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A B S T R A C T

This thesis details the experimental efforts towards quantification of laser frequency
noise by the use of an optical frequency discriminator and its suppression by means of
measuring and reducing optical path length differences to prevent heating and loss of
ultracold Caesium atoms trapped in two-dimensional state-dependent optical lattice. The
discriminator used is a Fabry-Perót cavity with the side-of-fringe locking technique to be
sensitive to frequency fluctuations of the input light field which are detected as changes in
the intensity of the cavity signal. The measured noise spectrum revealed the performance
of the laser in the frequency domain and was used to refine the same. A reduction in the
laser linewidth was achieved in this manner. The same cavity was also transformed in to
a transfer cavity to prevent long-term drift in the laser frequency. The frequency noise
cannot be completely eliminated from the laser and so the task then became the reduction
of the optical path length differences in the experiment by which the noise can manifest
at the postion of the atoms. Conditions for achieving minimal path length differences
were derived. Three methods were employed to measure the path length differences: A
geometric distance measurement, an optical measurement using interferometry and at
last using the atoms. The use of the atoms in particular displayed the extent to which
the common-mode frequency noise can influence the experiment.
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I N T R O D U C T I O N

Any attempt to understand a complex quantum system involving many-body interac-
tions [1, 2] beyond simplifying assumptions starts with the need for a simulation of the
same with an equivalent system. This for the simple reason that classical computation
fails in the face of the large Hilbert space involved whose dimension scales exponentially
with the number of particles [3, 4]. For instance, it takes 2N bits to store the states of N
spin-1/2 particles and a further 22N bits to track their time-evolution with the associated
computational time being also on the order of 22N . This explosion in required memory
and time can be overcome with a quantum system tuned to emulate the dynamics of
the system of interest. With information now encoded in qu-bits or quantum bits, a
Hilbert space of dimension 2N then needs only N qubits to fully span the space of states.
This array of qubits can then be driven along an arbitrary trajectory in the state space
through a series of unitary transformations determined by single or a set of specific local
Hamiltonians. Known as a Quantum Simulator in the common parlance of the field of
study, such a system becomes the necessary foundational architecture for further inquiry
into more complex physical processes.

There are many platforms available today that as a result of the high degree of control
are all viable options for realizing quantum simulators depending on the type of problem
they seek to solve of which cold, neutral atoms trapped in an optical lattice is one [5].
Other platforms such as Trapped Ions [6] or Solid-state systems [7] (Also, photons [8,
9], quantum dots[10] and NV centers[11]) come with certain immediate advantages such
as scalability but also have their own unique challenges. Although trapped atoms as a
platform is no exception, is relatively simpler to implement and is grounded in a long,
deep understanding of Atom-Light interaction [12].
The use of the optical dipole force to trap atoms starting with the breakthrough of

Chu et al. (1986) triggered a cascade of such experiments [13]. First used to increase the
efficiency of some methods of optical cooling, interfering counter-propagating, far-detuned
laser light to generate spatially periodic, conservative potential wells - an optical lattice -
is now a standard technique to confine an ultracold ensemble of atoms through electric
dipole interaction. Among the various quantum optical applications that this has given
rise to, one is as an investigative tool to probe the rich, exotic zoo of quantum matter the
possibility of which is speculated in Condensed Matter Theory through the perspective
of topology [14]. Prompted in such a direction are the experiments in Bonn where
the objective is to exploit another phenomenon that is Discrete-Time Quantum Walks
(DTQW) [15], the quantum analogue of the classical random walk, to simulate a certain
class of Hamiltonians periodic in time allowing for the experimental realization of novel
topological phases [16, 17]. For this, individual, neutral, 133Cs atoms with pseudo-spin
1/2 are delocalized in a state-dependent optical lattice with the qubit encoded in two
long-lived hyperfine ground states corresponding to spin-1/2 up and down. Implemented
on an one-dimensional (1-D) lattice, efforts are currently underway to realize quantum
walks on a two-dimensional (2-D) lattice.

To the experiment, the optical lattice offers in itself its most central tool and in doing
so, presents one of the experiment’s most fundamental technical limits. Ideally, the light
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2 introduction

field that is used to generate the lattice would need to have no adverse influence and
the device from which it is sourced be infinitely tunable but since that rarely is the
case, it falls on the user to determine the extent of the flexibility available. This thesis
will describe such an attempt with regard to the Titanium-Sapphire (Ti:Sa) lasers in
the 2-D DTQW experiment. The two lasers whose characterization and integration in
to the experiment will be described in the following pages, were newly obtained as an
upgrade over an earlier single Ti:Sa laser that was in use for the following chief reason -
A high power laser beam is critical to the setup in order to trap atoms in a deep trapping
potential (with a depth > 1mK) over a large spatial volume. This prevents the individual
atoms from hopping to neighboring sites in the lattice which would result in the loss of
fine control of a system designed to deterministically transport and image atoms. The
lasers though can come with inherent fluctuations in their intensity or possess instability
in frequency that can heat the atoms out of the lattice limiting the coherence times and
so quantifying this noise can be invaluable for understanding the limits imposed on the
experiment. It is not enough though that we quantify the noise but also work toward
curtailing it for which we need to identify the manner in which the noise manifests. This
will form the core of the work presented here with a special focus on laser frequency noise
and the optical path length differences which magnify its effect.

outline
This thesis is divided into three chapters: Chapter one will begin with an elucidation

of the fundamental scientific principles upon which the two-dimensional discrete-time
quantum walk experiment rests followed by a description of the current experimental set-
up, the concept of decoherence and its causes with special focus on intensity and frequency
noise. Chapter two is dedicated to describing the laser devices in use in the experiment in
terms of its layout and function before detailing the methods used to measure intensity
and especially frequency noise with the build and use of an optical resonator the utility of
which was extended from that as a measurement device to a transfer cavity for actively
stabilising the laser used to generate the lattice against frequency drifts as will explained
in the closing section. The chapter will also include a note on intensity noise in optical
fibers when large powers are coupled in to them with the solution being large mode
area fibers such as Photonic Crystal Fibers (PCF) due to be installed for use in the
experiment. The final chapter will deal exclusively with optical path lengths differences,
explaining their role in enhancing the frequency noise and presenting methods used to
measure the path length differences in the experiment. Towards the end, an outlook will
serve to outline present understanding and future directions for the formal conclusion of
the work presented here.



1 A 2 - D Q U A N T U M S I M U L AT O R

The basis for a quantum simulator that we shall consider here is the optical lattice
- a dipole potential with a periodic structure engineered to trap an ensemble of atoms
and allow for their manipulation. We shall start with some basic theory regarding dipole
potentials and the realisation of an optical lattice before describing the 2-D DTQW
experiment in sufficient detail. The chapter will end with a look in to a complication that
arises in all such experiments, namely, decoherence. The mechanisms by which it intrudes
in to the experiment will be listed, two of which - intensity and phase noise - discussed in
more detail as they bear relevance to the subsequent investigation.

1.1 optical lattices
The incidence of an oscillating electric field E on atom induces in it a time-dependent

dipole moment. When suitably off-resonant, the driving field does not cause any transitions
in the atom but has the dipole moment d follow its oscillations and is then given by,

di = αijE
j (1.1)

where α is the complex atomic polarizability tensor which depends on the driving
frequency and the energies of the non-resonant excited states of the atom. When the
driving frequency is close to one of the transition frequencies, it results in what is called
the AC Stark Effect which is a shift in the energy levels proportional to,

δE = − diEi = −αijEjEi (1.2)

For isotropic media for which the polarizability is a scalar and taking in to account
that only the real part of the polarizability which is the in-phase component responsible
for the dispersive properties of the interaction, the AC shift can be rewritten as,

δE = −Re(α)I ∝ I

∆
(1.3)

where I = |E|2 is the field intensity and the polarizability becomes inversely proportional
to the difference between the driving and the transition frequency called the detuning ∆
(The exact expression for the shift can be arrived at by second-order time-independent,
non-degenerate perturbation theory with the form of the polarizability also obtained by
considering a two-level system interacting with a classical radiation field and are both
more insightful exercises). The atoms therefore feel an optical potential that follows the
spatial intensity pattern with the sign determined by the detuning. This interaction
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4 a 2-d quantum simulator

potential is the reason behind the dipole force F which is given as the gradient of the
potential,

U = δE ∝ I

∆
(1.4a)

Fµ = − ∂µU ∝ −
∂µI

∆
(1.4b)

As is evident, the characteristic of the force is conditioned on the gradient of the
intensity of the light field and the detuning - The force is directed towards the intensity
maxima which corresponds to potential minima for red-detuned light (∆ < 0) with the
force directed away from the intensity maxima for blue-detuned light (∆ > 0). Additionally,
keeping in mind that the scattering rate scales as I/∆2, a typical trapping potential is
constructed by the interference of counter-propagating laser beams of the same wavelength
and polarisation with high enough intensities and large detunings.
The optical lattice is one such trapping potential, a standing wave that is a spatially

periodic potential for atoms that is of the form,

U1 = Uo cos2(k1 a
1) (1.5)

written here using the plane-wave approximation for the one-dimensional case at some
point a1 along the e1-direction with the depth of the optical lattice given by Uo which is
proportional to the intensity of the beams, the magnitude of the wave vector along this
direction by k1 = 2π/λ, where λ is the wavelength of the light.

Being defect-free and rigid, optical lattices are nearly ideal, periodic optical potentials
with the added benefit of the degree of control they offer. This control comes in various
forms as tunable parameters such as lattice geometry, tunneling rates, on-site and nearest
neighbor interactions or special potentials which can be applied on the atoms all in low
temperature regimes and differing time scales. It is this flexibility on offer that we shall
exploit to put together our quantum simulator and induce certain dynamics (Figure 1.1).

(a) (b)

Figure 1.1: (a) Periodicity is another key property of the optical lattice which is λ/2 given
the wavelength λ of the interfering laser beams. (b) A fluorescence image of atoms
trapped in a 1-D optical lattice (Image taken from [18]).
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1.2 ultracold atoms on a 2-d lattice
In a one-dimensional lattice we are already provided with a robust tool to probe diverse

quantum phenomena. In an earlier work, the 1-D DTQW experiment was first used
to demonstrate quantum walks. This was then used to simulate the effect of electric
fields on the charged particles in lattice potentials [19] and also observe a violation of
the Leggett-Garg inequality [20]. The experiment has many more possibilities and work
continues in those directions. A natural extension of the system to consider though would
be a two-dimensional lattice. With such a system comes the promise to re-create, by
carrying out quantum walks again, a topological insulator that only in two dimensions
and above shows distinct spatial boundaries between regions with disparate topological
phases and topologically-protected edge states so called because they exist along these
boundaries [21]. In an age where topological insulators are sought after in an effort to
build solid-state devices with little to no dissipation [22, 23], cold atom systems offer
a convenient route to the same bypassing the challenges offered in their synthesis in
electronic systems and more immediately, serve as means to understand the underlying
complexity.
The two-dimensional optical lattice is created by the addition of a beam on the same

horizontal plane in a direction orthogonal to the two counter propagating beams. The
lattice can therefore be thought of as the sum of two one-dimensional potentials with
each of the counter-propagating beams interfering with the orthogonal beam creating
regions of modulated intensity at 45◦ to the respective wave vectors (Figure 1.2),

Iij = Io cos2
(

1
2 kle

l · (aiei ± bjej)
)

(1.6)

(a) (b)

Figure 1.2: (a) The top left image is the one 1-D lattice formed by two counter propagating
(Gaussian) beams here along e3 with k3 = −k1. Adding the orthogonal beam along
e2 creates an interference pattern along the 1√

2 (0, 1,±1) vector for each of the two
other beams as shown here in the bottom. (b) Summing up the resulting two 1-D
potentials gives the desired 2-D lattice potential with its discrete sites denoted by
the bounding box.
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1.2.1 Trapping, manipulation and transport of cold Caesium atoms

Having constructed the 2-D lattice in such a manner, it then becomes necessary to
design a scheme to utilize it as a trap for atoms. It starts with the atoms being first
collected in a Magneto-Optical Trap (MOT). In the most commonly used geometry
for a MOT, three pairs of red-detuned circularly polarized beams are aligned mutually
perpendicular to each other and directed at some atomic vapour at the center of a
quadrupole field generated by a set of coils in the anti-Helmholtz configuration in a
chamber that is kept at low pressure to reduce background gas collisions. The atoms
then experience a force as a result of the imbalance in the radiation pressures of the six
beams which arises due to a combination of the Doppler and the Zeeman effect. An atom
moving towards an incoming beam will see light that is Doppler shifted in to resonance
in its rest frame and so will absorb and scatter off a photon thereby losing momentum.
This occurs repeatedly over multiple cycles and in all directions resulting in the cooling
of the atom. In addition, the spatially inhomogeneous magnetic field will result in a
corresponding spatially variable shift of the hyperfine sublevels of the atom which are
consequently no longer degenerate. This shift linearly increases radially away from the
zero of the field. The circularly polarized light comes in to resonance with these different
Zeeman states depending on its helicity for the on-axis and off-axis cases which again
produces a restoring force due to photon recoil, arresting its motion. In this experiment
involving Caesium, laser light near-resonant with the D2 line is shined to cycle the atoms
in a closed transition with a repumper beam to counteract the occasional off-resonant
scattering that send the atoms out of the cooling transition and in doing so reach a
Doppler-limited temperature of 125 µK. The cloud of atoms that forms is then to be
loaded on to the 2-D lattice but only so after supplementary cooling by an optical molasses
that uses polarisation gradients [24] which further reduces the temperature to within
tens of microkelvins. At this potential depth, the trapped atom is well approximated
by the harmonic oscillator model [13]. The quantized vibrational energy levels of the
atom are then given in terms of a trap frequency 1 ωtr as (n+ 1/2) h̄ωtr. These energy
levels represent the temperature of the atom, with a hotter atom occupying the higher
vibrational levels. This conception is therefore useful in describing heating effects in the
experiment (see Section 1.3.2).

State-dependent trapping

To actually trap the atoms in the lattice, we make use of the energy level structure of
the atoms to produce a spin-dependent trapping force. For Caesium, the D1 transition
from the ground state Zeeman sublevel 2S1/2 to the excited state sublevel 2P 1/2 is of
the wavelength 894.6 nm while the D2 transition from the same ground state sublevel
to the other excited state sublevel 2P 3/2 is of the wavelength 852 nm [25]. By choosing
the wavelength of the light generating the lattice to lie between the two excited state
sublevels with mJ = ±1/2, considering the light would be red-detuned for 2P 3/2 and
blue-detuned for 2P 1/2, the dipole force would be attractive for one and repulsive for the

1 This is slightly more complicated in the 2-D case where there are two trap frequencies: ωtr and the
second, due to elliptic distortion caused by the three beam setup, given by, ωtr/

√
3



1.2 ultracold atoms on a 2-d lattice 7

Figure 1.3: (a) Fine structure splitting in the ground and excited states of Caesium. (b)The
exact potentials for each of the qubit states (see State manipulation) for the two
circular polarisations can be calculated by the reduction of the dipole matrix
elements of the total angular momentum using the Wigner-Eckart Theorem [26].
These potentials have an implicit dependence on the wavelength seen here for
values between the D-line doublet (852 and 894 nm). The wavelength for which the
combination of polarisation and states give attractive potentials and the opposite
combination of which has no effect can be singled out: 865.8 nm (Image taken from
Brakhane [27, p. 68])

other, effectively cancelling each other. Furthermore, if the beams are circularly polarized,
each ground state which due to spin-orbit coupling is given by,

|+〉 = |J = 1/2,mJ = +1/2〉
|−〉 = |J = 1/2,mJ = −1/2〉

(1.7)

is exclusively influenced by σ+ and σ− respectively (Figure 1.3(a)) as qualified by a
quantisation axis defined by the magnetic field vector of a guiding field here oriented along
the two counter-propagating lattice beams. Incorporating the additional interaction with
the nuclear spin in the presence of this magnetic field that causes hyperfine splitting and
calculating the dipole potentials for the two polarisation components and the corresponding
hyperfine levels formed from the 2S1/2 ground state fine structure (more under State
manipulation), the characteristic wavelength was determined to be 865.8 nm and is referred
to as the "magic" wavelength (Figure 1.3(b)). This paves the way for state manipulation
and our novel state-dependent transport of the atoms trapped in the lattice.

