topological
charge can be calculated from Eq. (2.8). The topological charges introduced to incident
beams with several different wavelengths are listed in Table 2.2.

Wavelength, λα [nm] Topological charge, α

848 1.0022

849 1.0011

851 0.9987

852 0.9975

858.48 0.9900

867.24 0.9800

Table 2.2: Topological charge α introduced by the SPP when illuminated with a beam of wavelength
λα 6= λ1 = 849.9 nm.

Since α is fractional, the integration over the azimuthal angle in Eq. (B.4) does not take a
closed form. We can however express the phase factor exp(iαφ) as a Fourier series [36]

exp(iαφ) = (−1)α
sin(πα)

π

m−∞
∑

m=−∞

exp(imφ)

α−m
. (2.29)

This enables us to analytically carry out the integration over the azimuthal angles in
Eq. (B.4), which gives us the following analytical expression for the field amplitude for
a beam with wavelength λα 6= λ1

Eα(ρ, φ, z) =

m−∞
∑

m=−∞
(−i)|m|+1 1

λαB
E0

w0

w(z′)
(2π)

√
πb

8a3/2
eikzei

kDρ2

2z e−ikz′e−iζ(z′)

× (−1)α
sin(πα)

π

eimφ

α−m
e−

b2

8a

[

I 1

2
|m|− 1

2

(

b2

8a

)

− I 1

2
|m|+ 1

2

(

b2

8a

)]

.

(2.30)

The calculated and measured intensity distributions for generated beams with different
fractional topological charges are shown in Fig. 2.15. The appearence of discontinuities in
the intensity distributions implies that the beams are no longer suitable to be used to trap
atoms.

Nevertheless, in the wavelength of our interest, which is in between 840 nm to 852 nm, a
sufficiently good donut beam can still be obtained, as shown in Fig. 2.16. This is due to
the fact that in this range, the topological charge α ≈ 1. If we use the following limiting
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Figure 2.15: Theoretical and experimental intensity distributions of donut beams with fractional
topological charges α.

form

lim
α→1

[

(−1)α sin(απ)

π(α− 1)

]

= δα1 , (2.31)

Eq. (2.30) becomes

Eα(ρ, φ, z)
α→1≈ 1

λαB
E0

w0

w(z′)
(2π)

√
πb

8a3/2
eikzei

kDρ2

2z e−ikz′eiζ(z′)eilφ

× exp

(

− b2

8a

)[

I0

(

b2

8a

)

− I1

(

b2

8a

)]

,

(2.32)

which is just the same as the field amplitude of a perfect donut beam with topological
charge l = 1 (see Eq. (2.18))

However, for a donut beam with the wavelength λα 6= λ1, the light intensity on the beam
axis is not equal to zero. On the beam axis (ρ = 0), the only non-zero contribution to the
sum of Eq. (2.30) comes from m = 0, so that the field amplitude at the center reads

Eα(0, φ, z) =
−i
2a

2π

λαB
E0

w0

w(z′)
eikze−ikz′e−iζ(z′)(−1)α

sin(πα)

πα
. (2.33)

Thus,

Iα(0, φ, z) =
1

4|a|2
(

2π

λαB

)2

E2
0

(

w0

w(z′)

)2

|(−1)α|2 sin2(πα)

(πα)2
(2.34)

Figure 2.16: Intensity distributions of donut beams generated by illuminating the SPP with in-
cident beams of different wavelengths in the range between 840 nm to 852nm. A sufficiently good
donut beam can be obtained in this wavelength range.
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2.2.4 Misalignment of the SPP

In practice the configuration of the SPP and the incident Gaussian beam is inevitably
imperfect, i.e. the optical axis of the beam is not perfectly at the center of the SPP and
also there should be a small incident angle. This effects have been extensively studied in
[37]. It was shown that for small incident angles the modification caused to the intensity
pattern of the diffracted beam is negligeble.

Figure 2.17: Lateral misaligment of the SPP.

For off-axis lateral displacements where the SPP is displaced at the position (roff, θoff) from
the center of the incident Gaussian beam, the intensity of the diffracted beam is given by

E(ρ, φ, z) =
1

λ1B
E0(2π)

√
πb

8a3/2
eikzei

kDρ2

2z e
− r2

off

w2
0 eilγ

× exp

(

− b2

8a

)[

I0

(

b2

8a

)

− I1

(

b2

8a

)]

.

