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Chapter 1

Introduction

1.1 The phase problem and phase retrieval

In many scientific disciplines, the so called phase problem arises due to the fact that detectors can only
measure the magnitude of di�racted waves and the phase of the signal of interest is missing, whereas
the phase carries more the informations of a signal of interest than the magnitude does. This problem
has a long history in X-ray crystallography [2, 3] and phase retrieval techniques have been developed
to recover the phase information from unphased data - its Fourier magnitude. The most widely used
method for phase retrieval are the Gerchberg-Saxton algorithm in 1972 [5] and its variants, for instance,
the Gerchberg-Saxton-Misell algorithm in 1973 [6] and Fienup’s hybrid input-output (HIO) algorithm
in 1982 [9], which are still playing important roles in many fields today (2018), such as adaptive optics
and radio astronomy [7, 8] and holographic imaging [27].

In the Discrete Quantum Simulator (DQSIM) experiment in Bonn, loosely called the quantum walk
experiment in this thesis, it has been planned to study topologically protected transport of atoms along
the edges separating distinct topological phases [10, 11]. To realize sharp edges, structured intensity
patterns will be used and are to be holographically projected onto the caesium atoms trapped in a
two-dimensional (2D) state-dependent optical lattice. A robust technique to reproduce sharp-edged
di�racted patterns has been accomplished and is presented in this thesis. This technique is based on
a Gerchberg-Saxton-like algorithm [23, 24], which has overcome the well-known stagnation problem
and is able to suppress speckles induced by random phase vortices, and has further extended it to
create sharp, di�raction-limited edges in the reconstructed intensity pattern. CGHs corresponding to
the desired intensity patterns can be calculated with high computational e�ciency (∼ 100 iterations)
and the intensity patterns can be reconstructed with high fidelity (relative RMS 3.9%).

1.2 Liquid crystal spatial light modulator

The pre-calculated holograms can be imprinted onto a traditional optical di�ractive element (DOE)
which is static. A more convenient hologram carrier is the digital and dynamic liquid crystal spatial
light modulators (LC-SLMs), which are highly miniaturized active-matrix LC displays. The liquid
crystals located in di�erent pixel sites can alter the properties of incident light di�erently by changing
their birefringence which is in turn controlled electrically [49, 50]. However, because of fabrication
limitation, imperfections of SLMs are usually detected [35, 40, 41]. For phase-only modulation scheme,
it’s crucial to characterize the SLM beforehand, to make sure that the reflected wavefront from the
SLM is not distorted by it and the phase response is gamma-corrected. A successful characterization
of the utilized SLM is presented in this work. The measured reconstructed intensity patterns achieves
a relative RMS of 7.6%, when the SLM compensation mask is applied.
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1 Introduction

1.3 Layout of this thesis
The work presented in this thesis consists of two main tasks. After a brief description of the relation
between the phase retrieval problem and the quantum walk experiment (chapter 2), the first task
aims to investigate the properties of the Gerchberg-Saxton algorithm in order to find a robust solution
to the problem and to reconstruct desired intensity patterns reliably (chapter 3). After successful
simulations and before the physical implementation, the second task is to characterize the SLM in
order to compensate its physical and electrical phase errors before holographic applications (chapter
4). The experimentally reproduced intensity pattern are measured and compared with simulated ones
(chapter 5). At the end, there will be a conclusion (chapter 6).
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Chapter 2

The phase problem

2.1 The origin of phase retrieval
The missing phase problem has to do with the fact that many times in the reality, detectors can only
measure the magnitude of di�racted waves and cannot measure phase information. However, most
of the information of a signal is carried by the phase, not by the magnitude. Given a signal of interest
f = A · exp(iφ), the amplitude A contains the information of the energy of this signal and the phase
φ = φ0 + k x + ωt is carrying all the information about

• where it starts (φ0),

• where it’s going (k x), and

• how fast it gets there (ωt).