State manipulation

The hyperfine splitting of the 2S1/2 ground state presents with us with a convenient
basis to encode our qubit in for carrying out coherent manipulations on, being long-
lived and also at 9.2 Ghz apart, can be coupled by microwave radiation. The hyperfine
substructure of the energy levels is formed by the interaction of the atom’s nuclear spin
I with the sum of its orbital angular momentum and spin angular momentum denoted
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as J in an external magnetic field. For Caesium with I = 7/2, this gives us as the two
outermost states,

|↑〉 = |F = 4,mF = 4〉
|↓〉 = |F = 3,mF = 3〉

(1.8)

which forms our pseudo spin-1/2 system. These states however cannot both be addressed
with a single pure circular polarisation component each as is evident when the above
states are rewritten in the fine structure basis,

|↑〉 = |I = 7/2,mI = 7/2〉 ⊗ |+〉

|↓〉 =
√

7
8 |I = 7/2,mI = 7/2〉 ⊗ |−〉 −

√
1
8 |I = 7/2,mI = 5/2〉 ⊗ |+〉

(1.9)

The |↓〉 state carries some sensitivity to the σ+ polarisation owing to the fact that it is
a differentially weighted superposition of the two ground states while the |↑〉 state has no
such contribution from the other state and so is decoupled from the σ− polarisation. More
intuitively, the potentials for the two states as shown earlier in Figure 1.3(b) showing
this "crosstalk" written down are,

U↑ = Uσ+

U↓ =

√
7
8Uσ− −

√
1
8Uσ+

(1.10)

But regardless of the lack of wholly distinct potentials for the two atomic species, an
optical lattice of left and another of right circular polarisation should, in principle, permit
individual control of the absolute position of the atoms in the trapping region.

State-dependent transport

Drawing from previous realisations [28–30] of state-dependent transport, the implemen-
tation in first the 1-D and later in the 2-D DTQW experiment improves upon them by
the use of a novel high-precision, large bandwidth polarisation synthesizer [31] that offers
greater adjustability going beyond just relative shifting of the two spin components by
only at most one lattice site to enabling atom repositioning to within 1Å. This was done
by building on the concept discussed previously of having independent optical lattices
with orthogonal circular polarisation to trap the two spin states and adding the ability to
translate the lattice by changing the phase of the interfering light fields. This has allowed
from atom sorting to obtain low entropy ensembles of atoms [18] to quantum walks [15,
20].

Synthesis of the polarisation is carried out on the counter-propagating beams which
can re-imagined as,

E1 =
1√
2
(E↑e

iθ↑eσ+ +E↓e
iθ↓eσ−)eikix

i

E3 =
1√
2
(E↑e

iφ↑eσ+ +E↓e
iφ↓eσ−)eikix

i
(1.11)
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with amplitude E↑,↓, phases as θ↑,↓,φ↑,↓ and the Jones vector for circular polarisation
eσ± = 1√

2(1,±i, 0). Light in one direction interferes with light of the same circular polar-
isation from the opposite direction and like detailed before with the third perpendicular
beam which is only linearly polarized and can be thought of as a reference beam forming
the 2-D lattice. More accurately, they form a 2-D optical "superlattice" with two separate,
overlapping sub-lattices made of light of different circular polarisations.

As can be easily pictured in the 1-D case, a phase-shift in either one of the interfering
beams causes a translation of the standing wave potential with a change of over the full
range of 2π corresponding to a translation by λ/2 which is one lattice site. The same is
possible in the 2-D case by keeping a constant phase difference with the reference beam
and changing the phase of the other beams to move the lattice by one site, which has
now the extent of λ/

√
2, along the diagonals -

Shift along 1√
2
(0, 1,+1) = λ√

2
θ↑,↓(t)

2π

Shift along 1√
2
(0, 1,−1) = λ√

2
φ↑,↓(t)

2π

(1.12)

By ramping the phase of only one of the polarisation components for equal amplitudes
of the synthesized beams, only one of the two sub-lattices can be moved and so only one
of the two states of the trapped atoms it confines (Figure 1.4(a)). A combination of two
phase shifts facilitates arbitrary trajectories of transport for the lattice (Figure 1.4(b)).
This is practically made possible by the use of acousto-optical modulators with which
each individual trap beam is controlled in terms of both amplitude and phase, stabilised
by intensity and optical phase lock loops [32].

1.2.2 Quantum walks

The schema to trap and transport atoms in the 2-D DTQW experiment was designed
for the core objective of executing quantum walks. First proposed by Feynman in his
checkerboard model [33], the quantum random walk is similar to its classical analogue
but in contrast to it, the randomness arises due to the now predominant quantum nature
of the walker. Instead of definite states as the classical walker will be found in and an
external probabilistic event like a coin flip determining the direction of the step, the
quantum walker is in a coherent superposition of states and every step is a unitary
evolution of the walker with any measurement of the internal state being destructive.
The stochasticity is therefore inherent. The walker, which can be thought of as a wave
function, as it progresses undergoes multi-path interference which spreads the probability
distribution (Figure 1.5(a)) ballistically with O(n) where n is the number of time steps
as opposed to the classical scenario where it goes more slowly as O(

√
n) [34]. Quantum

walks can so in principle offer a polynomial or in some cases even exponential speed up
in algorithms that employ randomisation [35].
The 2-D DTQW experiment aims to carry out quantum walks in position space over

discrete time steps with the walkers being the cold, neutral Caesium atoms in the 2-D
optical lattice. The walk starts with a coin operation which sends the atom in to a coherent
superposition of the qubit states, |↑〉 and |↓〉 (as introduced in eq. 1.8), achieved by means
of microwave radiation that resonantly couples the two states. This is followed by a shift
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Figure 1.4: (a) State-dependent transport - Changing the phase of one of the polarisation
components in one arm shifts a sub-lattice as can be visualised here with the
sub-lattice shown in orange moving across 1√

2 (0, 1,−1) vector since only the right
circular polarisation component of the HDT3 beam coming from the right ((0,0,-1)
direction) was varied with respect to the HDT2 beam coming from below ((0,1,0)
direction). (b) State-independent transport - Changing the phases in a certain
sequence can be used to trace very specific paths like one in the shape of a hexagon
shown here with actual atoms. Since only two phases for the opposite polarisations
were varied, all atoms irrespective of their internal state are moved.

operation by state-dependent transport which moves the atom by one lattice site in a
direction that is subject to the spin state. Iteratively applying the two operations would
mean the atomic wave function splits and spreads over multiple trajectories producing the
interference and the associated distribution of the position of the atoms across the lattice.
For this, it is essential that the transport operation is as fast as it can be without creating
excitations that can decohere the superposition and reduce the interference contrast. This
necessitates the use of optimal control [36] with methods like bang bang being used for
atom transport [37]. The number of steps taken too is limited by decoherence caused by
light shifts that can be overcome to a degree with resolved sideband cooling to the 3-D
vibrational ground state [38]. This is currently at its initial level of implementation in
the 2-D experiment and needs to be optimized before attempting quantum walks with
optimal control transport which remains an endeavour for the future.
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(a) (b)

Figure 1.5: (a) Caesium atoms after a 20-step quantum walk show a skewed distribution as
opposed to the classical random walk distribution shown here in as a dashed
line. A theoretical model that assumes a 5% loss of coherence per step predicts a
distribution (represented as horizontal lines) that agrees well with the experimental
data (in blue) (Image taken from [38]). (b) The atom interferometer is operated
by alternating spin rotations and spatial translations which altogether resembles a
diamond in space-time (Image adapted from [39]).

Planned upcoming experiment: Single Atom Interferometer in 2-D

One of the more immediate goals of the 2-D DTQW experiment is the set up of
a single atom interferometer, which like the quantum walks, has been shown to be
practically realisable in the 1-D DTQW experiment [39]. A tightly localized single atomic
wave function is prepared in a superposition of its spin states before being split and
transported along two spatially separate paths and then recombined. The accumulated
phase difference as a result of this transport is then extracted by a Ramsey probe [40].
Such an interferometer has been used for precision measurements such as that of external
forces on atoms with the promise of being an effective tool to detect the Casimir-Polder
force or demonstrate the Sagnac effect. In the 1-D experiment, the interferometer was
operated by translating the delocalized wave function back and forth in the polarisation
synthesised lattice in a geometry that resembles a diamond in space-time (Figure 1.5(b))
along with a variation of the same. The addition of an extra degree of freedom with
the second spatial dimension in the 2-D experiment should allow for more complicated
geometries which would be of great interest. Also, the interferometer mode of operation
resembles part of the same for quantum walks and is therefore a highly relevant stepping
stone.
However, in all these experiments involving coherent manipulations, the challenge

of decoherence looms large and so it becomes crucial to identify, quantify and to the
counteract any physical mechanisms responsible. The task starts with knowing and
learning of the myriad sources of decoherence.

1.3 factors limiting coherent control
There are no known quantum systems in the mesoscopic and further to the macroscopic

limit which are completely decoupled from external degrees of freedom termed as their
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environment. Imperfect isolation renders the system unable to maintain its coherence
indefinitely causing an evolution of the system from a pure quantum state into a statistical
mixture of states. Its dynamics can no longer be treated as unitary and reversible. The
causes for what is a loss of information to its surroundings are the fundamental limiting
factors of any experiment involving such a system with the 2-D DTQW being no exception.
Phenomenologically, this decay of coherence can be introduced as damping terms in the
optical Bloch equations describing the dynamics of a two level atom interacting with an
external field,

〈u̇〉 = δ〈v〉 − 〈u〉
T2

〈v̇〉 = −δ〈u〉+ ΩR〈w〉 −
〈u〉
T2

〈ẇ〉 = −ΩR〈v〉 −
〈w〉 −wst

T1

(1.13)

with δ being the detuning, ΩR the generalised Rabi frequency, T1 the longitudinal
relaxation time and T2 the total inhomogeneous transverse decay time. The ensemble
averages of the components of the so-called Bloch vector are written here with w being
the difference in populations each of which is found as elements of the main diagonal of
the density matrix of the two level system while u is twice the real part of the sum of
the off-diagonal elements (redefined with a phase determined by the detuning) which are
called the coherences representing the system response at the driving frequency and v is
twice the imaginary part of the their difference.

The longitudinal relaxation time T1 gives the time in which the population difference
decays to a stationary value wst as governed by off-resonant scattering of photons from
the lattice beams for instance. This can bring about a transition out of the two-level
system which puts an upper bound on the lifetime of the qubit states. A full suppression
requires changing the wavelength of the light or reducing the dipole potential by lowering
the intensity both of which are unfeasible. On the other hand, the total homogeneous
transverse decay time T2 is given by the polarization decay time T ′2 and the reversible
dephasing time T ∗2 as,

1
T2

=
1
T ′2

+
1
T ∗2

(1.14)

The reversible inhomogeneous dephasing T ∗2 occurs because the resonant frequencies
are shifted for the many atoms across the ensemble due to the interaction with the
environment. This can cause the Bloch vectors of each atom to precess with different
angular velocities and so go out of phase relative to each other (Figure 2.1). This dephasing
can ultimately be corrected for by techniques such as spin echo [41] but the homogenous
dephasing is difficult to correct for at anywhere but the source.

1.3.1 Decoherence mechanisms

Decoherence has several physical origins in the DTQW experiments all of which have
been discussed in detail previously [43]. A quick overview of the same with the latest
developments can lead us to the principal focus of this thesis.
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Figure 1.6: Over the evolution of a quantum system, interaction with the environment can push
the elements of the system out of sync with each other in what is called dephasing.
Each element, represented by a vector in the Bloch sphere [42] shown here of an
atom prepared in a superposition of the two possible states, picks up a different
phase.

The shifts in the resonance frequencies of the two spin states can be caused by scalar
differential light shift that is directly proportional to the laser intensity and inversely so
with the detuning. There is also its vectorial counterpart determined by the ellipticity of the
polarisation or imbalance in power between the two polarisations used for the synthesised
lattice. One cause of the ellipticity of the polarisation is known to be birefringence of the
material of the ultra-high vacuum glass cell that sits inside the science chamber within
which the atoms are trapped. Despite the glass being designed to be of low birefringence
in the 2-D experiment, an induced vectorial light shift was recently detected though
the effect was certainly smaller by an order of magnitude compared to the same in the
1-D experiment which lacks this type of glass cell. It was also demonstrated that this
vectorial light shift could be compensated for by the scalar light shift with a noticeable
improvement in the measured coherence times of atoms in free fall.
Fluctuations in the guiding magnetic field originating in the driving current can be

responsible for spin decoherence, with the same being caused to a smaller extent by noise
in the gradient magnetic field that can also bring about position-dependent dephasing.
With stabilisation of the currents driving the coils being carried out and a Mu-metal
shielding around the science chamber to cut out any additional external magnetic fields,
their adverse effect has been largely stamped out in the 2-D DTQW experiment. A
new investigation using Ramsey interferometry that involved sitting on a point on the
Ramsey fringe by fixing the microwave pulse phase, it was found that the shot-to-shot
magnetic field fluctuations in terms of frequency shifts for the same Ramsey duration
over several runs had an RMS spread of around 30 Hz which being small enough is well
within requirements.

The potential crosstalk (eq. 1.10) leads to a modulation of the potential depth for
the |↓〉 states which can heat them out of the lattice. This motional excitation of atoms
during transport can be curtailed by optimising the transport phase ramp shape that
will be implemented. In the same setup for transport, maintaining high polarisation
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purity and damping out polarisation jitter of the synthesized beams also is essential.
This has been largely dealt with by the use of high precision optics and practices such
as polarisation maintainance extracting extinction ratios that are in the order of 10−5.
Pointing instabilities that refer to beam orientation can similarly cause trap depth
modulation, change lattice geometry but considering the extensive temperature control
of the laboratory environment and limited mechanical vibrations of the optical tables,
this is of little concern.
Spontaneous scattering of lattice photons can induce recoil heating of the atoms with

the elastic type called Rayleigh scattering causing pure spin dephasing while the inelastic
type called Raman scattering mixes spin populations. In the same vein, collisions with
the background gas limits lifetimes.

1.3.2 Laser noise as a source of decoherence

Of the many ubiquitous sources, the noise from the laser used to cool and trap the
atoms can be very significant in its presence and influence. The noise finds its roots in
the core functioning of the laser device which, depending on the control on offer, can be
dealt with in situ or is a brick wall that requires going around by means of external noise
suppression. This demands inspection and we start by identifying two types of noise that
we can attribute to the laser - Intensity and Frequency Noise.

Intensity Noise

Fluctuations in the intensity of the laser can be due excess noise in the pump source
which could be noise in the current driving the pump as is usually the case if they are
diode lasers, relaxation oscillations in the gain medium because of changes in the pump
power causing the output power of the pumped laser reach a steady state only after some
initial transient oscillations or thermal fluctuations within the gain medium. Cavity losses
which is a combination of losses at mirrors which are not perfectly reflective, scattering
in the beam path and diffraction losses are all not constant over time and so can also be
responsible for the noise.
Whatever the origins, it is clear that the abrupt changes in the laser intensity causes

the modulation of the lattice depth. This heats the atoms out of the trap and so we
would like to know how long we can hold on to atoms, choosing to tackle the noise if this
time not long enough. The calculation of heating times made possible with first-order
time-dependent perturbation theory should give us an estimate of the limit we have with
regard to storage times of the atoms [44]. The heating rate is given by the transition
rates between the vibrational states of the trap separated by energies expressed in terms
of the trap frequencies.