(2.35)

with

a =

(

1

w2
0

− iAk

2B

)

b =
k

B

w0Q√
2

w2
0Q

2 = 2ρ2 − 4

(

B

zR
roff

)2

+ 4i
B

zR
roff cos(φ− φoff)

tan γ =
ρ sinφ+ i B

zR
roff sinφoff

ρ cosφ+ i B
zR
roff cosφoff

(2.36)

In [37] it was shown that in the observation plane (x, y), the dark region of the beam is
located neither on the beam axis nor in the origin of the (x′, y′) plane, but shifted to a
position

ρ = roff
B

zR
, φ = φoff − sgn(l)

π

2
. (2.37)
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Consequently, the dark region is not fixed at the z axis but moves away from it along the
straight line orthogonal to the incident beam displacement, as the beam propagates. This
effect is illustrated in Fig. 2.18 for an extreme beam displacement.

Figure 2.18: Calculated intensity distributions of off-axial donut beams at different propagation
distances [37]. The dark region is not fixed at the z axis but moves away from it along the straight
line orthogonal to the incident beam displacement, as the beam propagates.

A part from the modification of the position of the dark region which is embedded in the
modification of the parameter b, the expression of Eq. (2.35) has a similar form as Eq. (2.18).
This implies that in the vicinity of the dark region the beam preserves its circular symmetry
and remains locally isotropic, just like in the case of a non-shifted incident beam.
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Chapter 3

Neutral atoms in a donut beam

3.1 Forces on atoms in the donut beam

3.1.1 Dipole potential

Consider an atom placed in a light field E. This light field induces an atomic dipole moment
d̂ which then interacts with the light field. The corresponding interaction Hamiltonian reads
Ĥ ′ = −d̂ · E. It yields a shift in the energy levels of the atom, the so-called AC-Stark shift.
In the rotating wave approximation, from second-order perturbation theory the energy shift
of a state |i〉 can be calcualted by

∆Ei =
1

4

∑

j 6=i

|〈j|d̂ · E0|i〉|2
~ (ωL − ωij)

. (3.1)

From this relation, a general expression for the light shift of a ground state with total
angular momentum F and magnetic quantum number mF can be derived. For an alkali
atom with ground state J = 1/2 and excited states J ′ = 1/2 and J ′ = 3/2, the energy shift
reads [38]

∆Eg =
πc2

2

(

Γ3/2

ω3
3/2∆3/2

(2 + PgFmF ) +
Γ1/2

ω3
1/2∆1/2

(1 − PgFmF )

)

I . (3.2)

Here ∆J ′ = ωL−ωJ ′ is the detuning of the laser frequency ωL from the 62PJ ′ excited states,
the transition frequencies and spontaneous decay rates of which are denoted by ωJ ′ and
ΓJ ′ , respectively. gF denotes the Lande factor, I = |E|2 the intensity of the light field. P
characterizes the polarization state of the beam and is defined as

P =

{

0 for π-polarized light

±1 for (σ±)- polarized light.
(3.3)

According to Eq. (3.2), the light shift is directly proportionally to the light intensity. Thus,
in a light field with an inhomogeneous intensity distribution the atom feels a position-
dependant light shift, resulting in a potential for the atom which also refer to as dipole
potential (Fig. 3.1). Depending on whether the light frequency is detuned below (red-
detuned) or above (blue-detuned) the atomic transitions, the atom can be attracted towards
the intensity maxima or minima.

29
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Figure 3.1: Illustration of the light shift of the energy levels of a two-level atom. The light shift is
proportional to the laser intensity whereas its sign depends on the detuning ∆. In red-detuned case
the atom is attracted to the high intensity region. In blue-detuned case the atom is repelled from
the intensity maximum.

3.2 Blue-detuned donut beam for Cs

Having briefly discussed the basic mechanism which allows neutral atoms to be trapped in
a gradient light field, we now focus on trapping of Cs atoms in the donut beam discussed in
the previous chapter. The donut beam is blue-detuned with respect to the D1 and D2 line,
so that atoms are trapped in the intensity minimum in its center. After being generated by
the SPP, the donut beam passes through a lens system, as illustrated in Fig. 2.11. The Cs
atoms are trapped at the focal plane of the last lens. Thus, the intensity distribution and
the dipole potential at this position will be our main concern. The corresponding total ray
transfer matrix of our problem is given by

Mtot =





0 f3

M

−M
f3

−
f1

“

1− d2

f3

”

f2
+ d1f2

f1f3
− f1+f2

f3



 . (3.4)