Phase retrieval is a century-old problem [1], having its origin in X-ray crystallography [2, 3]. X-ray
crystallography is a method to determine the structure of a crystal. In such experiments, a collimated
X-ray beam is stroke onto a crystal, the wave gets di�racted and a di�racted pattern is obtained. Since
the wavelength of X-ray is so short, observers are almost immediately in the far field. Some physics
(Appendix A.1.2) shows that the Fraunhofer di�raction is approximately the Fourier transform. Since
the detector can only measure the magnitude of di�racted waves, what is measured is the (square)
modulus of the Fourier transform of the signal of interest. A historically famous example is Gosling
and Franklin’s Photo 51 [4], an X-ray di�raction image of crystallized DNA taken in the early 1950s,
confirming the prior postulated double helical structure of DNA. In case of unknown structures that
haven’t been postulated, the phase retrieval problem remains an inverse problem: given that we only
see the Fourier transform magnitude, how can we recover the phase?

2.2 Motivation based on the DQSIM experiment
The DQSIM project also pertains to the phase retrieval problem as well. In the 2D quantum walk
experiment, topologically protected transport of the atoms state-dependently trapped in a 2D optical
lattice has been theoretically analyzed and numerically simulated [10, 11] (Figure 2.1). The spatial
boundaries between these distinct topological phases discussed in these works can be realized by
imprinting structured intensity patterns onto the optical lattice, since the coin angle of the atom (or
referred to as walker [10]) at a given lattice site is dependent on the intensity of the laser illuminating
that site. The coin angle here describes the amount of a unitary rotation of the spin state into super-
position of |↑〉 and |↓〉 and the coin operation is driven by microwave pulses [10], whose resonance
can be modulated by a far-detuned laser based on the AC Stark e�ect. The ground state energy shift
∆E is linearly dependent of the laser intensity: ∆E ∝ I/δ [12]. δ is the detuning of the laser from the
resonance of the involved transition.

3



2 The phase problem

A straightforward approach to create microscopic intensity patterns without mechanical change of
the setup is holography. And because in the quantum walk experiment infrared laser is in use, whose
wavelength is much larger than the wavelengths of X-ray (0.01 - 10 nm), the far-field distance would be
of magnitude of 10m. Therefore, a 2f-correlator (or 2f-system) is adopted to pull the far-field di�raction
to the back focal plane of the Fourier lens, without loosing the Fourier transform property (Appendix
A.1.3). In the control plane of the 2f-system, an SLM will imprint the pre-calculated hologram to the
wavefront of the laser, such that the desired intensity pattern is later (∼ 0.1 ns) reconstructed in the
conjugate plane, namely the trapping plane.
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Fig. 2.1: Time evolution of the spatial probability distribution of a walker which is prepared in the lattice site
close to the boundary of a quarter-circle-shaped topological island after n steps of walk [11].

For some well-known situations, the holograms can be obtained without e�ort, such as the Laguarre-
Gaussian (LG) modes, also called doughnut modes informally. Those are known as the solutions of the
wave equation in the cylindrical coordinates and are di�racted patterns of orbital angular momentum
(OAM) beams which in turn can be induced by spiral phase plates (SPPs) at a circular aperture.
The helical form that produces the OAM comes from the term exp(ilφ) [13], where φ ∈ [0,2π] is the
azimuthal phase and l = 0,±1,±2, ... is referred to as the topological charge, counting the number
of twists per wavelength. The essential feature in the di�racted doughnut modes is the centre of the
patterns - the more twists per wavelength, the larger singularity of the beam, which in turn creates
a bigger doughnut with a larger hole in the centre. If l = 0, the doughnut mode is reduced to an
Airy disc. In practise, a blazed grating which is superimposed with the spiral phase is used in order
to separate the first-order beam from the zeroth-order beam1. The linear superpostion of the spiral
phase and the blazed grating is called fork grating, as its shape suggests. Fork gratings have the
mathematical form

φfork(x, y) = mod 2π[l · arg(x + i · y) + k · x] , (2.1)

where k is the slope of the ramp. A set of simulations of SPPs, OAM wavefronts, fork gratings and
LG0l modes for l = 0,1,2,3 is shown in Figure 2.2. However, signal reconstruction from its Fourier
magnitude, which is arbitrary, turns out to be non-trivial in general. For this, one needs to model the
problem with more mathematical care.