We start with the Hamiltonian for Caesium with massmCs trapped in a one dimensional
lattice potential,

H =
p2

2mCs
+

1
2 mCs ω

2
trx

2 (1.15)
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The spring constant, tucked away in the trap frequency ω2
tr = kom

−1
Cs, is proportional to

the time averaged laser intensity Io and exhibits a fractional change ε(t) = I(t)−Io
Io

due
to the noise. This is added as the time-dependent perturbative term,

H(t) =
p2

2mCs
+

1
2 mCs ω

2
tr x

2 +
1
2 ε(t)mCs ω

2
trx

2 (1.16)

The average rate at which a Caesium atom transitions from a state |n〉 to |m〉 in a time
interval T is,

Rm←n ≡
1
T

∣∣∣∣∣−ih̄
∫ T

0
dt′

1
2 ε(t

′)mCs ω
2
tr x

2 eiωmnt
′
∣∣∣∣∣
2

(1.17)

We assume the averaging time is short compared to the time over which the populations
in the levels vary but large in comparison with the correlation time of the fluctuations,
allowing the extension of the range of integration to ±∞. Then, using the transition
matrix elements (m 6= n) of x2 and ωn±2,n = ±ωtr, the transition rates are given by

Rn±2←n =
πω2

tr

16 Sε(2ωtr) (n+ 1± 1)(n± 1) (1.18)

Sε(ω) is the one-sided power spectrum of the fractional intensity noise written from
its autocorrelation using the Wiener-Khintchin theorem. The power spectrum more
specifically goes with the second harmonic of the trap frequency, indicating that we have
a parametric heating process whose average rate is,

〈Ė〉 =
∑
n
P (n, t)2 h̄ ωtr (Rn+2←n −Rn−2←n)

=
π

2ω
2
tr Sε(2ωtr) 〈E〉

(1.19)

where P (n, t) is the probability that the atom will occupy |n〉 at time t, the average
energy is just 〈E〉 = 〈E(t)〉 = ∑

n P (n, t)(n+ 1/2) h̄ ωtr. This average energy increases
exponentially,

〈Ė〉 = ΓεE (1.20)

The rate constant Γε ≡ T−1
I (sec) = π2 ν2

tr Sε(2νtr) is written in terms of νtr which is the
trap oscillation frequency in hertz and TI is the time in seconds it takes for E to increase
by a factor e called the energy e-folding time. The measurement of the power spectrum is
then all that is required to know the heating rate given a certain noise performance of the
laser in use for a particular trap frequency that scales as

√
P for a power P of the light 2.

The raw laser noise can be effectively reduced by fine-tuning the laser and further
suppressing it with a suitable system of opto-electronics. This has been installed previously
and put to use in the 2-D experiment [46, 47]. For this reason, this thesis will report the
laser intensity noise but will not cover its stabilisation and primarily focus on the other
kind of laser noise, the one in its frequency.

2 It has to be noted that for higher dimensional confinement, like in two dimensions in the 2-D lattice
the form of the power spectrum is complicated by the fact that there are two trap frequencies (ν1, ν2)
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Figure 1.7: Intensity and Phase (Frequency) noise induced heating leads to a loss of atoms
from the trap over time that can be numerically modelled with the Fokker-Planck
equation. The influence of phase noise is especially on display here (intensity noise
plays a smaller role that is not visible here) leading to a smaller storage time of 2.2 s
when it is high (extracted from the green data points with the dashed-line fit) than
the case when the noise is relatively lower (blue data points with the solid-line fit)
giving a storage time of 6.6 s. The noise was exaggerated by adding electronic phase
noise to the drivers of the AOMs in the experiment. The dashed grey line is the
survival of the atoms purely limited by background gas collisions for comparison.
(Image adapted from Robens [48]).

Frequency Noise

This is related to fluctuations of the laser light’s optical frequency and is interchangeably
referred to as its phase noise. The oscillating light field of the laser either of a single
frequency or one of multiple frequencies it could be operating in can vary in its optical
phase in a manner that could be a random walk, a systematic drift or some combination
of noise. The noise profile is known to fix the linewidth of the laser which is the width of
the main peak in the power spectrum, usually at above the Schawlow-Townes limit if it is
not completely white. This means the output of even a single-frequency laser is not a delta
function centered at one frequency but spread out across a range of frequencies. Laser
line-widths are therefore a measure of the degree of phase noise with narrow line-width
lasers being preferred for exactly this reason that they have a low phase noise and so
would have high spectral purity. To achieve as low a noise in this respect would be ideal
for the experiment that insists on having light of precise frequencies and is sensitive to
fluctuation.

Additionally, this noise manifests in another form in this experiment. Switching to an
interferometric picture, the two counter-propagating beams generating the lattice along
one dimension can be thought of as two arms of a Mach-Zehnder interferometer. If there is

and the intensity fluctuates possibly differently in each of them (see Supplementary material in [45]).
Assuming the noise processes to be independent and the intensity fluctuations to be ε1 and ε2 in each
trap frequency, the power spectrum is found to be

Sε(2ν) = r2Sε1(2ν) + (1− r)2Sε2(2ν)

where r = ν2
1 /(ν2

1 + ν2
2 ) is the trap frequency asymmetry parameter. The general argument and conclusion

presented in the section above though still holds and serves to highlight the the need to quantify intensity
noise.
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a mismatch in the length of the arms of the interferometer and the frequency of the light
is varying, there is a ensuing shift in the interference pattern. In other words, frequency
fluctuations cause displacement of lattice position for an imbalance in the optical path
lengths of the beams of the lattice. This is expressed as a phase shift δφ of the lattice
given a non-zero path difference δL and a variation in frequency δν,

δφ = δL
2π
c
δν (1.21)

That translates in to a change in the average position δx of the lattice,

δx =
δφ

2π
λ

2 (1.22)

written knowing that a phase shift of 2π is shift by λ/2 from one lattice site to the next
(To distinguish the phase shift of the lattice referred to here from the intrinsic phase noise
of the laser, the latter will be exclusively referred to as frequency noise from here on).

Frequency noise of the laser is hence a significant source of common-mode noise in the
experiment which in the range of the trapping frequency would mean motional excitation
of the trapped atoms and their eventual loss (Figure 1.7) because of the position jitter of
the lattice. The heating rate of the atoms can be arrived at by a procedure similar to the
one used before, modelling it as a perturbation of the trap center xo,

H =
p2

2mCs
+

1
2 mCs ω

2
tr(x− (xo + δx)2 (1.23)

Giving the heating rate,

〈Ė〉 = π

2 mCs ω
4
tr Sx(ωtr) (1.24)

where Sx(ωtr) is the one-sided power spectrum of position fluctuations 3. Here there is
no exponential heating and it is independent of the average energy of the atoms. Scaling
with the fourth power of the trapping frequency, it becomes large for deep traps used
in the experiment. It becomes imperative, therefore, that we characterize the frequency
noise of the laser used for the lattice. The dominating noise influence is mainly again
from technical sources such as from the nature of the function of the laser’s internal
components. External vibrations and thermal drifts can also influence the frequency noise
in the absence of good damping. It should be noted that there is also position jitter
of the lattice caused by the use of AOMs for the polarisation synthesis in the DTQW
experiments. This constitutes differential phase noise added on top of the laser frequency
noise and has been measured earlier for the 2-D experiment [32].

But it is not enough that we measure the frequency noise of the lasers, since as discussed,
they are made much more appreciable by the finite path length differences. In addition
therefore, we need to measure the path lengths to quantify the full reach of their effect.
In orders of magnitude, the position jitter is in the order of 10−12 m, calculated by

3 Similar to that of intensity noise, the power spectrum for position fluctuations will have a more involved
form for a 2-D lattice accounting for the extra trap frequency.
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substituting for a phase shift of 105 rad assuming an optical path difference of 10−2 m
between the two counter-propagating arms in eqs. 1.21 and 1.22. In the best case scenario,
we can expect the jitter to be restricted to only a few ångströms, limited by other effects
such as the action of the AOMs [32]. The wavelength being in the order of a micrometre,
this corresponds to a λ/104 stability of the lattice for which the optical path differences
should be less than 1 metre. The path lengths will have to be measured to determine if
they meet this requirement and adjusted if they do not, with the goal of reducing them
to less than a metre.

overview
The objective of achieving quantum walks on a lattice requires precise engineering

of the techniques and instrumentation used, particularly in terms of their stability and
versatility. The 2-D quantum walks experiment recently upgraded its laser source to
two Titanium-sapphire (Ti:Sa) lasers that each output upwards of 5 W. Currently, one
is in use for the MOT while the other, for the lattice. The high power of the new
laser when used for the lattice ensures a potential depth of approximately 1 mK that
prevents thermally induced hopping between lattice sites. The same power can also be
homogenously distributed over a large volume. This promises better homogeneity of the
trapping potential which is needed for performing the atom interferometer or quantum
walks. It also becomes possible to achieve coherence times of at least 10 ms. Integrating
the laser into the experiment to achieve these coherence times and ensuring high stability
during experimental sequences involves establishing whether the existing setup can
accommodate the devices, supplementing them with further upgrades or additions if
necessary. Analog and digital feedback control of laser power and careful, high precision
polarization synthesis involving an optical phase locked loop have hitherto worked towards
mitigating the intensity fluctuations and polarization instability of the laser light reaching
the atoms. But, there still remains the question of the inherent frequency noise of the
lasers and its suppression by ensuring the equalization of path lengths. For this, we begin
with a general characterisation of the lasers.



2 T I : S A L A S E R S Y S T E M

The lasers to be evaluated are two Titanium:Sapphire (Ti:Sa) lasers, the Matisse CS
and Matisse CR 1. The Matisse CR with an internal electro-optical modulator (EOM)
has been set up for the MOT and the Matisse CS with an internal reference cavity set
up for the lattice. The power output offered by the lasers at the set frequency is crucial
for achieving optimum trap depth as is their promised single-mode operation, linewidth,
noise performance and lock stability. In lieu of these requirements, this chapter will detail
the efforts to set-up, measure and optimise them after first a brief description of the
device, its internal elements and general function.

2.1 hardware in use
Lasing in principle is achieved by having a gain medium that is pumped by an adequate

source of light that is then amplified by the medium through feedback by an optical
resonator. The self-exiting fields are endowed with special properties like high spatial
coherence - they have a very small spot-size that comes close to an idealised light ray
with a Gaussian transverse intensity profile (for the fundamental laser mode). It also
has high temporal coherence - it has a limited spread in the frequency domain. The
laser’s single-mode operation is conditioned on the necessity that one of the resonator
eigen-modes coincides with the center-frequency of the gain medium and the bandwidth
of the medium is small relative to the free spectral range (FSR) of the resonator which is
the difference in frequencies of its discrete modes. It is rarely the case though that the
exiting light fields are of a single frequency. They instead possess a spread, the extent
of which depends on the gain medium in use. In case of the Ti:Sa lasers where the
medium is the Ti:Sa crystal which covers a specified wavelength range of over 1000 nm
(300 GHz), this large a gain bandwidth would mean a vast number of modes can oscillate
for any practical length of the resonator. To limit this spread in the frequency, additional
frequency-selective elements need to be introduced into the resonator. The Matisse lasers
have such elements for this very purpose arranged to have a loop geometry forming a
ring resonator to aid amplification -

Birefringent filter : This element exploits the effect of birefringence to narrow the
range of frequencies in which the lasing modes can exist. It consists of a stack of quartz
plates oriented at the Brewster angle to let through light that is only p-polarised which
sees no reflection off the plates at this angle whereas the s-polarised light will encounter
high losses due to the reflection. The p-polarised light which enters the arrangement,
then is split into the ordinary and extraordinary ray due to birefringence of the positive
uniaxial crystal that is quartz. The two rays grow out of phase due to having different
phase velocities through the plates, changing the polarisation of the beam. For certain

1 both manufactured by Sirah

19



20 ti:sa laser system

wavelengths the phase will be retarded by exactly one wavelength leaving the polarisation
state unchanged. So for a given orientation of the optical axis which can be tuned by
means of a stepper motor attached to the mount of the plates, only a certain number
of wavelengths will see no change in their polarisation and will propagate out of the
filter while the other wavelengths are reflected away. This element narrows the effective
frequency range to approximately 50 GHz which is still a broad range to sift through
which calls for ancillary elements.

Thin Etalon: A low finesse, solid state Fabry-Perót etalon of a fixed length with an
FSR of 250 GHz, this element acts as another bandpass filter. It has a motor-controlled
mount that allows control of the horizontal tilt of the angle of the etalon. This can be
used to pick one of the etalon modes which has to be the same as the laser ring resonator
modes. To ensure this, the reflection from one of the facets of the etalon is monitored
and has a control loop associated with to adjust the etalon position in order to keep the
ratio of the intensity of this reflection with the total laser intensity is kept constant. The
frequency range is chosen by picking between the etalon modes with further filtering
coming from the next element.

Piezo Etalon: This is another Fabry-Perót etalon but with FSR of 20 GHz. It is
made of two prisms whose parallel bases face each other with a small air gap with one
prism mounted on a piezoelectric actuator to control the thickness of this gap. Using
the lock-in technique which involves dithering the piezo here at the frequency of 1 kHz,
the center frequency of longitudinal mode of the etalon is maintained at the frequency
of the laser resonator mode by monitoring the output of the etalon where the intensity
variation is a translation of the frequency change. The cases of the etalon being either
in or out of alignment would result in two distinct signals - one which corresponds to a
scanning across the peak of the etalon mode giving a symmetric feature in the shape of a
double U and the other being an assymetric feature characteristic of sitting on the slope
of the mode. The control loop seeks to hold the etalon at the position which gives the
symmetric signal for that is where the etalon mode matches the laser resonator mode.
This further narrows down the frequency range of the output of the thin etalon.

Woofer and Tweeter : The Woofer is also referred to as the slow piezo since it is
a piezo-mounted tuning mirror that has an affiliated low-bandwidth control loop. It is
used to control the length of the laser ring resonator and therefore also plays a role in
determining the resonant modes. The Tweeter also works to change the optical path
length of the beam in the cavity but is used for correction in the mid-range frequencies
and so is also called the fast piezo. In device models which allow for an optional low-finesse
reference cavity to go with the rest of the elements, the Tweeter works with the Woofer
to counteract fast perturbations when locking to a mode of the reference resonator. The
Woofer then behaves more like an auxiliary element - which is used to scan for the
resonator modes prior to locking and post-locking, to keep the resonator at the center of
its dynamical range to cancel out slow drifts of the laser in reference to the cavity. The
two mirrors therefore help fix the frequency of the laser to a mode of the cavity using
side-of-fringe or Pound-Drever-Hall locking methods, giving a fourth and final level of
filtration of the emitted laser frequencies to guarantee its single-mode operation.
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The laser also has a Faraday isolator made of a Terbium-Gallium-Garnet (TGG) crystal
plate in a magnetic field that uses the Faraday effect to prevent two counter-propagating
modes of the same frequency from co-existing in the laser which is made possible by
its ring geometry. Reflecting between two mirrors and a partially transmitting optical
element placed in a section of the path in the ring, a beam of the filtered frequency exits
the device housing. This housing is isolated from acoustic vibration, has cooling pipes
routed around some elements such as the Ti:Sa crystal to allow liquid coolant to flow and
carry away any heat produced. The device also allow for complete purge of the internal
atmosphere with Nitrogen gas to prevent the accumulation of dust, eliminate moisture
and any organic deposits on the critical optics. The laser comes with a controller with the
electronics necessary for driving the various piezos and implement the numerous control
loops. The controller carries both analog and digital interfaces to manipulate the various
elements. From amongst the analog inputs, one that goes through an on-board Digital
Signal Processing (DSP) has proven particularly useful. The digital interface allows a
personal computer (PC), which here is the lab computer that is the central control unit
in the experiment, to connect to the controller and send commands over a serial port
using either a provided graphical user interface (GUI) or using a user-defined software.

With locking to a specific frequency made possible by the above elements, the lasers are
prepared by first ramping up the power of the Diode-Pumped Solid-State (DPSS) pump
lasers (Spectra-Physics Millenia eV ), lasing at 532 nm, up to a model-specific maximum
of 25 W and re-adjusting its steering mirror that lies in its own, separate housing till the
power readout of an integrated photodiode hits an optimum. The Ti:Sa lasers now being
pumped are ready to be tuned and locked. The Matisse CR controller is fed with a Cesium
spectroscopy signal through the one DSP input. The signal is obtained in the first place by
using the light from the CR. The listed elements are used sequentially starting from the
Birefringent filter to the woofer/slow piezo to narrow down the frequencies to the range
which excites the various transitions of Cesium. A built-in Analog-to-Digital-Converter
(ADC) digitises the signal and is available for live viewing in the GUI that then allows
us to set the lock-point and subsequently lock the laser. Since the CR is to be used
for the MOT, its frequency must be set for the "cooling" transition of Cesium which is
the D2 line. The spectroscopy signal has distinct features corresponding to the various
transitions with the one associated with the |F = 4〉 → |F ′ = 5〉 transition being chosen
for locking this laser at the frequency which is around 351.72188 THz. The Matisse CS - a
model that comes with the optional reference cavity with side-of-fringe locking - is tuned
to output light at the "magic" wavelength of 865.8 nm, or more precisely in frequency,

Figure 2.1: Schematic of the Matisse CS
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346.18916 THz using the readout of a High Finesse wavemeter and is utilised as the
source for the lattice beams.