Assuming the SPP is located at the position of the waist of the incident Gaussian beam, the
intensity distribution of the donut beam at the position of the atoms can be then written
as (cf. Eq. (2.18)-Eq. (2.20))

Iblue(ρ) = E2
0

πk4w6
0

64B4
ρ2 exp

(

−2ξρ2
) [

I0
(

ξρ2
)

− I1
(

ξρ2
)]2

, (3.5)

with

ξ =
k2w2

0

8B2
, (3.6)

B =
f3

M . (3.7)
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When placed in the blue detuned donut beam, a Cs atom sees a dipole potential of the
form

Ublue(ρ) =
πc2

2

(

ΓD2

ω3
D2∆D2

(2 + PgFmF ) +
ΓD1

ω3
D1∆D1

(1 − PgFmF )

)

Iblue(ρ)

= CE2
0

πk4w6
0

64B4
ρ2 exp

(

−ξρ2
) [

I0
(

ξρ2
)

− I1
(

ξρ2
)]2

.

(3.8)

Here we define

C ≡ πc2

2

(

ΓD2

ω3
D2∆D2

(2 + PgFmF ) +
ΓD1

ω3
D1∆D1

(1 − PgFmF )

)

, (3.9)

which acts as a scaling factor between the light intensity and the dipole potential. The
resulting potential in the (x, y)-plane is plotted in Fig. 3.2.

For nonlinearly polarized beams, the terms contaning the Lande factor gF and the magnetic
quantum numbermF in Eq. (3.9) are non-zero. Consequently, the potential is dependent on
the state of the atom. The situation is illustrated in Fig. 3.3. For the analysis that follows,
the beam size radius of the Gaussian beam before the SPP is assumed to be w0 = 3mm,
while the beam is linearly polarized unless otherwise noted.

Figure 3.2: Calculated dipole potential formed by the donut beam in the plane perpendicular to
the optical axis. The potential depth is about 4 mK which is sufficiently deep to trap Cs atoms
cooled to approximately 10µK by optical molasses.

3.2.1 Harmonic approximation of the donut dipole potential

The dynamics of an atom trapped in the conservative dipole potential is conveniently de-
scribed in terms of the formalism of a harmonic oscillator which has been well studied in
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Figure 3.3: Polarization dependence of the dipole potential for different atomic states.
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many standard quantum mechanics textbooks (see e. g. Ref. [39]). In the following, we ap-
ply the harmonic approximation to the donut dipole potential. For this, we first investigate
the dipole potential near the beam axis. By making use of the following limiting forms [43]

Iν(γ) ≈
(γ/2)ν

Γ(ν + 1)
as γ → 0, (3.10)

and
exp(κ) ≈ 1 + κ as κ→ 0, (3.11)

Eq. (3.8) becomes

Ublue(ρ) ≈ CE2
0

πk4w6
0

64B4
ρ2
(

1 − 2ξρ2
)













(

ξ
2ρ

2
)0

Γ(1)






−







(

ξ
2ρ

2
)1

Γ(2)













≈ CE2
0

πk4w6
0

64B4
ρ2
(

1 − 2ξρ2
)

(

1 − ξ

2
ρ2

)2

≈ CE2
0

πk4w6
0

64B4

[

ρ2 + O(ρ4)
]

(3.12)

as ρ→ 0. Here Γ(ν) is the Gamma function. Keeping only the leading term in this expan-
sion, we obtain the harmonic approximation to the dipole potential. The approximation
holds for an atom whose energy is much smaller than the potential depth. This is exactly
true in our case (see Fig. 3.2).

By comparing Eq. (3.12) with the potential of a harmonic oscillator

Vharm(ρ) =
1

2
mω2

harmρ
2 (3.13)

we infer for the radial oscillation frequency

Ωrad =

√

CP
16m

M2

f2
3

k2w2
0 . (3.14)

From this expression, we deduce that the oscillation frequency scales with the power
as Ωrad ∝

√
P , whereas with the beam waist radius of the incident Gaussian beam as

Figure 3.4: Harmonic approximation to the donut dipole potential.
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Ωrad ∝ w2
0, as illustrated in Fig. 3.5 and Fig. 3.6. For this reason, the more effective way

to increase the oscillation frequency is through increasing the beam waist radius of the
incident Gaussian beam w0.

Figure 3.5: Power dependence of the oscillation frequency for different wavelengths. The beam
waist radius of the Gaussian beam is fixed (w0 = 3mm). The dash line illustrates the calculated
oscillation frequency for a telescope with magnification M = 3 (λ = 849.9 nm).