1 The zeroth-order beam is by definition the part of light that does not get modulated and can act as interfering
background.
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2.2 Motivation based on the DQSIM experiment

Fig. 2.2: Simulated spiral phase plates (the 1st row), OAM beam wavefronts (the 2nd row) and di�racted LG
modes (the 4th row) with topological charge l = {0,1,2,3}. Closeup of the phase singularities of the
blazed fork gratings is presented in the 3rd row. The incident beam is assumed to be flat with a
uniform intensity.
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2 The phase problem

2.3 Mathematical model
In general cases the phase retrieval problem cannot be solved analytically. It can be expressed as
follow: given some real measurement b, the Fourier (square) modulus constraint, find a complex f
which is compatible with the equation

|F{ f }|2 = b , (2.2)

and consistent with some prior spatial modulus constraint, e.g. in X-ray crystallography one knows
there is a bunch of atoms; in holographic projection one knows how the aperture should be. Fdenotes
the Fourier transform. Equation 2.2 might look very simple, but in fact it describes a quadratic
real non-holomorphic function with complex argument. Furthermore, at least one of the modulus
constraints is non-convex (Section 3.1.2). Conventional optimization methods like gradient descent
and error-reduction thus encounter feasibility problems. In complexity theory, the feasibility of solving
this quadratic system exactly in polynomial time remains unclear and therefore, this problem remains
NP-hard in general [31]. Herbert A. Hauptman and Jerome Karle have developed the direct method
using the Sayre equation [14] for the determination of crystal structures and were awarded the Nobel
Prize in Chemistry in 1985. The applications of their method were however limited, because the
method is only suitable for small molecules and not for larger ones such as porteins [15]. A much more
general and widely used method is a standard approach - the Gerchberg-Saxton algorithm, an iterative
Fourier transform algorithm (IFTA) which has a wide range of applications beside crystallography.
The structure, problems and extensions of this IFTA will be discussed about in detail in the following
chapter.
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Chapter 3

Frameworks of phase retrieval

Since the phase retrieval problem turned out to be NP-hard, many heuristics have been developed to
solve it. In microscopy and optics, the most-utilized method is the Gerchberg-Saxton (GS) algorithm,
as already mentioned at the beginning. Sometimes it’s also called error-reduction algorithm [9, 16, 34],
because it does show a certain error-reduction property [16, 18]. It’s also very often referred to as the
von Neumann’s alternating projection [16, 17, 33, 34] due to its algorithmic structure. The principle and
the properties of the GS algorithm will be discussed in detail in sections 3.1.1 and 3.1.2.

This algorithm lacks a rigorous mathematical proof of the convergence [17, 33]1, but it works em-
pirically well after several intuitive modifications and the intrinsic mechanism thereof is clear physi-
cally. This will be discussed and simulated in Section 3.1.3. Nevertheless, several further frameworks
furnished with stronger mathematical background developed in applied mathematics and computer
science as well as the benchmark problems will be conceptually reviewed in Section 3.2.