2.2 laser intensity noise
Having learnt of the laser function and locked the laser to the desired frequency,

the obvious next step was its characterisation starting with the intensity noise. The
fluctuations of the laser power δP (t) are usually quantified relative to the average power
〈P 〉 called the Relative Intensity Noise (RIN). Conventionally, the RIN2 is reported which
is exactly defined as the ratio of the mean square optical intensity deviation in a 1 Hz
frequency bandwidth at a specified frequency and average optical power to the square of
the average optical power,

RIN2 (1/Hz) = 〈δP
2〉

〈P 〉2
(2.1)

The intensity fluctuations are measured along a range of frequencies with the resulting
one-sided power spectral density normalised by the average power given by,

SI(ν) =
2
〈P 〉2

∫ +∞

−∞
〈δP (t) δP (t+ τ )〉 exp(i2πντ ) dτ (2.2)

This is the sought after power spectral density of RIN but it does not include what is
likely to be measured since that would be an overall noise with two more components
over the pure laser intensity noise which is the thermal (electronic) noise and shot noise
that need to be subtracted away for a precise estimate of the RIN. The measurement of
this overall noise of the Matisse lasers was carried out when they where first installed
using a Network Analyser (Agilent/HP 3589A, Range: 10 Hz to 150 MHz at 1 MΩ input
impedance), analysing the DC signal from a photodetector (Thorlabs PDA10A-EC,
Bandwidth: 150 MHz) placed as close as possible to the output of the laser with no
intervening optics and the pump lasers at their full power of 25 W. The spectrum
obtained of one of the lasers (Figure 2.2), showed peaks at 50 Hz and its harmonics which
is noise from the power-line. There was a small and wide peak at around 1 kHz, the first
indication of noise contribution due to the function of the device itself since we know
one of the internal elements, the piezo etalon, is active at this frequency. It had a more
prominent peak at 2 kHz which could be the transient relaxation oscillation caused by a
change in the pump power which are usually found in the kHz regime. Several smaller
peaks were also to be found in the 10 kHz to 1 MHz range which could be either due to
action of the internal components or completely spurious. Regardless of the exact origins
of the various peaks, comparing this RIN spectrum which is of the Matisse CS used for
the lattice to that of the previous laser in use (the Coherent MBR), we see the noise
level is two orders of magnitude smaller in the entire range of frequencies up to 100 kHz
beyond which we see the roll-off to the shot noise limit. This inference is backed by the
values acquired by integrating the RIN in a certain frequency range called the integrated
RIN which for the Matisse CS was 0.106% (10 Hz - 1 MHz) to the 0.226% (10 Hz - 1 MHz)
of the Coherent MBR. With this marked improvement already, the analog and digital
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Figure 2.2: The RIN power spectral density, containing also the background thermal/electric
noise and the shot noise, as measured for the old Coherent MBR and its replacement
the Matisse CS for use as the source for the lattice beams.

intensity stabilisation control loops that are in place downstream in the experiment are
less stressed and with recent enhancements [47], can potentially provide an unprecedented
noise floor for the experiment.
A caveat must be included here - this RIN was measured early in the life of the

Matisse CS and its pump laser. Over the duration of a year, the system performance
noticeably changed with the laser degrading in terms of its noise performance. A regular
high frequency noise feature was noticed when a photodiode signal was monitored on an
oscilloscope. The reason was traced back to the Millenia pump laser in use after their
RMS power was logged for a period of time. Consistent excursions from a more acceptable
RMS of 0.01% to one in excess of 0.2% were noticed that did not improve with suggested
optimisation protocols but did reduce only when the operating power was reduced from
25 W to 22 W. Since this was not ideal, the pump laser was subsequently exchanged
along with the pump laser for the Matisse CR (MOT) laser which also was learnt to
possess a technical glitch. It remains to be seen if the issue has been resolved.

2.3 intensity noise in optical fibres
Beyond the intensity noise of the lasers themselves, another form of intensity noise

presents itself when tasked with the handling of the high powers (in excess of 5 W)
that are now available. Light from the lasers needs to be transported via fibres from
the laser to the experiment ensuring that it is in a single mode, usually the TEM00
mode, which allows the focusing of laser beams onto the atoms at the diffraction limit
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while also maintaining the polarization purity. This is presently done with a conventional
single-mode, polarisation maintaining step-index fibre in the experiment into which light
with powers up to 1 W is coupled in. Transporting power of more than 1 W however
brings with it technical challenges like the effect of Stimulated Brillouin Scattering (SBS)
because of their small mode field diameter which results in large intensity noise that
can heat out atoms from the trap. The extent to which this plays a role was previously
determined for this experiment. Brillouin scattering is a third-order non-linear process
involving an inelastic collision between a photon and a phonon generated in the fibre
by electrostriction by the same photons. An incoming photon is back-scattered off the
phonon, being also shifted in frequency. The effect grows non-linearly and is stronger
for higher optical powers when it can become a stimulated process with the phonon
population increasing substantially. Above a certain threshold power, the now Stimulated
Brillouin Scattering reflects back most of the coupled light. This power has a particular
dependence on the effective mode area A and length L of the fibre as given by the
approximation [49],

PT ∝
A

L
(2.3)

The maximum power that can be sent into the fibres consequently grows with the mode
area of the fibres but falls with its length. The fibres in use in the lab have a mode area
of 5.3± 1.0 µm and are 10± 0.075 meter in length as they need to be drawn between two

Figure 2.3: Intensity noise power spectral density as measured at the end of a 10 m optical
step-index fibre for light of increasing powers starting from 1 W. The noise was
found to increase for the higher powers for long fibre lengths ((10m) but limited for
the same powers being coupled into fibres of same mode area but shorter length
(1m). The damage threshold of these fibres is also a significant limiting factor.
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optical tables. Coupling light into one of the fibres at first 1 W, then 2 W before finally
2.3 W and measuring the noise at the other end of the fibre every time, it was found the
SBS was very pronounced, the noise level rising with the larger powers (Figure 2.3). To
circumvent this, the powers coupled into the fibres have so far been limited to 1 W with
the experiment left wanting elevated powers for deeper traps. In order to transfer > 2W
of light from the Matisse laser for the lattice along with the > 20W of laser light from a
1064 nm Mephisto MOPA laser that is used for the vertical dipole trap that is present for
vertical confinement of the atoms in the horizontal lattice, an upgrade from the step-index
fibres with small mode area to large mode area fibres was regarded as necessary which
should reduce the effect even if the length of the fibres is left the same for practical
reasons. On that account, a switch to endlessly single mode, polarization-maintaining
photonic crystal fibre was decided upon.

2.3.1 Photonic Crystal fibres

Photonic crystal fibres (PCFs) [50] consists of a solid/hollow fibre core and a regular
arrangement of microscopic, wavelength-scale, air-filled holes that run through the length
of the fibre cladding allowing for low-loss guidance of light through the core, a structure
similar to that found in photonic crystal - hence the name. This gives it numerous novel
properties like endless single mode operation, high degree of nonlinearity, controllable
birefringence and dispersion characteristics. More relevant to the current application,
these fibres will also have a higher SBS threshold and a higher laser damage threshold
both of which are 4 times higher because of the fact that the PCFs have a mode field
diameter which is 2 times larger (both thresholds are linearly proportional to the effective
area calculated from the mode field diameter) than the regular step-index fibres.
It was realised early on that only bare PCFs can be bought off the shelf unlike the

angle cleaved, AR-coated, fully connectorised patch cables made of the regular step-index
fibres. These bare PCFs have to be prepared for use. The PCF first has to have its
holes collapsed at the end facets. The resulting larger core diameter reduces end face
power density and reduces power density related effects. It also reduces Fresnel back
reflection coupling efficiency and hermetically seals the Photonic Crystal fibre preventing
any contamination. Then at the now solid end facet, the fibre needs to cleaved with
an angle which is large enough to absolutely make sure that there is no back reflection
that couples into the fibre. Anti-Reflection (AR) coating is also required covering the
wavelength range around the operating wavelength to further ensure that there is no back
reflection. In the end, the fibre needs to be jacketed and connectorised with preferably a
connector that can withstand high powers.
After initial in-house attempts at hole collapse of a small length of PCF using the

available splicer and cleaver was found to give mixed results, industrial expertise was
sought to ensure consistent, reliable quality of the end result. A seller was found from
whom an offer for custom patch cables of PCF prepared with the required specifications is
being procured. The fibres acquired in this manner will have end-caps instead of collapsed
microstructure, SMA connectors for angle-cleaved fibres and AR coating, which otherwise
was not offered as a service by other sellers. Custom collimators are also being sought.
With this complete set of custom fibres and collimators, the installation can be carried
out with minimal effort.
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2.4 laser frequency noise
Having addressed intensity noise in its two forms, the next examination is that of the

laser frequency noise. For the determination of this noise, a device and a measurement
schema to go with it becomes necessary. Frequency noise estimation by direct optical
measurement is done in predominantly two ways - Homodyne detection where a beat
note with a second low-noise source or with the same source with added delay is created
and analysed; Using an optical frequency discriminator like an scanning optical resonator
to convert frequency modulation to intensity modulation. The latter is to do with the
transmission in an optical resonator which, due to the nature of the resonator’s operation,
is a result of the decomposition of the input into its spectral components and visible as
a time series of modulated intensity with distinct, characterisitic peaks corresponding
to resonant frequencies. Sitting on a point slope of one of the peaks where it is most
sensitive, an optical resonator will convert the source frequency fluctuations into amplitude
fluctuations in the two directions about the point. Called side-of-fringe locking in an
optical resonator, this is convenient and relatively easier to implement to the homodyne
method but has trade-offs: High frequency resolution is difficult to achieve, it has a low
signal to noise ratio, low stability and it can be difficult to differentiate between frequency
and actual intensity fluctuations. Another drawback is the active lock to a point on the
slope necessary for the proper operation of the resonator as a discriminator - the range
of frequencies over which the measured frequency noise is valid is limited to above the
servo bandwidth of the lock. We show here that, despite these shortcomings, a reasonable
estimate of the laser frequency noise can be obtained using this approach with a few
considerations.

2.4.1 Optical resonators

Optical resonators or optical cavities are a construction of mirrors that reflect light
between them to form a standing wave of light for certain resonant frequencies which are
transmitted through the mirrors showing a spectrum that typically consists of closely-
spaced peaks with a certain linewidth. The distinguishing features of the various types
of resonators that exist are the radii of curvature of the mirrors used and the distance
between them. The configurations are usually chosen based on the type of application
which demand one or a combination of criteria be met. These criteria include stability,
Q-factor and ease of alignment among others.
The simplest resonator to consider is one formed of two opposing mirrors, called a

Fabry-Perót cavity. Suppose one such cavity was made of two mirrors, each with a
radius of curvature R1 and R2, having high reflectances (r1,2), low losses (a1,2) and
being partially transmitting (t1,2). The mirrors are placed with their reflecting surfaces
facing each other and separated by a length L. Light waves which can enter the cavity
through one of the mirrors undergo sustained reflections between the mirrors. During
the multiple round-trips, the waves constructively interfere which leads to a building up
of an intracavity field that is transmitted provided the phase-matching condition is met
which is that an integer multiple of half the wavelength should fit within the length of
the cavity: nλ2 = L. All other wavelengths destructively interfere. More generally, the
wavelengths, or equivalently, the frequencies which will be supported in the cavity can be
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analytically derived by solving the paraxial wave equation for a Gaussian beam and is
given by,

νqmn =
c

2L

[
q+

1
π
(m+ n+ 1) cos−1√g1 g2

]
(2.4)

here c is the speed of light while q,m,n are numbers which distinguish the various
Hermite-Gaussian or the Gaussian transverse electromagnetic (TEM) eigen-modes of the
cavity whose associated frequencies are given by the expression above. g1 and g2 are the
g-parameters of each mirror given by g1,2 = 1−L/R1,2 which define the stability for the
numerous geometries of cavities as is made possible by the choice available of mirrors of
different radii of curvature and the distance of their separation. The condition for this
stability is 0 ≤ g1g2 ≤ 1 which needs to be fulfilled for the periodic re-focussing of the
intracavity beam which can otherwise grow limitlessly and be lost.

So an arbitrary (quasi-)monochromatic light field entering a stable cavity is decomposed
into a number of TEMqmn cavity modes. The TEMq00, called the fundamental longitudinal
(or axial) mode, can be resonant along with the higher-order TEMqmn modes for m,n > 0
for the particular mirror separation with the full bandwidth of possible resonances revealed
when the cavity length is scanned, as is typically done. Of the many combinations, the
spherical mirror or confocal Fabry-Perót cavity is most suited for general application.
The reason for this being the loose tolerance on the proper beam alignment required
(traded for a tight tolerance on mirror separation) to obtain the transmission spectrum of
mostly only longitudinal modes, unambiguously spaced far apart with high transmission.
This is made possible due to the mode degeneracy. A spherical mirror Fabry-Perót cavity
is comprised of two identical spherical mirrors separated by a distance very nearly equal
to their common radius of curvature. This would mean the mirrors have the same radius
of curvature, R1 = R2 = R = L. It follows that the g-parameters are zero, so eq. 2.4
reduces to,

νqmn,Conf =
c

2L

[
q+

1
2 (m+ n+ 1)

]
(2.5)

It is immediately apparent that several higher order TEMqmn modes share the same
frequency as the fundamental TEMq00 (more precisely, all the even-symmetry transverse
modes of the cavity are exactly degenerate at the longitudinal mode frequencies of the
laser). The spectrum will have a regular, equidistant mode structure with the spacing
between two consecutive modes called the cavity’s (confocal) Free Spectral Range (FSR),

νFSR, Conf =
c

4L (2.6)

which is half the spacing that will be otherwise seen if the incident light is spatially mode
matched to the fundamental TEMq00 mode, that is, when the wavefronts of the Gaussian
beam perfectly match with the mirror surfaces and the incoming beam is aligned to the
optical axis of the resonator. In that case, no higher-order modes are excited with only
longitudinal modes visible, spaced c/2L apart. The mode-matching however is not always
perfect giving rise to higher-order modes, also called half-axial modes (which are all the
degenerate odd-symmetry transverse modes), midway between the longitudinal modes
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Figure 2.4: Resonant mode frequencies in various stable (Gaussian) resonator configurations.
The frequencies are represented by ω with ∆ωax being the longitudinal/axial mode
spacing and ∆ωtrans is the transverse mode spacing. In our desired confocal config-
uration, all even-numbered modes are degenerate with the axial modes while all
odd-numbered modes are degenerate at the frequency halfway between consecutive
axial modes as depicted here. Image taken from Siegman [51].

(Figure 2.4). Careful alignment and mode-matching with the right optics can suppress
these modes, with an improvement in the maximum transmission along with the increase
in the FSR.