Figure 3.6: Dependence of the oscillation frequency on the beam waist radius of the incident
Gaussian beam. The power is assumed to be P = 0.5W. The dash line illustrates the calculated
oscillation frequency for a telescope with magnification M = 3 (λ = 849.9 nm).

In principle the size of the incident Gaussian beam can be increased arbitrarily. However,
due to the limited diameter of the optical elements in the potential beam path, the beam
size is limited to the size of this elements. Replacing this elements, for example a high
extinction-ratio polarizer, with new ones with larger size might be very costly. A less
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expensive alternative to increase the oscillation frequency is by replacing the lens system
itself. This effect can directly be seen form Eq. (3.14) where the magnification of the
telescope appears as Ωrad ∝ M2 and the focal length of the last lens as Ωrad ∝ 1/f2

3 .
The effect of replacing the existing telescope with a one with magnification M = 3, is
exemplarily illustrated by the dash lines in Fig. 3.5 and Fig. 3.6.

3.2.2 Two-dimensional harmonic potential

From the preceding section we deduce that for low temperatures, the resulting dipole poten-
tial for an atom in the blue-detuned donut beam can be approximated to a two dimensional
harmonic potential. In this section, I investigate some quantum mechanical properties of
a two dimensional harmonic oscillator, showing that the energy eigenvalues are degenerate
and also the oscillator posseses well-defined quantized orbital angular momentum.

Energy levels and stationary states

A particle in a two dimensional harmonic potential is described by the Schrödinger equation

Ĥ|ψNX ,NY
〉 = ENX ,NY

|ψNX ,NY
〉 (3.15)

with

Ĥ =
1

2m
(P̂ 2

X + P̂ 2
Y ) +

1

2
mΩ2

rad(X̂
2 + Ŷ 2) . (3.16)

Here P̂ and X̂ denote the momentum and position operators of the center of mass motion
of the particle, respectively.

The eigenstates of the Hamiltonian have the following form [39]

ψNX ,NY
(X,Y ) =

β
√

π(2)NX+NY (NX)!(NY )!
exp [−β2(X2 + Y 2)]HNX

(βX)HNY
(βY )

(3.17)
with the corresponding eigenvalues

ENX ,NY
=

(

NX +
1

2

)

~Ωrad +

(

NY +
1

2

)

~Ωrad

= (NX +NY + 1) ~Ωrad

= (N + 1) ~Ωrad , N = 0, 1, 2, . . .

(3.18)

Here HNi
denote the Hermite polynomials (not to be confused with the Hamiltonian) and

β =
√

mΩrad

~
. In contrast to the one-dimensional case, the energy of the ground state is

equal to ~Ωrad rather than 1
2~Ωrad. The energy levels are degenerate since several stationary

states can have the same value of energy. For example, the stationary states

|ψNx=3,Ny=0〉, |ψNx=2,Ny=1〉, |ψNx=1,Ny=2〉, |ψNx=0,Ny=3〉 (3.19)

have the same value of energy which is equal to 4~ω. In general, the degree of degeneracy
of the level EN is equal to:

gN = N + 1 . (3.20)
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Figure 3.7: Illustration of the two-dimensional quantum mechanical harmonic potential, showing
the quantization of energy.

Orbital angular momentum

In the two dimensional harmonic oscillator, the potential energy is invariant under rotation
about the z-axis (the beam axis), so is the Hamiltonian. According to Noether’s theorem,
this symmetry implies the existence of a conserved quantity which turns out to be the
component Lz of the angular momentum. Consequently, the Hamiltonian of the system
commutes with Lz

[H, Lz] = 0. (3.21)

It is therefore possible to find eigenstates which are common to H and Lz. Such eigenstates
have the following form [39]

ψN,M (R,Φ) =
β√
π

√

√

√

√

√

(

N−|M |
2

)

!
(

N+|M |
2

)

!
(βR)|M |L|M |

(N−|M |)/2[(βR)2] exp

(

−(βR)2

2

)

exp (iMΦ).

(3.22)
In this alternative representation, the quantum state of the oscillator is labelled by two
quantum numbers N and M . Here, N represents the energy of the atom whose values are
(N + 1)~Ωrad, whereas M determines the angular momentum of the oscillator, the eigen-
values of which are M~. For a given N , there are (N + 1)-degenerate angular momentum
states with quantum number

M = N,N − 2, N − 4, · · · ,−N + 4,−N + 2,−N . (3.23)

By employing an auxiliary donut beam carrying a well-defined orbital angular momentum
[24], it would be possible to manipulate the angular momentum of the two dimensional
harmonic oscillator.