3.1 Projection-based framework

3.1.1 The principle of the GS algorithm

The GS algorithm is an iterative Fourier transform algorithm relying on linking the modulus in the
object plane (specifically referred to as the SLM plane in this work) and observation plane by simulat-
ing light propagation back and forth between these planes. After each propagation, the prior modulus
constraints in both planes, A(x, y) and T(u, v), are imposed to the resulted field. The phase freedom
in the observation plane is completely released and the phase in the SLM plane is left to converge to
the optimized solution φ(x, y). In another word, the GS algorithm aims to solve the equation

|F{A(x, y) exp (iφ(x, y))} | = T(u, v) (3.1)

iteratively as illustrated in Figure 3.1. This equation is equivalent to Equation 2.2, expressed in
modulus. In this chapter, (x, y) and (u, v) denote coordinates in the SLM plane and observation plane,
respectively.

1 "Despite the widespread use of the algorithms proposed by these three researchers, current mathematical
theory cannot explain their remarkable success." [17]. "It is in general completely unclear whether the Gerch-
berg-Saxton algorithm actually converges. (And if it were to converge, at what speed?) It is also unclear how
the procedure should be initialized to yield accurate final estimates." [33].
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3 Frameworks of phase retrieval

SLM plane

Optimized hologram

Initial phase guess
Impose aperture

modulus constraint

Extract improved hologram

IFT

FT

Propagation result

Back propagation result

φ(0) E (n)
1 = A exp iφ (n)(      )

φ(n+1) = arg E (n)
4(     )

E (n)
2 = F T E (n)

1{     }

E (n)
4 = F T −1 E (n)

3{     }
E (n)
3 = T exp iarg E (n)

2(     (     ))

Observation plane

Impose target
modulus constraint

Fig. 3.1: Blockdiagram of the core Gerchberg-Saxton algorithm with explanatory notes of each step. The object
plane (or spatial plane) is specified as the SLM plane. Starting from a random initial phase estimate,
the algorithm loops between the SLM plane and the observation plane until the optimized hologram
reproducing the desired intensity is obtained [24].

In the convex optimization, the error-reduction algorithm corresponds to the alternative projection,
sometimes known as projections onto convex sets (POCS) [16, 17, 33, 34]. This insightful geometrical
interpretation provides a posibility for understanding the fundamental idea behind the GS algorithm
and gives a sound mathematical explanation of the stagnation problem. As suggested in [17], the GS
algorithm can be reformulated in a general signal space, the complex Hilbert space

L= L2[RN ,C] . (3.2)

The signal f (x) ∈ C in Equation 2.2 in L is a square-integrable function of variable x ∈ RN . Then
the spatial domain constraint is the set

C1 = {g ∈ L : g · 1Ac = 0} , (3.3)

where A ∈ RN is the support of the signal f (e.g. the aperture or the positions of atoms) and Ac

the complement of A in RN (e.g. area outside the aperture or area where there is no atom and the
field should zero). 1B denotes the characteristic function of the a set B ∈ RN . The Fourier modulus
constraint is set

C2 = {g ∈ L : |F{g}| = T} . (3.4)

The phase retrieval problem is translated to the task of searching for a function f ∈ C1 ∩ C2 ⊂ L,
namely a point that satisfies both sets at the same time. Now let’s associate a projection operator Pi

(i ∈ {1,2}) to each set Ci [16] and call h ∈ Ci the projection of f onto Ci if

| |h − f | | = min | |g − f | |, g ∈ Ci . (3.5)

| | · | | denotes the norm. Therefore, the GS algorithm is now expressed in the following 4 steps:

1. Take an initial guess f 0 ∈ C1 of the signal of interest, whose phase is random

2. Project the guess onto set C2 and create a new estimate P2 f n,

8



3.1 Projection-based framework

3. Project the new estimate back onto set C1 to make another guess P1P2 f n,

4. Let f n+1 = P1P2 f n. Repeat step 2 and step 3 and keep going until the pre-defined figure-of-merit
function stops decreasing.

This algorithm is ad hoc. Sometimes it works and sometimes it doesn’t. The outcome strongly
depends on the initial guess. This is known as the stagnation problem [9]. Exploring the properties
of the algorithm would help to understand this problem and lead to heuristic ideas for improvements.