The effective use of the cavity as a frequency discriminator to measure frequency noise
would depend critically on how well the device can resolve and portray in its response the
changes in frequency. To a large extent, this is limited by the reflectivity of the mirrors of
the cavity that determine the full width at half-maximum (FWHM) of the modes in the
spectrum which have a Lorentzian line shape. A low-reflectivity mirror would yield broad
transmission peaks which would mean a reduced sensitivity to changes in frequency if we
employ the side-of-fringe locking and sit on a point on what will be a slowly rising edge of
the peak. A high-reflectivity mirror on the other hand will yield a narrower transmission
peak and a steeply rising peak would make the device responsive to a greater degree, as
would this mean a high spectral resolution in a wide spectral range. For cavities, this is
usually indicated by a quantity called Finesse (or the Q-factor, which is the resonance
frequency divided by the FWHM, but can be restated in terms of the finesse) which is
defined as the ratio of the free spectral range to the FWHM or equivalently in terms of
the reflectivity,

FConf =
π
√
r

2(1− r) (2.7)

With this it becomes clear that a confocal Fabry-Perót cavity with good mode-matching
and high Finesse would be desirable. To this effect, an assembled confocal Fabry-Perót
cavity that was available for use in the lab was set up but - with a finesse of ∼ 150 and
peak transmission of ∼ 0.5% - found to fail to meet these prerequisites meriting a rebuild.
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2.4.2 Construction of a high finesse Fabry-Perót cavity

All of the designs and components required for this build were readily available as
they were made, purchased or pre-fabricated for earlier attempts to build Fabry-Perót
cavities in the lab by Dr. Jose Gallego. To re-assemble a new, high finesse confocal
Fabry-Perót cavity however, a careful selection of the components was undertaken and
caution shown during the build itself which was one of the other noticeable shortcomings
of the available cavities many of which had unstable mounting and occluded or damaged
optics. A stock of MSPV12.5B/-50 plano-concave mirror substrates from Lens-Optics
was found in the lab inventory. As per the manufacturer, the mirrors were made of BK7
glass with a radius of curvature of −50 mm, a diameter of 12.5 mm and a thickness of
6 mm. It is supposed to be highly reflecting between 780− 1064 nm and has a high Laser
Induced Damage Threshold (LIDT) of 40 W/mm. These specifications regarded them
as ideal mirror surfaces for this application. The mirrors, stated to have a lower bound
of R > 99.5% on the reflectance, were then each measured in terms of its transmission
to find a pair of mirrors closest in their transmittance as part of impedance matching
which is done to minimize losses via back reflections of the incident power. This strictly
does not guarantee impedance matching since there are losses to consider for which then
the impedance matching condition is that the transmittance of the input mirror must
equal sum of the transmission of the other mirror and all the losses present. But since
they were not stated by the manufacturer and are not easily determined, the losses were
discounted and two mirrors both with a transmittance of 0.07% were found and chosen
to be used for the cavity. At the moment of choosing, the possibility that the mirrors
were of very high reflectance of nearly 99.9% outweighed the likelihood that the losses - a
blend of absorptive and scattering losses - were very dominant.

The use of mirrors with radius of curvature of 50 mm meant that, for confocality, they
must be spaced apart by 50 mm. Although the mirrors can be mounted on standard
mirror mounts and aligned on the optical table in the open, since the length of the cavity
is so critical and temperature, air currents are significant disturbances, only complete
mechanical and thermal isolation will enhance the stability of the cavity. A machined
Aluminium rod, 65 mm in length and 25 mm in diameter, was therefore taken to be used
as a housing for the mirrors. The rods were designed to have insets into which plastic
caps would be inserted and glued in place. At the input end, a flat cap was used that
was notched on one side to hold a piezoelectric tube actuator on to the end of which one
mirror would be glued using epoxy to enable the scanning of the length of the cavity.
The piezo itself is a tube of monolithic ceramic that contracts axially and radially when
voltage is applied across its metalised inner and outer surfaces. The particular piezo
tube used here offered by Piezomechanik GmbH was 36 mm long, had a diameter of
10 mm and thickness of 1 mm. It had a stated axial contraction of 16 µm with only 3 µm
radial contraction (this needed to be kept to a minimum as a radial movement would be
undesirable) and a specified maximum voltage range of −200 to 1000 V. The assembly of
cap with the piezo tube and one of the mirrors was then pushed into place with the mirror
position being inside the Aluminium rod. For the other output end, the second mirror
was first inserted into a hollow M16 brass rod that was specially designed by the institute
mechanical workshop to be threaded on both the inner (pitch of 1) and outer surfaces
(pitch of 0.5) of the rod. The rod was 26 mm in length and had a 3 mm strip of metal
extending out from the inner surface against which the mirror was held in place with a
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rubber spacer that could be threaded in. This was followed by a collecting lens LA1560-B
which is a plano-convex spherical singlet lens also held in place by a spacer, made of
N-BK7 glass with a diameter of 12.7 mm and focal length of 25 mm. The brass rod with
the optics inside was then turned into a second plastic cap that had a female thread to
accommodate the outer male threading of the brass rod. The cap was then slipped into
place at the remaining end of the Aluminium rod. The rationale for the outer threading
of the rod is the need for initial adjustment to ensure the mirror separation is 50 mm as
required for the cavity to be confocal. Final adjustment needed to be done by coupling
light into the cavity at the input. This was done in a test setup with a voltage ramp
applied to the piezo and the brass rod rotated till the expected confocal mode structure
was seen in the collected spectrum at the output at which point, the required mirror
separation would have been reached. It was here that in following the best practices of
aligning a Fabry-Perót cavity [52, 53] that the dominant nature of spherical aberration
and its role in causing a deviation from the ideal, symmetrical Lorentzian line shape of
the modes in the observed spectrum was learnt of.

Modified line shape due to spherical aberration

In accordance with paraxial optics, a ray of light which enters the spherical mirror
cavity close to the axis joining the centers of the two mirrors, traverses a path that it is
reflected back on to - the ray suffers a total of four reflections before it is re-entrant at
the same initial point. Spherical aberration, however, prevents the ray from re-tracing its
path. The sphericity of the mirrors refocuses a ray incident at each point on one mirror
to a different set of points on the other mirror leading to a staggered set of paths taken
by the ray over multiple reflections. For one transit between the mirrors involving four
reflections, the paraxial path length for the ray, given the more general case of the spacing
between the mirrors being slightly off confocal by ε, is given by 4(R+ ε). With spherical
aberration, if the ray enters the cavity at a position that is offset from the axis by some
distance ρ, this path length is less by an amount given up to leading order by,

∆(ρ) ∼ ρ4

R3 +
4ερ2

R2 (2.8)

which can be arrived at geometrically [52]. There is a multiple beam interference pattern
that is formed in the central plane of the cavity subject to a modified phase matching
condition for some integer m,

4(R+ ε)− ρ4

R3 −
4ερ2

R2 = mλ (2.9)

In a beam of a large enough diameter incident on the cavity, there will be multiple rays
of light some of which will be on-axis while some will be off-axis. The whole input beam
itself could be offset. In these cases, spherical aberration becomes significant. The result
is that marginally different mirror spacings satisfy the phase matching condition and the
measured line shape is broadened assymetrically. This modified line shape is noticed as
a peak with a leading or lagging tail. The total instrumental finesse now is no longer
just determined by the reflectivity of the mirrors and has an additional term called the
illumination finesse (there is also a third term that accounts for a symmetric broadening of
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Figure 2.5: The traces of the cavity signal (data points in purple) at different mirror spacings
about the confocal setting, fit with the line shape (dashed orange line) that accounts
for spherical aberration. A negative ε implies a mirror spacing shorter than confocal
by the stated magnitude and a positive value implies a spacing longer than confocal.

the line shape due to mirror surface irregularities that cause random position-dependent
path length difference that blurs the line shape. This though is pronounced only for
mirrors of surface quality much poorer than the λ/10 specified for the mirrors used in
our cavity),

1
Ft

=
1
Fr

+
1
Fi

=
2(1− r)
π
√
r

+
4ρ4

λR3 (2.10)

This finesse changes negligibly for small beam diameters but decreases as the beam
diameters increase with greater tolerance seen in confocal cavities with mirrors of a large
radius of curvature and so a long length. For our re-assembled cavity, this threshold was
0.5 mm.
A theoretical model of the expected line shape in the presence of the aberration was

drawn up as a more accurate function to fit the modes in the measured cavity spectrum,
as would be especially needed to precisely calibrate the cavity for its use in the frequency
noise measurement. This was done by convolving the ideal Lorentzian as the mirror
spacing is being scanned by δε with a Gaussian laser mode having an axial waist ωo and
radial extent ρ as solved for by using the phase matching condition,

I(ρ, δε) = 1√
2πω2

o

e
−2ρ2

ω2
o ∗ 1

1 + ( δε
FWHM)2 (2.11)

With this theoretical model, it was noticed that in the event of being limited by the
spherical aberration, the confocal separation is not ideal if a narrow, tall and symmetric
peak is desired for the modes in the cavity spectrum. Instead, the spacing should be slightly
off confocal. this was backed by the measured line shapes obtained when positioning
the second mirror to complete our cavity assembly. A collimated beam of an estimated
diameter (radius) of 1.1 mm was coupled into the cavity to inflate the aberration during
the task. Traces of the collected intensity profile for three cases - assymetric line shape
with a tail to the left, a symmetric line shape and assymetric line shape with a tail to the
right - where fit with the custom function with the deviation from the confocal mirror
separation as one of its free parameters (Figure 2.5).
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Identification of mode-matching optics

Having put together the cavity in the manner described, the final step was to improve
alignment and transmission for which, in addition to lining up the laser beam along
the optical axis, a suitable mode-matching optics was introduced. This was a single
lens needed to focus down the beam to the center of the cavity to match the input
Gaussian beam to the fundamental cavity mode. Going beyond simpler approaches like a
ray-transfer matrix analysis, the choice of the lens was made by putting to use a new
MATLAB-based ray tracing tool developed for the lab by Dr. Andrea Alberti. The tool
allows the import of entire Zemax catalogues of optics available for download from various
manufacturers to be used for design in other proprietary ray-tracing softwares like the
Zemax OpticStudio. The catalogues are design files for every item in an exhaustive list of
optics from simple lenses, aspheric lenses, gradient-index lenses to mirrors and diffractive
optical elements. The files detail the form of the elements in terms of the focal lengths,
radius of curvature, glass material and coating used in its construction and surface quality
among others. This allows a drawing of the entire optical system of interest with each
element is put together from surface to material to surface and simulate the propagation
of rays through it. This particular tool was written to identify the right optical system to
use for expanding the MOT beams in the experiment to trap a larger number of atoms
and has proven useful in modelling optics in other projects since. Beyond mere simulation,
the tool also provides analysis and optimisation options that report on the calibre of
the system with useful measures like the phasefront quality and can improve them by
readjusting spacing between the placed elements. While the tool is more expansive in its
options, these two exclusively were exploited for the exercise of selecting a mode-matching
lens for the cavity.
The entire cavity was first modelled by drawing its mirrors surface by surface as is

also possible with the tool (Figure 2.6(a)). Simple lenses were then drawn up from the
catalogues and placed in front of the cavity. The tool was then tasked to simulate the

Figure 2.6: (a) The ray tracing tool a provides convenient visualisation of the system being
simulated like done here for the cavity with a mode matching lens. (b) The resulting
phasefront quality with using the LA1433-B as the mode-matching lens for the two
wavelengths of 866 nm and 852 nm.
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system with slight modifications made to the code on how the cavity dynamics is handled.
From a plano-convex lens of diameter 12.7 mm and focal length of 25 mm to another
of 25.4 mm and 300 mm respectively, a total of 9 lenses were tried with some requiring
manual optimisation to identify the right lens and spacing to use by noting the Strehl
ratio and phasefront quality at a specifed exit pupil. For its near uniform phasefront when
86.875 mm from the surface of incidence of the first mirror and additional pragmatic
considerations, the LA1433-B plano-convex lens with a diameter of 25.4 mm and a focal
length of 150 mm was decided on and used (Figure 2.6(b)).

Calibrating the cavity

Steering a collimated laser beam to the now completed cavity assembly and carrying
beam walking to obtain the mode spectrum, the different modes were identified and
the maximum transmission measured. Despite extensive beam walking and the mode-
matching lens, the half-axial modes could not be extinguished although some reduction in
their peak height could be achieved. The FSR so was still given by c/4L and was 1.5 GHz.
It was also found that the maximum transmission now was at 2%, a four-fold increase
over the previous value but one that is markedly below other reported transmissions
for mode-matched confocal cavities [52] of nearly 50%. This could be explained by the
absorptive and scattering losses we earlier overlooked. The losses are perhaps not as
miniscule and strongly limit the net transmission out of the cavity which given as [52],

To =
1
2

[
1 + a

t

]−2
(2.12)

If a is the common sum of the absorptive and scattering losses and t, the common
transmission through the mirror coatings, there is a drastic loss in the net transmission
when the absorptive and scattering losses as a sum become comparable or exceed the
transmission loss at the mirror. With losses that could be as high as 0.43% given the
lower bound of 99.5% on the reflectivity and 0.07% measured transmission, this could
very likely be the case. Large values of a/t often lead to a compromise between finesse
and transmission but the finesse was yet to be determined given this transmission of 2%.
The cavity was first transferred to near the Matisse lasers on an optical table that is

decoupled from its environment. A telescope consisting of lenses, put together to tighten
any input beam down to 0.5 mm before being steered into the cavity, was added to the
system. To estimate the total finesse and also determine since the conversion between the
intensity fluctuations of the locked cavity signal and the frequency fluctuations of the
laser needs to be known, a calibration of the cavity was required. Coupling in light from
the lasers and scanning the length of the cavity would be one way to do this but this has
a drawback which is that the displacement of the piezo element is subject to hysteresis
[54]. Scanning of the piezo tube actuator therefore might not necessarily lead to a smooth
linear behaviour all throughout. This can be seen as the varying width of the line profile
between the successive modes as the voltage to the piezo is ramped. To circumvent this,
it is common to scan the frequency of the laser and extract the trace of the line profile
and fit a function like our custom function from eq. 2.11. This was possible with the
scanning of the reference cell of the Matisse CS with which the finesse was determined to
be 250, a nearly two-fold increase from the old value. The conversion factor was acquired
by calculating of the slope at the half-way point of the peak, in its most linear region
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which is where it is ideal to lock to. (The same was not done for the Matisse CR which,
owing to the lack of the reference cell, could not be trivially scanned over a given range
with the internal locks active as would be necessary to prevent mode-jumps. The right
scan parameters for the only element for which the functionality was available in the CR,
the woofer/slow piezo, needed to be determined which was not done in the interest of
time. The conversion factor was obtained by the other method of scanning the length of
the cavity which still would give a feasible value for the frequency noise of the CR. This
was deemed acceptable considering it was the frequency noise of the CS that is arguably
more important and demanded a more precise estimation).