3.2. BLUE-DETUNED DONUT BEAM FOR CS 37

Figure 3.8: N + 1-fold degeneracy of angular momentum states.

Figure 3.9: Illustration of the probability density of finding the atom at a given position in a
two-dimensional harmonic potential.

3.2.3 Average energy of the atom in the donut dipole potential

In thermal equilibrium, the atom in the two-dimensional harmonic potential is not in a
pure stationary state, but rather in a statistical mixture of stationary states |ψN,M 〉 with
weights proportional to e−EN /kBT . The corresponding partition function takes the form

Z =

∞
∑

N=0

gNe
−EN /kBT

=

∞
∑

N=0

(N + 1)e−(N+1)~Ωrad/kBT

=

∞
∑

N=1

N
(

e−~Ωrad/kBT
)N

=
e−~Ωrad/kBT

(

1 − e−~Ωrad/kBT
)2 .

(3.24)

From the latter, we can calculate the average total energy using athe well-known result of
statistical mechanics

〈Utot〉 = kBT
2∂ lnZ

∂T

= ~Ωrad

(

1 + e−~Ωrad/kBT

e−~Ωrad/kBT − 1

)

= ~Ωrad

(

2

e~Ωrad/kBT − 1
+ 1

)

= ~Ωrad (〈n〉 + 1) .

(3.25)
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By comparing this relation with Eq. (3.18), the quantity

〈n〉 =
2

e~Ωrad/kBT − 1
(3.26)

can be interpreted as the average vibrational number governed by the temperature T .
According to the virial theorem, for a harmonic oscillator, the average potential energy is
equal to the average kinetic energy. Thus, it is

〈Upot〉 = 〈Ekin〉 =
~Ωrad

2
(〈n〉 + 1) . (3.27)

3.3 Photon scattering rate in the donut beam

Suppose that the system is perfectly isolated. Then all processes are reversible and there is
no information loss taking place. However, in reality, our atoms are not a perfectly isolated
system. They rather couple to the environment which leads to decoherence. For qubits
whose information is stored in the hyperfine states, decoherence may come from the inter-
action between the atoms and the trapping field itself. This mechanism leads to inelastic
photon scattering which may change the atoms’ internal states.

Figure 3.10: Feynman diagrams representing scattering of photons by an atom in the initial state
|gi〉 to the final state |gf〉.

From the Kramer-Heisenberg formula [40], the scattering rate can be calculated using the
following formula

ΓF,mF→F ′′,mF ′′
=

3c2ω3

4~
I

∣

∣

∣

∣

∣

∣

A
(1/2)
F,mF→F ′′,mF ′′

∆1/2
+
A

(3/2)
F,mF→F ′′,mF ′′

∆3/2

∣

∣

∣

∣

∣

∣

2

(3.28)

with

A
(J ′)
F,mF→F ′′,mF ′′

=
ΓJ ′

ω3
J ′

∑

qsc,F ′,mF ′

〈F ′′,mF ′′ |er̂ · ǫqsc
|F ′,mF ′〉〈F ′,mF ′ |er̂ · ǫq|F,mF 〉 . (3.29)

Here ∆J ′ = ω−ωJ ′ denotes the detuning of the donut laser from the 6PJ ′ state. ΓJ ′ and ωJ ′

are the linewidths and the resonance frequencies of the excited states. The polarizations of
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the incoming and the scattered photons are indicated by q and qsc, respectively. One can
distinguish between two cases:

• Rayleigh scattering, ΓRam: In the Rayleigh scattering the atom occupies the same

state before and after the scattering process. The A
(J ′)
F,mF→F ′′,mF ′′

-symbol becomes

A
(3/2)
F,mF→F,mF

= −A(1/2)
F,mF→F,mF

.

• Raman scattering, ΓRay: In the Raman scattering the state of the atom is changed

after the scattering process. The A
(J ′)
F,mF→F ′′,mF ′′

-symbol reads A
(3/2)
F,mF→F ′′,mF ′′

=

2A
(1/2)
F,mF →F ′′,mF ′′

.

We are mainly interested in the Raman scattering since this would be responsible for the
longitudinal decoherence mechanism, namely it determines the longitudinal coherence time,
T1 = 1/ΓRam.