3.1.2 Properties of the GS algorithm

A. The uniqueness of solution

Before describing the algorithm, it’s appropriate to ask the question: is the solution to the problem
described above uniquely defined? In other words, can a function be uniquely defined by its Fourier
transform modulus? It has been shown that in 1D case a unique solution doesn’t exist [2]. In contrast,
the uniqueness1 of 2D space exists under some conditions [19] and it is widely believed that 2D images
generally fulfill the uniqueness conditions based on experimental results [16].

B. Non-convex property of the constraint set(s)

De�nition. A set Ω is a convex set if the line segment joining any two points in Ω lies entirely in Ω.
Algebraically, the set Ω is convex if ∀ f , g ∈ Ω and ∀λ ∈ [0,1] [21]

λ f + (1 − λ)g ∈ Ω . (3.6)

It can be easily verified that the constraint set C1 is convex and that C2 is non-convex. The second
statement is explicitly shown here. Choose an arbitrary g ∈ C2. Then −g ∈ C2 because | − g | = |g |,
but 1

2 g +
1
2 (−g) = 0 < C2.

C. Error-reduction property

The reduction2 property of the error en = | |gn − g | | (g is the desired image in Fourier domain and
gn the calculated one in nth iteration) was first investigated by Fienup in 1982 (Section II in [9]).
Unfortunately, his notion was not strict and the proof turned out to be ambiguous. Levi and Stark
established a connection between the GS algorithm and the non-convex POCS algorithm in 1984
(as discussed in Section 3.1.1) and have generalized the error-reduction property to the set-distance
reduction property, where the distance between both constraint sets was involved, not the true error
en (Section 2 in [16]). Osherovich also provided an intuitionistic proof of the set-distance reduction
property in his PhD thesis (Chapter 3 in [18]), showing that the GS algorithm converges to a solution if
the constraint sets are both convex. Because the set C2 is non-convex, it’s now very straightforward to
understand the stagnation problem. This is visualized in Figure 3.2 with explanations in the caption.

D. Spontaneously generated optical vortices

Spontaneously generated optical vortices in the Fourier plane, often known as speckles, are induced by
the random phase singularities in the spatial plane (SLM plane). Since the phase in such a singularity
is indeterminate, the optical field there vanishes [22]. The topology of such vortices is similar as the
doughnut modes introduced in Section 2.2. Every vortex of the speckle pattern also carries an optical
angular momentum, but such vortices are undesirable. Their occurrence stalls the convergence of
the GS algorithm, because they don’t disappear automatically once being created; any fluctuation-
induced zero-intensity-point during the iterations in turn serves as seed of the convergence-stalling

1 We should note that the uniqueness of the function f (x, y) is defined up to its trivial ambiguities such as
− f (x, y), f (−x,−y), f (x − x0, y − y0), which all have the same Fourier transform magnitude. 2 Reducing or at
least nonincreasing.
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3 Frameworks of phase retrieval

vortices [24]. Therefore, measures must be taken in both conjugate planes to suppress the optical
vortices [20].

C1∩C2

C2

C1
T

...

f0

P2f0
...

...f1

.

C2

C1

S

...

f0

P2f0 ...

...f1

Fig. 3.2: Alternating projections starting at point f 0. Upper: stagnation at T , whereas the true solution must be
contained in C1 ∩ C2 and this can only happen when non-convex set is involved. Lower: long tunnel
toward the solution at S and this can occur to both convex and non-convex sets, leading to extremely
slow convergence. These two sketches are redrawn from the convexity illustrations in [16].