2.4.3 Measurement of frequency noise

The newly built cavity was now set to fulfill its purpose of measuring the frequency
noise which was done of both the Matisse CS and Matisse CR lasers with the setup shown
in Figure 2.8. The cavity lock was achieved by a simple servo feedback loop. The output
was collected by a photodetector (Thorlabs PDA10A-EC (Bandwidth: 150 MHz)), the
signal from which was split in two with one carried to the network analyser (Agilent/HP
3589A (Range: 10 Hz to 150 MHz at 1 MΩ input impedance)) for the noise measurement
and the other to the custom PI controller (Lockbox 5 ) as the error signal with the internal
offset setting used to raise or lower the signal to have a zero-crossing at the desired lock
point. The control signal from this box was then sent to the piezo of the cavity through a
high voltage driver. Since the locking had to be limited to arrest only low frequency drifts,
a second-order low pass filter was added with a corner frequency of ∼ 100 Hz between the
piezo driver and the cavity since while still being part of the control loop, it would also
limit any high frequency noise components added to the signal by the driver. Using a

Figure 2.7: The trace of a cavity mode (data points in purple) seen on scanning the frequency
of the Matisse CS was fit the custom function (Eq. 2.11), represented here by the
dashed orange line, from which the width and slope of the line shape was extracted.
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voltage ramp from an external signal generator to observe the cavity modes and zooming
into the desired region on the edge of a peak, the side-of-fringe lock was achieved and
the Network Analyser directed to measure the noise in the locked photodetector signal
between 10 Hz to 1 MHz.
The noise spectra now at hand, it was essential to use them to better understand

the frequency noise of the lasers which were both fully locked to the desired frequencies
when the measurement was made. The trend, similar in the spectra for both the lasers,
was a high noise level at the low frequencies from a 100 Hz which is just beyond the
servo bandwidth with the level falling off in stages - first at around 550 Hz, then starts
rolling down near 5 kHz after which it levels off close to 200 kHz. There were several
prominent features visible, similar across the two spectra. A clear peak at 1 kHz is one
which was easily attributable to the active Piezo Etalon that was being dithered at
that frequency but the comprehension stops there, with no information regarding the
origins of the other features. For this, multiple successive measurements were made by
systematically disengaging the various locks starting from the tweeter/fast piezo locks
and the woofer/slow piezo then the piezo etalon and thin etalon locks which revealed that
the tall wide peaks near 10 kHz and 100 kHz were noise due to the action of the woofer
and tweeter since they disappeared with the disengaging of the locks while naturally the
1 kHz bump disappeared with the Piezo Etalon being deactivated. These conclusions were
justified with the reproducibility of the same features when the locks were re-engaged.
The other peaks that could be distinguished from the fluctuations of small amplitude
were labelled spurious since they did not correspond to any internal lock and were not
reproducible. It was also noted in a separate frequency noise measurement with a low noise
interference filter (IFL) laser, that the noise feature that spanned across the frequency
range of 100 Hz to 1 kHz was present even in the noise spectrum of the IFL laser. Since
the IFL laser is similar neither in form nor function to the Matisse lasers, this could
be background noise from the cavity itself, perhaps due to mechanical vibrations. Piezo
resonances are unlikely since the reported axial and radial resonance frequencies are
40 kHz and 65 kHz respectively. A dark noise measurment of the used photodetector
showed no such noise pattern. Intensity noise could be another factor, though given the

Figure 2.8: The frequency noise measurement setup.
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Figure 2.9: The frequency noise spectral density and the cumulative frequency noise of the
Matisse CS and the Matisse CR.

measured intensity noise of the lasers and rescaling them with the conversion factor, it was
found that their role, given the much larger frequency noise here, is actually negligible.
This noise measurement for the fully locked laser was done with no tweaking of the

lock parameters of any element other than the tweeter whose integral gain was set to a
1000. Evident from the spectrum is that for this configuration, on the whole the noise
level is low, especially in the critical range of frequencies between 1 kHz and 100 kHz. The
same inference is drawn from the cumulative noise obtained by integrating over the noise
spectrum with the most significant bump at 1 kHz due to the Piezo Etalon with no major
rise beyond that. Unlocking the various elements naturally changed the overall noise level
but the individual contributions remained the same. For the fully locked CS laser, it
was noticed that while lowering the gain of the tweeter added to the noise, sending the
maximum accumulated frequency noise from around 380 kHz at a gain of 1000 to 665 kHz
at 500, increasing the gain to 2500 and beyond also added to the noise as well, taking
the maximum cumulative noise to 403 kHz instead of further suppression. This suggested
bounds for integral gain settings of the tweeter, with the ideal being 1000, since very
little was attained by setting it to values between 1000 and 2500 while lower and higher
values worsened the noise.

2.4.4 Estimation of laser linewidth from frequency noise

Taking the use of the frequency noise measurement a bit further, we can estimate the
linewidth of the laser from the noise spectrum. Stating the laser linewidth is effectively
another means of reporting frequency noise because of how the linewidth is determined
by the noise. For the ideal case of only a pure white frequency noise spectrum, the line
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shape is Lorentzian with the Schawlow–Townes–Henry linewidth. If the spectrum has 1/f
or flicker noise in the lower frequency range it can cause a Gaussian broadening of the line
shape [55]. If there is a combination of the 1/f-noise with the frequency-independent white
noise that causes the Lorentzian line shape, it results in the Voigt profile [56]. While these
can be arrived at analytically since it takes into consideration a rather simplistic nature
of the noise, a measured noise spectrum as we have seen is much more complex and leads
to a line shape that can be determined only numerically. In the face of such a problem,
Di Domenico et. al. [57] provide a simple approximation to estimate the linewidth by
showing that a noise spectrum can be geometrically separated in two regions with distinct
influences on the line shape with only one region contributing to the linewidth and the
other affecting only its wings. This is proven as follows - Given a frequency noise spectrum
Sδν(ν

′), the autocorrelation function of the laser light field E(t) can be written as [58],

ΓE(τ ) = E2
o e

i2πνoτ e−2
∫∞

0 Sδν(ν
′) sin

2(πν′τ )
ν′2

dν′ (2.13)

where δν = ν − νo is the laser frequency deviation around its average value νo. According
to the Wiener–Khintchine theorem, the laser line shape is given by the Fourier transform
of the autocorrelation function,

SE(ν) = −2
∫ ∞
−∞

e−i2πνoτ ΓE(τ )dτ (2.14)

which cannot be analytically integrated for an arbitrary frequency noise spectrum but a
simple rectangular noise spectrum, that is of constant value ho till a cut-off frequency
νc after which it is zero, can be considered. With this the eq. 2.14 is integrable for two
limits: When νc →∞, which gives a Lorentzian line shape with FWHM = πho and when
νc → 0, which gives a Gaussian shape with FWHM = (8ln(2)hoνc)

1
2 .

This shows the spectrum has two regions which are radically different in how they
affect the line shape. The regions are characterised by a modulation index β, defined as
the ratio of the frequency deviation δν to the modulation frequency ν, i. e., β = δν/ν.
One region is where this index is large owing to a high noise level compared to the
modulation frequency and another where the index is small because of the lower noise. A
dividing line called the β−separation line given by Sδν(ν ′) = 8ln(2)ν ′/π2 helps identify
the two regions. The noise components in the large modulation index area, typically
in the lower frequencies, yield Gaussian autocorrelation functions which are multiplied
together and then Fourier transformed give a Gaussian line shape whose variance is
the sum of the contributions of all the high noise components. Conversely, the area of
the high modulation frequencies but low noise and so small modulation index mean the
modulation is too fast to have a significant effect on the laser linewidth. A reasonable
approximation of the laser linewidth is therefore given by the following simple expression,

FWHM = (8 ln(2)A)1/2 (2.15)

where A is the area under the frequency noise spectrum in the high modulation index
region or the overall area under the spectrum that exceed the β−separation line.
Using this expression, it was straightforward to calculate the laser linewidth of the

Matisse lasers. For the CS, the β−separation line intersected the noise spectrum (more
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Figure 2.10: The linewidth estimation from the frequency noise is proportional to the area
under the noise curve that lies in the high modulation index which is above the
β−separation line (dashed orange line) shown here intersecting the curve at 4 kHz.
A significant portion of the noise (between 100 Hz to 1 kHz) had to be ignored
for this estimation since it was suspected that the noise is not of the laser’s but
perhaps coming from the cavity used for the measurement.

precisely, the smooth trendline that the spectrum was fit with to resolve the crossing
frequency from the irregular, widely spread dataset) at 4 kHz which meant the spectrum
above the line below this frequency had to be integrated over. Since a major section of
this region was determined to come not directly from the laser but possibly the cavity, it
was discarded with only the noise between 1 kHz and 5 kHz summed over and eq. 2.15
used to arrive at what was a lower bound on the linewidth of 104.8 kHz. Similarly for the
CR, this was 217.6 kHz.

Reduction of laser linewidth

The laser linewidth could be reduced or in other words, the frequency noise of the
lasers suppressed to a fair degree by tweaking the internal settings of the laser. While
changing the integral gain of the tweeter was known to raise or lower the overall noise level,
individual contributions from the active internal elements still needed to be addressed.
Allowed by the available control was a tuning of one of these elements - the Piezo Etalon.

The Piezo etalon is essentially an optical cavity made of two tightly spaced prisms.
The spacing between the prisms is actively conrolled to match a multiple of the favoured
longitudinal mode’s wavelength so all except that mode have high losses and the etalon
acts a mode filter. The control loop is based on a lock-in technique which measures the
response of the laser to an externally induced perturbation which is a slight sinusoidal
modulation of the etalon spacing at some frequency. This modulation can be controlled in
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terms of its amplitude and phase shift. The tuning of these parameters are carried out to
ensure the result of the convolution of the applied modulation waveform and the detected
variation, which is the variation in the total laser power as measured at a photodetector,
takes the shape of a double U to match the longitudinal mode position. This shape needs
to be kept stationary and clean to an extent using the parameters.
The dither of the prism though contributes heavily to the frequency noise. To deal

with this, the Piezo Etalon controller comes incorporated with a feed forward pathway
that takes its own amplitude and phase shift values to model ahead the process dynamics
and work to eliminate the noise. This feed forward was activated to serve that purpose
but its parameters needed to be first optimised for efficacy for which the Fabry-Perót
cavity, built to measure the frequency noise, proved handy. Acting as an optical spectrum
analyser, the cavity was used to monitor the changes to the peak at 1.032 kHz, which is
the set modulation frequency of the piezo etalon, as the feed forward parameters were
varied to find the best values. This was done according to the procedure laid down by the
manufacturer which was to start with a non-zero value for the feed forward amplitude
then change the feed forward phase shift to match the modulation phase shift which
should aready have an effect. Following this, the feed forward phase shift alone should be
altered for the lowest peak height before returning to varying the feed forward amplitude
for further reduction. Noticing the decrease in the peak height in real time on the Network
Analyser set to sample the spectrum of the cavity signal, a rescaled amplitude of 1.5 and
a phase shift of 23.23◦ were settled on when the procedure was followed.

Figure 2.11: The linewidth of the Matisse CS was reduced from having a lower bound of
104.8 kHz to one of 58.64 kHz by decreasing the noise contribution of its active
Piezo Etalon as is evident here with the smaller peak in the noise measurement
(in blue) done after implementing the feed forward.
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The linewidth of the Matisse CS extracted from the noise spectrum post activation
and optimisation of the feed-forward showed a narrowing to 58.64 kHz with the spectrum
itself showing a smaller peak at 1.032 kHz but with a new, short peak at 1.54 kHz. More
glaring were other new features between the critical 30 kHz and 100 kHz. The root cause
of this is as of yet unclear while it could be tied to the action of the woofer and tweeter
over which the new noise appears. The origins of even their noise is currently unknown
with only speculation of possible electronic noise in their drivers. Since the level remains
low and there is also the likelihood of the noise being spurious, it stands to reason that
the linewidth reduction can still prove to be advantageous especially from the perspective
of unequal optical path lengths and the resulting position jitter due to this frequency
noise.

2.5 feedback control via transfer cavity
In addition to seeking suppression of the Matisse CS laser frequency noise in the

mid-to-high frequency range, long-term frequency stability of the laser in terms of reduced
drift would be ideal for experimental sequences which demand extended periods of stable
operation. Although achieved to an extent out of the box, it was found that the stability
could be enhanced further when the optical frequency of the laser output was noticed to
drift by 50 MHz when monitored for a duration exceeding 12 h for which the proposal
of extending the utility of the new Fabry-Perót cavity from a measurement device to a
transfer cavity was made. Transfer cavities usually serve well to arrest long-term drifts.
They are used to stabilize a target laser by “transfer” of the stability from a reference laser
maintained at some frequency, usually determined by some suitable atomic transition.
This can be accomplished one way by iteratively scanning the length of a cavity, searching
for mode positions of the target and reference lasers, locking the cavity to the reference
laser mode and then locking to one of the resonant modes of the target laser for the fixed
(actively stabilised) cavity length, found again by scanning the target laser frequency. In
another approach, the transmission maxima of both the reference laser and the target
laser can be made to coincide at the same cavity length by frequency shifting either the
reference or the target laser using an AOM. The cavity is then locked to the reference
laser and the target laser is analog locked to the cavity forgoing any scanning of the
cavity length.
Since this was meant to be a proof of principle and the former was a ready imple-

mentation, the latter approach was abandoned. Additional optics were added to steer a
second beam into the frequency noise measurement cavity setup. To distinguish between
the outcoming beams for the locking, the input beams needed to be polarised for which
waveplates were added at both ends of the optical fibres bringing the light from the two
lasers to the cavity setup. This was done to couple only one polarisation compoenent
of the laser beams into the fibres and then let through only that component to achieve
high polarisation purity. Polarisers were added to aid in this effort. The beams were then
directed through a polarising-beam-splitter (PBS) placed before the cavity with another
placed after it. Two photodetectors were positioned to pick up light split between two
perpendicular facets of the PBS depending on their polarisation. The Matisse CR laser
locked to the D2 line of Caesium for use as the cooler for the MOT was used as the
reference laser to which then the cavity was locked. The signal from the photodetector
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Figure 2.12: (a) Long-term stability of the Matisse CS before implementing the transfer cavity
(in blue) and after (in orange). (b) The Allan deviation of the Matisse CS frequency
before implementing the transfer cavity (in blue) and after (in orange).

picking up the light from the target Matisse CS laser was sent to the DSP input of
the laser controller of the CS which offered the option of switching between its internal
reference cell to an external cavity. This was used to have the controller achieve the same
side-of-fringe lock of a cavity mode but this time of the modes of the transfer cavity.

A long-term measurement of the frequency of the Matisse CS now locked to the transfer
cavity showed no consistent drift over time like earlier with only short-term excursions to
a maximum of 3 MHz. The standard deviation of the frequency readout showed a drop
from 11.07 MHz to 0.72 MHz. The Allan Deviation for the same was also found to reduce
from a minimum of 5.282× 10−10 at 40 s sampling time to 4.363× 10−10 at 40 s also
indicating the lower instability of the frequency of the laser locked to the transfer cavity.





3 E Q U A L I S AT I O N O F O P T I C A L
PAT H L E N G T H S

The frequency noise can be stifled as shown with the fine-tuning of the laser source for
the lattice beams but there remains a fraction of the noise that results in a relative phase
difference due to the discrepancy in the path lengths. To eliminate this, as a first step, it is
necessary to ascertain what set of paths need to be altered in length and by how much in
order to achieve their equalisation, which for us is a near-nil difference between the paths.
This chapter will present the conditions necessary to be met for the equalisation that were
identified to help indicate the changes required. To then know of the existing path lengths,
three methods for their measurement were used, each warranted by the limitations of the
previous one - a direct geometric measurement, an optical measurement and finally a
measurement using the trapped atoms themselves. Each of these measurements will be
described in detail along with the results.

3.1 conditions for equalisation
The quantified frequency noise can now be used to make a pragmatic estimate of

the position jitter. The Matisse CS used for the lattice, with a lower bound on the
reduced linewidth of 58.64 kHz gives a phase shift of 6.85× 10−6 and so, using eq. 1.22 in
Section 1.3.2, a position jitter of 0.47 pm. This is extraordinarily low even though this is
also a lower bound calculated for the accumulated phase shift above 1 kHz and for a path
length difference of just 1 cm. Since this is an order of magnitude smaller than our earlier
assumed position jitter, a remarkable λ/105 stability can be achieved if the path length
differences are brought to within even a metre of each other which is entirely feasible and
so this remains our goal.

Equalising the beam paths leading up to the atoms from the source should involve only
repositioning of a few optical elements and replacing, if necessary, any optical fibres along
the way, however, the task is complicated by there being three lattice beams to generate
the 2-D lattice and an additional two reference beams for the Optical Phase-Locked Loop
(OPLL) that is present. All these beam paths need to be equalised among them, while
also accounting for the OPLL and its action. This requires careful deliberation since
there are now seemingly non-trivial equalisation conditions. To work our way to these
conditions, we start by mapping out the relevant optical paths in the experiment.

Light from the same laser source - the Matisse CS - is split and distributed in to three
10 m fibres on an separate optical table and then brought over to the lower section of the
experiment table where each is used for the 3 lattice beams, henceforth referred to by
their assigned identifiers in the experiment, HDT1, HDT2 and HDT3 (where HDT stands
for Horizontal Dipole Trap). HDT1 and HDT3 are the two counter-propagating beams
with the HDT2 being the orthogonal beam. The HDT1 and HDT3 beams are polarisation
synthesised, for which each of them is split further in to two paths of light with orthogonal
polarisations and passed once through individual AOMs and then spatially recombined at

43
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a Wollaston prism. The phases of these beams are stabilised by the OPLL since they are
meant to be dynamically modulated in the experimental sequence in terms of their phase
(and simultaneously intensity) using the AOMs with the assistance of a digital control
system of which the OPLL is a part. The OPLL works by analysing separate beat signals
between each of the HDT1 and HDT3 beams and two unchanged reference beams from
the same source, which we shall call OPLL1 and OPLL2. In the experiment currently,
these reference beams are split off from the HDT2 beam path before the HDT2 beam
is also modulated by an AOM in single-pass. HDT2 is not phase stabilised and usually
maintained to have a pure linear polarisation.
Following the polarisation synthesis setup, HDT1 and HDT3 are each coupled in to

2 m fibres and taken to the upper section of the table. HDT2 is also coupled in to a
2 m fibre after its AOM. Light for each arm coming with its respective orientation, after
travelling through some more optics, goes past the window of the Mu-metal shielding
and one face of the dodecagonal ultra-high vacuum glass cell within which the lattice is
formed. OPLL1 is coupled in to a 2 m fibre and taken to the upper section where the
beating with light picked off from the HDT1 beam path is carried out. OPLL2 is coupled
in to a 5 m fibre and drawn across the lower section of the table to reach the otherside
where it is beat with the HDT3 in the same manner.