If we assume that the temperature of the atom were zero, the atom would stay at the
potential minimum where it experiences zero laser intensity. This implies that the photon
scattering rate would be zero. However, in reality the atom has a finite temperature so that
it oscillates within the potential and sees some intensity which in turns leads to a finite
scattering rate. Thus we need to know the time average intensity, 〈I〉, seen by the atoms
in the dipole trap. Using Eq. (3.2) and Eq. (3.27), we obtain

〈I〉 =
1

C
~Ωrad

2
(〈n〉 + 1). (3.30)

The time average photon scattering rate by an atom in the donut dipole potential can be
computed by inserting Eq. (3.30) into Eq. (3.28):

〈ΓRam〉 =
3c2ω3Ωrad(〈n〉 + 1)

8C

∣

∣

∣

∣

∣

∣

A
(1/2)
F,mF→F ′′,mF ′′

∆1/2
+

2A
(1/2)
F,mF →F ′′,mF ′′

∆3/2

∣

∣

∣

∣

∣

∣

2

. (3.31)

In Tabel 3.1, the calculated values of the Raman scattering rate for the two hyperfine states
at different wavelengths is presented. At a high power of 1W and small detuning, the scat-
tering rate is less than 10 photons per second which is negligibly small. This is already
expected since the atoms are trapped in the region of minimum intensity. As a comparison,
the present scattering rate in the standing wave dipole trap is around 100 photons per
second (see Appendix A).

Hyperfine state Scattering rate, Γsc [s−1] λ=849.9 nm λ=851 nm λ=851.5 nm

F = 3 Raman 2.0 3.9 6.4

F = 4 Raman 1.9 3.7 6.1

Table 3.1: Scattering rates of the states F = 4 and F = 3 for different laser detunings at a
temperature of 10µK. The laser power P = 1 W and the polarization of the laser is assumed to be
linear.

Therefore, the integration of the donut beam into the main experimental setup does not
lead to a disturbing effect on the longitudinal coherence time T1.
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Chapter 4

Experimental realization

So far I have only discussed the generation of the donut beam (see Chapter 2) and calculated
the trapping frequency depending on the laser power. From the calculations, sufficient
trapping frequency needed for resolved sideband cooling in the radial direction (≈ 2π ×
20 kHz) can be implemented by extending the current experimental setup by a donut beam
with a power of 1W overlapped with the optical lattice. This amount of power can be
obtained from a tapered semiconductor amplifier laser. In this chapter I will discuss the
experimental setup towards integrating the donut beam into the main experiment.

4.1 Experimental setup for laser source

To save space on the main table, the laser source of the donut beam is build up on a
seperated optical table.

Figure 4.1: Experimental setup for high power laser.

The schematic of the setup is presented in Fig. 4.1. The laser source is a tapered amplifier
(TA) diode laser seeded with an external cavity diode laser (ECDL). The output beam
from the ECDL passes through a Faraday isolator and is subsequently split into two parts
(monitoring and main part) using a λ/2 plate and a polarizing beam splitter (PBS). A small
percentage of the monitoring part is sent through a Fabry Perot cavity for monitoring the
mode of the laser while the main part is used as the seeding power for the TA diode. The

41
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seed beam is spatially mode-matched to the beam emitted from the back facet of the TA
using a telescope. Since the front output aperture of the TA is asymmetric, a cylindrical
lens, in addition to a spherical lens, is used to collimate the output beam. The amplified
light is again sent through another Faraday isolator. Due to the amplified spontaneous
emission (ASE) of the TA diode, the output spectra can have a significant high background
in the vicinity of the center wavelength which is around 850 nm. Since this wavelength
region is close to the Cs resonance frequency (852 nm), light from the ASE may heat the
atoms. In order to suppress the background contribution, a hole must at this resonance
frequency must be burned in the laser spectrum. For this purpose the beam is sent through
a heated cesium vapor cell. The heating is required to increase the cesium vapor density,
and thus the absorbtion. Finally, the beam is coupled into a single mode fiber and guided
to the main experiment.

The ECDL, TA diode system and the heated cesium cell have been developed during this
thesis work. In the following the detailed design of each of them will be described.

External cavity diode laser

The configuration of the ECDL is illustrated in Fig. 4.2. The output from the laser diode is
collimated by a lens and then incident onto a grating with 1800 lines/mm. The grating is
aligned in such a way that the first order is reflected back into the laser diode, forming an
external resonator together with the back facet of the diode. The zeroth diffraction order
is coupled out. By adjusting the angle of the grating by means of a pizoelectric tranducer
(PZT) attached to the grating’s holder, the length of the resonator can be tuned, so does
the output frequency which depends on the length of the resonator.