In an abstract representation of the paths, which we call the Connectivity graph
(Figure 3.1), we draw the beams as separate paths, sectioning them at relevant positions,
to aid the formulation of the equalisation conditions -

• The OPLL1 beam path from its source A up to a point P ′ where the reference
beam and the light picked off from the HDT1 beam is combined is assigned a length
variable l1. The resulting beat is taken to the OPLL control electronics at B which
since is a common path, is irrelevant.

• The HDT1 beam path from its source C up to a point D where light is picked off
from this lattice beam to be combined with the reference beam is assigned a length
l2.

• The path of the picked off light from the HDT1 beam between D and P ′ is assigned
a length l3.

• The rest of the HDT1 beam path from D up to the window of the Mu-metal
shielding at E is assumed to have a length l4, beyond which we assume for now the
symmetry of the vacuum chamber and glass cell assures us of equal path lengths
up to a few millimeters.

• The length of the HDT2 beam path extending from F to window of the Mu-metal
shielding at G is taken to be l5.

• The HDT3 beam and its reference beam OPLL2 are sketched symmetrically to
HDT1 and its reference to be assigned the lengths l6, l8 for the two sections HI and
IJ of the HDT3 beam path while l7 and l9 are the given lengths for the picked off
light from HDT3 along IP” and the OPLL2 reference beam path KP ” respectively
with the combined beam here going to its own OPLL control electronics at L.

Here A, F and K are the same source as setup currently in the experiment and there is
the presumption that the intermediate paths introduced by the splitting of the HDT1 and
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Figure 3.1: Connectivity Graph

HDT3 beams for the polarisation synthesis are commensurate which need not be the case.
A simple algebraic restatement of the equalisation conditions can now be made which we
call the Constraint equations for the path lengths. For completeness, we approach this
treatment from the perspective of phase differences to incorporate not just the frequency
noise but also the frequency shift caused by the AOMs in the path of the lattice beams
and introduce simplifying assumptions to reduce them to a usable set of conditions.
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3.1.1 Constraint equations

For a laser beam of optical frequency of ν and a frequency noise δν traveling through
the various paths, the phase difference between the pertinent sets of paths, as sketched in
the Connectivity Graph, needs to be equalised. This constraint necessitated for each of
those sets of paths can be written as,

(ν + (80 Mhz) + δν)(l2 + l3) = (ν + δν)l1 (3.1a)
(ν + (80 Mhz) + δν)(l2 + l4) = (ν + (80 Mhz) + δν)(l5) (3.1b)
(ν + (80 Mhz) + δν)(l6 + l7) = (ν + δν)l9 (3.1c)
(ν + (80 Mhz) + δν)(l6 + l8) = (ν + (80 Mhz) + δν)(l5) (3.1d)

Here,

1. Eq. 3.1a is an equality between the phase of the HDT1 beam coming along CDP ′
and the OPLL1 reference beam up to the point P ′ where they are combined for the
OPLL. A difference in lengths between the two paths give rise to a phase difference
under the influence of the noise which if is within its bandwidth, is visible to the
OPLL which then actively compensates for it. In doing so this condition is met but
this results either in a shift or opening up of the lattice.

2. Eq. 3.1b is for equal path lengths of HDT1 and HDT2 lattice beams up to the
Mu-metal shielding window.

3. Eq. 3.1c is similar to the first equation but for the path length of the HDT3 beam
coming along HIP ” and the OPLL2 reference beam up to the point P ” where they
are combined.

4. Eq. 3.1d is for equal path lengths of HDT3 and HDT2 lattice beams up to the
Mu-metal shielding window.

The actual optical frequency and the constant offset due to the AOMs where present
can be ignored for this treatment (as will be done below) as they contribute only to the
absolute, static phase at the position of the atoms while what is of greater importance
here is the temporal fluctuations of the frequency δν. In the presence of the OPLL and
its modulation of the phase, we can re-write only those equations from above which are
relevant under each of the following three frequency regimes -

Low Frequencies - within the bandwidth of the OPLL

δν · (l̃2 + l3) = δν · l1 (3.2a)
δν · (l̃6 + l7) = δν · l9 (3.2b)

The OPLL will actively compensate for the phase fluctuations within its bandwidth
which has been measured to be ∼ 200 kHz by introducing a change in phase of the
lattice beams. This can be regarded as some effective change in their optical path length
represented here by l̃2 and l̃6. This renders useless any equalisation between the three
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lattice beams (if it has been carried out) due to this imprinted phase and results in
undesirable shifts of the lattice.

Intermediate Frequencies - around the bandwidth of the OPLL

δν · (l2 + l3) = δν · l1 (3.3a)
δν · (l6 + l7) = δν · l9 (3.3b)

This is at the edge of the bandwidth of the OPLL where there could still be corrective
action but perhaps not as pronounced as in the lower frequencies. We can assume here
the changes to be small enough to leave the physical path lengths of the lattice beams
and the reference beams effectively unchanged in magnitude but still disqualifies the
other conditions.

High Frequencies - beyond the bandwidth of the OPLL

δν · (l2 + l4) = δν · l5 (3.4a)
δν · (l6 + l8) = δν · l5 (3.4b)

Here, the paths leading to and including the OPLL become irrelevant and so only the
equalisation of the path lengths of the lattice beams need be considered.
It was learnt that it is practically tedious to change the lengths of certain paths like

DP ′ (l3) and IP” (l7) and the ones DE (l4) and IJ (l8) towards the atoms on the
experiment table. The length of the HDT2 beam l5 was also added to the list of path
lengths to be left unrevised, partly since it was preferable but also for the reason that, one
lattice beam should act as a reference to which the others can be equalised to. So fixing
l3, l4, l5, l7, l8 as constants would be convenient both practically and in this theoretical
consideration to reduce the number of free parameters. The equations are also not all
independent. Solving for the effective length and reworking the other conditions, this
linear system of equations reduces to four expressions for the required physical lengths
for the two lattice beams, HDT1 and HDT3, and the two reference beams OPLL1 and
OPLL2 in terms of the now fixed lengths,

δν · l2 = δν · (l5 − l4) (3.5a)
δν · l1 = δν · (l5 − l4 + l3) (3.5b)
δν · l6 = δν · (l5 − l8) (3.5c)
δν · l9 = δν · (l5 − l8 + l7) (3.5d)

Since this brings together all the listed conditions, this should hold across all frequency
ranges or equivalently, when the OPLL is active and when it is not. These expressions,
which are but conditions for what the path lengths for the two lattice and reference
beams should be for equalisation, can be used to conceive those lengths by elementary
arithmetic provided the other fixed path lengths are known. To this end, having arrived at
this during the course of our investigation, we moved on to quantifying the path lengths.
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3.2 measurement of optical path lengths
and differences

Measuring Optical Path Lengths (OPL) and particularly Optical Path Length Differ-
ences (OPLD) is an exercise often carried out in a variety of settings with numerous
methods. Apart from the use of interferometry for direct measurement of the OPLDs [59],
several indirect methods have also been developed like a time-of-flight technique wherein
optical pulses are injected together into the two paths entirely inside fibres and the delay
between the backscattered light in the fibre measured [60]. There are several reasons to
choose one method over another based on factors such as the offered precision, sampling
rate or time and cost efficiency in amount of materials put together to carry out the
measurement. For our purposes, it is not necessary to be extremely precise since we have
a wide tolerance on the required difference between the path lengths unless we wished to
equalise the paths to within a few centimeters. The most straightforward methods were
therefore used, as described below.

3.2.1 Geometric measurement

A good starting point was to carry out a geometric measurement of the optical path
lengths in the experimental setup. This was a matter of noting the distances between
all the optical elements where there is free space propagation and propagation through
the fibres, taking care to account for the index of refraction for the two cases. The
measurement procedure involved drawing a thread from edge to edge of the installed
optics and measuring against a metre scale. This quickly proved to be tedious and given a
very subjective estimate of error that varied depending on the tautness of the thread used
for obtaining an accurate reading from the scale, it was not very precise. The error was
also largely eclipsed by the stated fibre length tolerance which can be as large as 7.5 cm
off from the nominal length. But the measurement was completed anyway (Figure 3.2),
since it would still give us a reasonable estimate of the absolute path lengths which in
conjunction with results of the more precise OPLD measurement methods can then be
used to propose new lengths for the two lattice and reference beams.

3.2.2 Optical measurement through FMCW interferometry

Originally developed for use with the Radar and later found application in precision
metrology, Frequency-Modulated Continuous-Wave (FMCW) Interferometry is a ranging
technique that extracts distance from the frequency of the interference or temporal beat
signal of a signal wave with a frequency-modulated waveform following its traversal
through a path or a set of paths. Its optical variant works exactly on the same principle
as the Michelson interferometer, with only the optical frequency of its light source being
modulated at a set rate across a known range. The reason why this can be used to
extract OPLDs is because the modulation of the frequency results in a time varying phase
φ(t). The difference between this phase of each of the two interfering waves results in a
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Figure 3.2: Hand-drawn sketch of the arrangement of optics on the two sections of the experiment
table with the measured path lengths between the elements written along the beam
paths. The same done for the optics just after the laser on the optical table.
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sinusoidal beat signal I(τ , t) given some temporal delay τ between the two waves which
can be due to the OPLD between the paths traversed by the two waves,

I(τ , t) = Io(1 + V cos(φ(t)− φ(t− τ ))) (3.6)

where if I1 and I2 are the intensities of the two interfering waves, Io = I1 + I2 is the total
intensity and V = 2

√
I1I2/(I1 + I2) is the contrast of the beat signal. This beat signal is

visible without washing out in the first place, only if the initial phases of the interfering
waves are correlated (that is, if for instance, the two waves are derived from the same
coherent modulated optical source but travel along different paths before they meet).
Optical FMCW interferometry was then the second method to be used to determine

the OPLDs in the experiment between paths for beams which were beaten with each other
while scanning the laser over several GHz at a fixed rate. Since the lattice beams HDT1
and HDT3 were already being combined with the reference beams to generate a beat
signal for the OPLL, the same signal was used to carry out the FMCW interferometry,
taking care to down-mix the beat signal with an external 80 MHz reference and low-pass
filter it (Figure 3.3) to extract the beat oscillations due to the difference in path lengths
which were at the low frequencies. The beat corresponding to one edge of the ramp
applied to the laser frequency was then fit with a sinusoid and the beat frequency νb
determined. Knowing the range of frequency scanned ∆ν and the rate 1/T , the OPLDs
were calculated with the formula (see Appendix A),

OPLD =
νbc

∆ν/T
(3.7)

The paths of HDT1 and HDT3 are actually split for discretionary control of the orthog-
onal polarisation components in the polarisation synthesis setup (and called HDT1L/R,
HDT3L/R). The two components of each arm travel separate paths in this setup and
then are recombined to be sent to the atoms. The components are again separated to
generate separate beat signals for the OPLL which were all individually used to measure
the OPLDs (Figure 3.4(a) shows one such measurement). The difference in the paths of
the two components in the polarisation synthesis setup was also measured (Figure 3.4(b)).
This was done by observing the recombined signal behind a polariser while scanning

LPFMixer
Beat

80 Mhz Reference

Figure 3.3: The beat signals involving those beams shifted in frequency by the AOMs were
down-mixed with an external 80 MHz reference and low-pass filtered when employing
FMCW interferometry
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the frequency of the laser. In the theoretical analysis we had assumed the two paths to
be equal but this optical measurement showed (as was also evident with the geometric
measurement), that was not the case.

Comparing the results of this measurement with the values for the differences between
the same paths as calculated from the geometric measurement data (Table 3.1), the
optically measured differences were found to be off by a minimum of 4% but as large as
14%. Being an optical measurement and given the drawbacks of geometric measurement,
the Optical FMCW interferometry was ultimately more precise. This method is also
naturally a ready visualisation tool for the existing OPLDs with the observed beat
frequencies being higher for larger OPLDs and lower for smaller ones and so can be used
for a more refined adjustment of path lengths when it is carried out.

Figure 3.4: (a) Beat signal as observed between HDT3R and OPLL2 - the beat frequency
extracted from the fit was 6.64 Hz which gave an OPLD of 4.185 m according to
eq. 3.7 for a scan across 12 GHz at 0.5GHz/s. (b) Beat signal as observed between
HDT3L and HDT3R - the beat frequency extracted from the fit was 0.176 Hz which
gave an OPLD of 0.062 m for a scan across 26 GHz at 0.8GHz/s.

OPLD Geometric
measurement (cm)

Optical
measurement (cm)

Error (%)

HDT1L - OPLL1 50.5± 16 43.4 14.0
HDT1R - OPLL1 46± 16 41.7 9.3
HDT3L - OPLL2 386± 16 402 4.0
HDT3R - OPLL2 392± 16 418.5 6.8
HDT1L - HDT1R 4.5± 3 4.7 4.4
HDT3L - HDT3R 5.5± 3 6.2 12.7

Table 3.1: Measured differences using geometric and optical methods along with the error
indicating how far off the optically measured value is from the geometrically measured
value.
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3.2.3 Measurement using atoms

We had to this point utilised two methods for the same measurement and yet not quite
hit the mark - The geometric method, now already superseded by the optical measurement
in terms of precision, had allowed measurement only up to the Mu-metal shielding and
not beyond. The optical measurement proved to be useful to measure differences between
path lengths but only at points where a beat signal could be generated. Left wanting for a
more complete picture with the OPLDs measured up to the position of the atoms with the
required precision, atoms themselves were thought of as a tool to achieve this by measuring
their shift along with the lattice they were trapped in, that would shift under a fluctuation
in frequency because of the OPLDs. Exaggerating this fluctuation by deliberately ramping
the frequency to produce this shift of atoms, became the third method used to then
extract the OPLDs while helping make for a compelling demonstration of unequal path
lengths on any final measurements involving atoms in the experiment.

Calibrating the atom images

The use of the atoms to measure OPLDs meant processing datasets of images of the
trapped atoms. In a typical experimental sequence an illumination beam (an 852 nm laser
beam in the experiment) is shone on the atoms to have them fluoresce. The fluorescence
light is collected by an objective lens and focused on to an Electron-Multiplying Charge
Coupled Device (EMCCD) sensor that renders a digital image. To use these images to
determine the OPLDs by measuring the shift of the atoms required,

• Determining the direction from which the lattice beams entered to form the 2-D
lattice in the field of view of the camera and identify each beam: The EMCCD
camera, centered on the region where the HDT1, HDT2 and HDT3 beams form
the lattice within the science chamber, is oriented in a manner that any shifting of
atoms which will be along the diagonals of the lattice will show as a shift along
the horizontal and vertical axes of the image. The actual direction from which the
three beams enter the region of the object plane, however, was ambiguous.

• An algorithm that can detect subpixel movement and report the shift in distance
units with the correct conversion factor.

Figure 3.5: State-independent transport of atoms carried out by changing the phase of both
polarisation components of HDT3. This resulted in a downward shift as is clearly
visible here in the difference between the images before and after transport over 16
lattice sites.
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The orientation of the counter-propagating HDT1 and HDT3 was learnt very easily
- noticeable when HDT2 was turned off or blocked and loading atoms on to the 1-D
lattice that forms, the atoms were seen clearly trapped along the direction of the principal
diagonal of the image matrix. The HDT1 and HDT3 beams were therefore along the
other diagonal of the image with the HDT2 along the principal diagonal but this still did
not definitively identify each beam. It also did not unambiguously fix the direction of
HDT2 along the principal diagonal. This prompted the use of deterministic shifting of the
atoms facilitated by polarisation synthesis of the HDT1 and HDT3 beams to carry out
(state-independent) transport and track the direction of atoms as they moved along the
principal axes of the lattice for the pre-determined rotation of polarisation of each beam.
In parallel, the algorithm for detecting the shift in the atoms was developed. The

transport sequence as carried out in the lab involved loading the atoms in to the lattice
and taking a first image, then transporting the atoms by changing the phase of one of the
synthesised beams (more accurately, for state-independent transport, the phase of both
the polarisation components of either HDT1 or HDT3 was changed). A second image was
taken after the transport before finally taking a background image to subtract possible
noise or stray light from the first two images. During the sequence some other beams can
be optionally toggled to be actively shining on the atoms like the Vertical Dipole Trap
beam (VDT) as was done when the atom transport sequence was run. This meant that
the atoms were drawn to VDT beam position where they clustered disallowing detection
and tracking of individual atom position. It was still possible to track shifts between the
first image before transport and second image after transport despite the atoms visible
only as a cloud by the technique of cross-correlation of the images as is commonly done
in the field of image processing and goes by the label of image registration.

Cross-correlation of one M ×M matrix with an N ×N matrix is carried out by sliding
one of the matrices across the other and summing up element-wise products to generate a
(M +N − 1)× (M +N − 1) cross-correlation matrix. In doing this of the image matrices
in the domain of pixel intensity values, the cross correlation "undoes" any shift between the
images and the position of the maximum value in the cross-correlation matrix corresponds
to the position where there is the most similarity between the images. The shift is then
obtained by taking the difference of the peak position in cross-correlation matrix from
the peak position in the auto-correlation matrix, which is similar to cross-correlation only
that it is carried out with the same image, here of the first image. This gives the amount
of pixels (since each element of the image matrix is one pixel) by which the features of the
first image have shifted by in the second image. The actual cross-correlating of the matrices
was carried out by using an in-built MATLAB function for 2-D cross-correlation called
xcorr2. A time-efficient alternative to this algorithm was later found in an implementation
by Guizar-Sicairos et al., working on the same principle of cross-correlation but in the
frequency domain [61]. This was used particularly when there were large datasets to be
processed and with the claim of being able to resolve at a sub-pixel level, was arguably a
better choice to detect miniscule shifts where it is anticipated.

In one transport dataset that was acquired, the phase of the HDT3 beam was modulated
to shift the atoms by fixed amounts of lattice sites (Figure 3.5). The shift was determined
using the cross-correlation but in terms of pixels which needed to be converted to lattice
sites. The conversion factor from pixels to lattice sites is theoretically derived by calculating
first the magnification from the focal lengths of the objective lens (f = 11.96mm) and the
later focusing lens (f = 500mm) before the camera and was found to be 41.8. Each pixel
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of the EMCCD has a size of (16µm) which would mean it would capture 382nm of the
object plane. If the lattice spacing is λ/

√
2 (as is the case for the 2-D lattice), each pixel

corresponds to 1.6 lattice sites. Using this number, the measured shifts were found to fall
on a straight line against the expected shift as programmed. This justified the use of the
cross-correlation technique but the agreement was not exact. This was perhaps because
the used value of magnification was different from the actual value which was determined
by fitting a line to the shift data and was found to be 44 giving a magnification factor of
1.7 (Figure 3.6).

Figure 3.6: Measured shift fell in line with the expected shift. The linear fit though suggested
a slightly different magnification than the value calculated from knowing the focal
lengths of the objective and focusing lens before the camera.

Returning to the question of the identification of the beams, the modulation phase of
the HDT3 was done first in the increasing direction. The observed shift of the atoms
as they were transported for this change of phase showed a movement down along the
vertical axis of the camera image. Decreasing the phase showed a movement up along the
vertical. Doing the same with the phase of the HDT1 beam showed a movement along the
horizontal first to the right for increasing phase and left for a decreasing phase. Knowing
the translation vectors for transport on this synthesised 2-D lattice (see Section 1.2) , it
was now clear that the beam from the lower left corner of the image is HDT3, the upper
right is HDT1 and the only possible direction HDT2 entered the field of view was from
the upper left corner.

Measuring OPLDs from the shift of trapped atoms

With the protocol to measure the shifts of the atoms now laid down, the laser frequency
was scanned to shift the lattice corresponding to the OPLDs between the beams. The
scanning of the laser frequency was carried out by sending a digital trigger at the required
moment in the sequence via a National Instruments USB-6000 DAQ board connected to
a second lab PC. An active MATLAB script on that PC picked up on the trigger state
to send commands over a serial port to the Matisse CS laser controller with the help of
a custom class written for communication with the laser. The commands sent were to
switch to scanning the laser frequency using the reference cell over first a wide range of
optical frequencies in one direction (which meant having to re-scan the laser to its initial
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position during every run of the sequence) at the fastest rate possible, without having
the laser fall out lock. The programmed experimental sequence was as follows,

1. Load atoms in 2-D Lattice

2. Take the first image of atoms in 2-D lattice

3. Start scanning of laser frequency in one direction on trigger HIGH

4. Wait for a few seconds

5. Take the second image of atoms in 2D lattice

6. Take the background Image

7. Start scanning back laser frequency to initial value on trigger LOW

For this measurement, there was the issue of the action of the OPLL to consider. During
other experimental sequences such as transport, the OPLL was necessarily active. When
measuring path length differences, as argued earlier, there are different cases which for
this measurement was simply taken to be - the OPLL being active for both HDT1 and
HDT3 and the OPLL inactive for both with an additional case of the OPLL being active
for one of either HDT1 or HDT3.
Using the constraint equations, it can be shown that for the case of the OPLL being

active for both HDT1 and HDT3, due in part to the long reference beam fibre used
for HDT3, the effective path length differences will be large and so will therefore, the
resulting shift of the atoms when the laser frequency is scanned. This prediction was
tested by running the above sequence with the laser being scanned over 1.7 GHz at nearly
1 GHz/s in one direction (up from lower to higher frequencies) and collecting statistics
(50 runs of the sequence were recorded) (Figure 3.7). The scanning was monitored using
a High Finesse wavemeter to ensure the scanning was linear for the most part and there
were no mode jumps. The shifts measured by cross-correlation of images were noted along
both the horizontal and vertical directions since this was on the 2-D lattice and there
would be a net translation of the atom cloud due to the pairwise OPLDs between the
lattice beams - the HDT1 with HDT2 and HDT3 with HDT2 - and the translation would
be along the same respective vectors as in the transport experiment. Calculating the
corresponding OPLD for the measured shift of the atom cloud along those directions
and comparing with the expected OPLD as estimated using the geometric measurement
data, it was found that there indeed was a large shift especially in the vertical direction
because of an OPLD in excess of 3 m between HDT3 and HDT2 (Table 3.2). While there
was agreement between the expected and measured OPLD between HDT3 and HDT2
to within 5%, the same could not be said of HDT1 and HDT2 for which the measured
OPLD was off by 83%.

The reasoning for this currently remains a conjecture. It is possible that the expected
OPLD is a gross overestimation due to the inherent imprecision of the geometric mea-
surement. It could also be that the shift in the direction of the posited large OPLD was
much more dominant and won over a shift in the other direction.

The other cases of the OPLL state - being inactive for one or both counter-propagating
beams - were also tested. When the OPLL was made inactive for HDT1, atoms were
completely lost from the lattice following the scan. This is perhaps explained by the
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Figure 3.7: Images of trapped atoms before (first image) and after (second image) the scanning
of the laser frequency with the OPLL active for both arms alongside the distributions
of the shift of the atom cloud in the horizontal (here called the X-axis) and the
vertical (called the Y-axis).

OPLD Expected OPLD
(cm)

OPLD measured
from shift of atoms

(cm)

Error (%)

HDT1 - HDT2 95± 16 16± 2 83
HDT3 - HDT2 334± 16 349± 1 4.5

Table 3.2: Measured OPLDs using the geometric method and from the measurement using
atoms along with the error indicating how far off the latter value is from the
geometrically measured value.

non-zero OPLD between the paths for the orthogonal polarisation components of HDT1
which combined with the large OPLD, due to the active OPLL for HDT3, opened the
2-D lattice by moving the sublattices relative to each other that excited the atoms away.
The same was not true when only HDT3 was made inactive because there was no large
OPLD due to an active OPLL for HDT1 but there was still enough atom loss to broaden
the distributions of shifts along the two directions. Deactivating the OPLL completely
for both, also yielded similar results.
Further inquiry is required to explain these preliminary observations. There is also a

need to resolve the several issues by modification or improvement of the measurement
sequence, for instance, in terms of better retention of atoms in the lattice, which even
in the case of fully active OPLL can be poor because of the scan duration which is in
seconds. Here, the cross-correlation has no clear peak and the shift is undetermined.



O U T L O O K

From their inception, lasers have proven to be remarkably felicitous in what has become
an endless quest for broadening the horizons of technology. But it is by ushering in the
new quantum age of the same, that lasers have revealed their true prowess. While yet
to find similar use beyond the laboratory, the fine control and manipulation of matter
enabled by the lasers in a manner inconceivable without their existence has deepened
our understanding of quantum phenomena. This has been achieved to an extent that
we can exploit some to supplement classical machinery otherwise limited in scope to
carry out tasks more efficiently on different fronts or even probe new science. This is
the motivation behind experiments such as DQSIM (Discrete Quantum SIMulator) in
Bonn with the core objective to implement quantum walks of cold atoms on an optical
lattice. The laser is not without its limitations however and it is up to the experimenteer
to identify possible impediments and comment on the size of their role apropos of the
experiment. This was the goal of this thesis with an extensive inquiry centered on the
laser noise, with a focus on laser frequency noise.
Frequency noise was identified as one way in which atoms can get heated out of the

lattice in which they are trapped, necessitating their quantification. This was done for
two new lasers that were acquired for the lab, in addition to their smooth integration
in to the experiment. The manner in which the noise measurement was accomplished
was with the use of an optical frequency discriminator like a Fabry-Perót cavity. A cavity
was built with a four-fold increase in transmission of existing cavities for this purpose.
In the course of building the cavity, the classic optics problem of spherical aberration
was come across which despite being pervasive and having been studied in the context of
cavities decades prior, rarely finds mention in most practical descriptions of cavities. This
understanding particularly helped in more precisely calibrating the device for measuring
the frequency noise of the lasers which was done using the side-of-fringe locking technique.
The measured frequency noise spectrum revealed how some internal components of the
lasers contributed to noise. This was then used to reduce the magnitude of the noise (of
one laser used as a source for the optical lattice) by fine-tuning and noting optimum
values for the parameters that go in to determining the laser operation. Post its use a
device to measure the frequency noise, the Fabry-Perót cavity was put to use as a transfer
cavity to also improve its long-term stability.
In both as a frequency noise measurement device and a transfer cavity, a substantial

factor in terms of the quality of performance of the Fabry-Perót cavity is its mechanical
stability. In its current realisation, the cavity is not completely guarded against external
influences of acoustic vibrations or thermal fluctuations. Some improvements in design
can be made to correct for this shortcoming such as introducing rubber damping elements
at critical mounting locations of the mirror, piezo or between the entire cavity and the
table it is installed on which is not devoid of vibrations from the surrounding equipment
that can couple in to the cavity. Thermal fluctuations are a problem to a smaller degree
considering the stable temperatures in the lab and any local changes in temperature can
be avoided by careful placement of the cavity on the table. Another solution to completely
eliminate any thermal influence would be to replace the cavity housing and the internal
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metal mounts by one made of a material with low thermal expansion coefficient but this
is mostly unnecessary. More elegant and possibly less noisy implementations of the mirror
actuation over the use of a piezo as used currently with the mirror glued directly on to
the piezo tube can also be sought.
The frequency noise makes its presence known through the Optical Path Length

Differences (OPLDs) in the experiment. The second phase of the thesis was therefore
naturally dedicated to their measurement and elimination as well. The conditions required
to be met for minimal OPLDs or simply, equalisation, were first derived. With measured
OPLDs, the equalisation conditions become useful to determine what certain path lengths
should be but since the task of measuring the OPLDs itself was found to be not entirely
straightforward, requiring three different methods, the actual task of bringing the path
lengths to the desired values still remains.

The results of the last of the three OPLD measurement methods that involved the use
the atoms, is yet to be interpreted and understood in its entirety. To improve first its
reliability, one suggestion is to disable the use of the Vertical Dipole Trap (VDT) during
the laser scanning sequence to prevent atom clustering. This would also the atoms to
oscillate between multiple planes without tight vertical confinement which, since will
not affect how their dynamics on the horizontal lattice, should only allow for improved
resolution to detect their movement as they get dragged along with the shifting lattice.
The atom loss due to the long scan duration can be perhaps reduced with constant
cooling using the molasses beams. The future roadmap is then clear with regard to the
project of the equalisation of paths. There is first the repeating of the measurement
using the atoms with changes like mentioned above following which a combination of
the interferometric technique and the atomic measurement can be used to equalise path
lengths by readjusting optical elements or replacing fibres with as little disruption as
possible. Another task which is also pending is the installation of Photonic Crystal Fibres
to make full use of the high powers that the new lasers offer, which should be managed
in the coming months.



A A P P E N D I X

a.1 principle of optical fmcw interferom-
etry

Presented here is an analytic argument for the use of Frequency-Modulated Continuous
Wave (FMCW) interferometry extending from [62] and put in the context of measuring
the optical path length differences in the 2-D experiment.
Consider one each of the reference E1 (with an initial phase φ1, k-vector k1) and

the lattice beams E2 (with an initial phase φ2, k-vector k2) having their frequencies
modulated with say a triangular wave around a center frequency fo at a rate α given as,

E1(r, τ , t) = E01e
i((αt+2πfo)t−k1·r−φ1)

E2(r, τ , t) = E02e
i((α(t−τ )+2π(fo+80Mhz))t−k2·r−φ2)

τ is the delay time of the lattice beam with respect to the reference beam which could
be the time needed to travel the extra distance if there is a difference in the lengths of
the paths (OPLD) of the two beams, so τ = OPLD/c . As is evident, the 80 Mhz shift
introduced by the Acousto-Optic Modulator (AOM) to the lattice beam is also included.
The 2 waves are combined after which they travel in the same direction (say x). The
resulting beat signal (more precisely the time averaged beat signal) can therefore be
written as,

Is(x, τ , t) = |E1(x, τ , t) +E2(x, τ , t)|2

= E2
01 +E2

02 + 2E01E02Cos(ατt+ (2 π (fo − (fo + 80Mhz)))t
− (k1 − k2)x+ ∆φ)

= (constant offset)+ I1Cos(ατt+ (2 π (fo − (fo + 80Mhz)))t
− (k1 − k2)x+ ∆φ)

where ∆φ = φ1−φ2. If a photodetector is placed on the plane perpendicular to the x-axis,
a purely temporal signal can be obtained. The spatial dependence can be absorbed in to
a phase term as some error for the reason that -

(k1 − k2)x =

ω1
c
− ω2

c

x
=

αt+ ωo
c

− α(t− τ ) + ωo
c

x
=
ατ

c
x

=
∆ω OPLD

T c2 x
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which is a small number even for scans in the GHz range and distances in the few metres.
This beat signal can then be mixed down with an RF source and the difference frequency
isolated with a low pass filter,

Is(τ , t) = I1 Cos(ατt+ (2 π (fo − (fo + 80Mhz)))t+ φb0)

Ir(t) = I2 Cos((2 π 80Mhz)t+ θ)

where, φb0 = ∆φ− (k1 − k2)x.

I(τ , t) = Is(τ , t) · Ir(t)
= I1I2 Cos(ατt+ (2 π (fo − (fo + 80Mhz)))t+ φb0) ·Cos((2 π 80Mhz)t+ θ)

=
I1I2

2 Cos((2 π 160Mhz)t+ θ− ατt− φb0) ·Cos(ατt+ φb0 + θ)

LPF
=
I1I2

2 Cos(ατt+ φb0 + θ)

=
I1I2

2 Cos(ωbt+ φb0 + θ)

Here,

ωb = ατ

α =
∆ω
T

τ =
OPLD
c

=⇒ OPLD =
ωbc

α
=

νbc

∆ν/T

νb is the frequency of the beat signal observed when the optical frequency is scanned over
a range ∆ν in a period T . The above expression is then how the OPLD can be calculated.
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