Figure 4.2: External cavity diode laser in the Littrow configuration.

TA Diode System Design

In Fig. 4.3(a) a schematic layout of a typical semiconductor laser amplifier is shown, which
has a laterally tapered gain region. This tapered gain region allows for a weak signal to
be injected into the narrow end and the amplified light to come out from the broad end
after passing through the gain region. Both ends are anti-reflection coated in order to avoid
laser action of the amplifier chip itself. A detailed review on tapered semiconductor-laser
amplifiers can be found in [41]. The TA is attached to a C-mount package which acts as a
heat sink (see Fig. 4.3(b)).
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Figure 4.3: (a) Schematic layout of a tapered semiconductor laser amplifier. (b) Tapered amplifier
attached onto a C-mount package [42].

In Fig. 4.4, the design of the tapered amplifier system is illustrated. It consists of a TA
diode1, two collimation lenses2 threaded into a homemade brass tube. According to the
manufacturer’s datasheet, the maximum output power is about 1 W, with a center wave-
length around 850 nm. The C-Mount TA diode is screwed onto a homemade brass diode
holder. The tube and the holder have been precisely designed by the mechanical workshop
so that the axes of the lenses coincide with the input and output aperture of the TA diode.
This ensures a good coupling of the input light and collimation of the output light.

Thermal variations can cause the output power of the TA to fluctuate. For this reason,
the TA system needs to be temperature stabilized. To thermally control this system, the
brass holder is mount onto an aluminum plate with two peltier coolers underneath. For
better heat dissipation, a water cooling system is employed. In addition, the TA system is
covered with a metal housing to minimize any thermal variations caused by air movement
and temperature gradient of the surrounding.

Figure 4.4: Design of the tapered amplifier system.

1Eagleyard Photonics, EYP-TPA-0850-01000-4006-CMT04-0000
2input facet: f = 4.5 mm 0.55 NA, Thorlabs C230TME-B; output facet: f = 3.1 mm 0.68 NA, Thorlabs

C330TME-B
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Heated cesium vapor cell

In Fig. 4.5, the design of the heated cesium cell is shown. A cesium vapor cell of 10 cm
in length is put into a metal tube to ensure a homogenous temperature distribution when
being heated. In order to avoid air turbulance which might be caused by high temperature
gradient, metal rods with a smaller diameter are attached at both ends of the metal tube,
preventing the incoming and outgoing beam from pointing instability. A heating tape is
wrapped around the metal tube to heat the cesium vapor cell. To monitor the temperature,
a themocouple sensor is attached at two different positions on the metal tube.

Figure 4.5: Heated cesium vapor cell.
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4.2 Integration of the donut beam into the main setup

In order to include the donut beam into the existing main experimental setup, light from
the experimental setup discussed in the previous section is guided to the vicinity of the
main experimental setup via a single mode fiber. The output beam is passed through a
SPP to generate a donut beam. The donut beam is overlapped with the existing standing
wave optical lattice and coupled out from it using custom made dichrotic mirrors provided
by the company Laser Component. This setup is illustrated in Fig. 4.7. The transmittivity
and the reflectivity of the dichrotic mirrors provided by the company is shown in Fig. 4.6.

Figure 4.6: Specification of the transmittivity of the custom made dichrotic mirrors provided by
the company.
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Figure 4.7: Full experimental setup. The donut beam is overlapped with the existing standing
wave optical lattice and coupled out from it using dichrotic mirrors.



Chapter 5

Conclusion and outlook

In this project, a laser beam having a center dark region or a donut beam at a wavelength of
849.9 nm has been generated using a SPP. An analytical expression describing the intensity
distribution of the generated donut beam after passing through an optical system that can
be described by a ray transfer matirx has been derived using scalar diffraction theory. This
expression can be used for any optical system, one just has to know to corresponding ray
transfer matrix of the system. The range of wavelengths in which the SPP can generate a
sufficiently good donut beam has also been investigated. It turns out that in the range of
our interest, which is between 840 nm to 852 nm, a sufficiently good donut beam can still
be generated.

Since the generated donut beam is blue-detuned with respect to the D2-transtion, it can act
as a dipole potential for Cs atoms, where the atoms can be trapped in its the center dark
region. When overlapped with the existing optical lattice, it can provide a tighter confine-
ment in the radial direction which then increase the oscillation frequency in this direction.
From the calculation, by using a 1W laser, which can be obtained from a tapered amplifier
laser, the oscillation frequency in the radial direction can be increased from 2π × 1.1 kHz
to around 2π × 20 kHz. This offers a good condition for resolved Raman sideband cooling
which can be used to cool our atoms to the motional ground state in radial direction. Once
the atoms are cooled to the motional ground state in all three dimensions, atom-atom en-
tanglement via controlled cold collisions can be demonstrated.

47



48 CHAPTER 5. CONCLUSION AND OUTLOOK



Appendix A

Cs atoms in a standing wave dipole

trap

The following values are the parameters of Cs atoms in the current setup of the standing
wave dipole trap formed by laser beams with λ = 865.9 nm, P = 120mW and w0 = 20µm.

Temperature T 10µK

Axial oscillation frequency Ωaxial 2π × 115 kHz

Radial oscillation frequency Ωradial 2π × 1.1 kHz

Raman scattering rate ΓRam 100 s−2

Longitudinal coherence time T1 10 ms

Mean axial vibrational quantum number 〈n〉axial 1.2

Mean radial vibrational quantum number 〈n〉radial 200
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Appendix B

Solution to the Collins integral

In this appendix, an analytical expression describing the field amplitude of a donut beam
with topological charge l generated by a SPP, after propagating through an optical system,
is derived.

The Collins integral

E(ρ, φ, z) = − i

λB
eikz

×
∫ ∞

0
E(ρ′, φ′, z′) exp

[

ik

2B
(Aρ′2 +Dρ2)

]

×
∫ 2π

0
exp

[−ikρρ′ cos(φ− φ′)
B

]

ρ′dρ′dφ′.

(B.1)

can be used to propagate an initial field at point (ρ′, φ′, z) to a final point (ρ, φ, z) through
an optical system whose ray transfer matrix is given by

M =

(

A B
C D

)

. (B.2)

In our case, the initial field is the field amplitude immediately behind the SPP which is given
by the field amplitude of the incident Gaussian beam times the phase factor introduced by
the SPP

E(ρ′, φ′, z′) = E0
w0

w(z′)
exp

( −ρ′2
w2(z′)

)

exp

(

−ikz′ − ik
ρ′2

2R(z′)
+ iζ(z′)

)

exp(ilφ′) . (B.3)

Inserting Eq. (B.3) into Eq. (B.1) we obtain

E(ρ, φ, z) = − i
1

λB
E0

w0

w(z′)
eikzei

kDρ2

2B e−ikz′eiζ(z′)

×
∫ ∞

0
exp

(

− ρ′2

w2(z′)

)

exp

(

−i kρ′2

2R(z′)

)

exp

(

i
kAρ′2

2B

)

ρ′dρ′

×
∫ 2π

0
exp

[−ikρρ′ cos(φ′ − φ)

B

]

exp(ilφ′)dφ′

(B.4)
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The integration over the azimuthal angles gives rise to an n-th order Bessel function:

E(ρ, φ, z) =(−i)|l|+1 1

λB
E0

w0

w(z′)
(2π)eikzei

kDρ2

2B e−ikz′eiζ(z′)eilφ

×
∫ ∞

0
exp

[

−ρ′2
(

1

w2(z′)
+

ik

2R(z′)
− ikA

2B

)]

Jl

(

kρρ′

B

)

ρ′dρ′.
(B.5)

This can be further simplified with the help of the following integral [44]

∫ ∞

0
xe−αx2

Jν(βx) =

√
πβ

8α3/2
exp

(

−β
2

8α

)[

I 1

2
|ν|− 1

2

(

β2

8α

)

− I 1

2
|ν|+ 1

2

(

β2

8α

)]

(B.6)

where Im is a modified Bessel function of the first kind and m-th order.

Finally, we obtain the following analytical expression for the field amplitude behind the
optical system

E(ρ, φ, z) =(−i)|l|+1 1

λB
E0

w0

w(z′)
(2π)

√
πb

8a3/2
eikzei

kDρ2

2z e−ikz′eiζ(z1)eilφ

× exp

(

− b2

8a

)[

I 1

2
|l|− 1

2

(

b2

8a

)

− I 1

2
|l|+ 1

2

(

b2

8a

)]

.

(B.7)

where

a =

(

1

w2(z′)
+

ik

2R(z1)
− iAk

2B

)

b =
kρ

B
.

(B.8)
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