3.1.3 SOMRAF algorithm: "3+1" empirical improvements

In the last four decades, many e�orts have been made to solve the stagnation problem. For example,
Fienup has proposed the hybrid input-output algorithm in 1982 [9], in which he treated f n and f n+1 as
the input and output of a non-linear system P1P2 and relaxed the spatial domain constraint through a
relaxation parameter - we will talk about the relaxation in a more general sense soon. Another crucial
inspiration comes from Wyrowski and Bryngdahl’s work in 1988 [20]. They verified that the random
initial phase guess introduced many phase singularities and hence led to optical vortices in the Fourier
plane. They suggested to use another initial phase guess and control the algorithm in a way that no
new vortices are introduced during the iterative process. The ideas of the constraint relaxation,
the alternative choice of initial phase guess and the control during the procedure are the important
components of the method presented in this thesis, the Softness-O�set-Mixed-Region-Amplitude-Freedom
(SOMRAF) algorithm. Bases on one or more of these pioneering inspirations, numerous variants of
the GS algorithm have been developed and successfully implemented by physicists for their hologram
calculation tasks specified by di�erent scenes and requirements [23, 24, 25, 26, 27]. In the upcoming
content, the SOMRAF algorithm will be described in four steps, followed by detailed numerical
simulations of two test patterns.
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3.1 Projection-based framework

Step 1: relaxation of the modulus constraint

In [16], the projectors associated to both constraint sets have been generalized to the relaxed versions

Pi → Ki = (1 − µi) · 1 + µi · Pi , i = {1,2} , (3.7)

by introducing the relaxation parameters µi which lie between 0 and 1. Fienup’s hybrid-input-output
(HIO) algorithm [9] relaxes the projector to the spatial domain constraint C1 and thus has the form
[16]

f n+1 = P2K1 f n . (3.8)

In another category, the operator to the Fourier domain constraint C2 is relaxed, namely

f n+1 = P1K2 f n , (3.9)

the representing algorithm of which is the adaptive-additive (AA) algorithm [28]. In the AA algorithm,
E (n)3 in Figure 3.1 becomes

E (n)3 =
[
µ · T + (1 − µ)· | E (n)2 |

]
ei arg(E

(n)
2 ) , (3.10)

and this is the starting point of the SOMRAF algorithm which is an extension of the Mixed-Region-
Amplitude-Freedom (MRAF) algorithm [23] and the O�set-Mixed-Region-Amplitude-Freedom (OM-
RAF) algorithm [24]. In contrast with the AA algorithm which introduces the amplitude freedom
uniformly to the Fourier domain, the MRAF algorithm separates the Fourier plane into subsets, a
small area around the desired pattern named signal region (SR) and its complement called the noise
region (NR). In the SR the modulus constraint is completely maintained and in the NR the amplitude
freedom is totally released. Equation 3.10 thus becomes

E (n)3 =
[
µ · T |SR +(1 − µ)· | E

(n)
2 |NR

]
ei arg(E

(n)
2 ) (3.11)

in the MRAF algorithm. The result is that the algorithm converges in the SR very closely to the target
pattern and what happens in the NR causes less concern, because in the atom confinement experi-
ments there will be no atom in this region. This step forces the algorithm to concentrate only in the
SR. However, amplitude freedom relaxation alone is not su�cient to reproduce the desired intensity
pattern without su�ering speckles. The next two steps are also crucial for speckles suppression.

Step 2: quadratic initial phase guess

The underlying physics of optical vortices has been discussed. One idea in [20] is to replace the
random initial phase guess by a more appropriate one, such that no intensity zero is produced at
the very beginning. The MRAF algorithm proposes to apply a quadratic initial phase guess, which
already produces a result close to the target pattern in the first iteration. In this scene, the new initial
guess not only suppresses phase vortices, but also starts at a position close to the global optimum in
the SR.

Step 3: finite intensity offset in the Fourier domain

The second measure to suppress phase vortices is to avoid their seed - zero intensity point created
during the iterative procedure due to fluctuations. For this, the OMRAF algorithm simply o�sets the
target intensity by a uniform and finite amount ∆2 [24]. This step redefines the zero of the intensity
to which all intensity values are referenced, but the physics remains the same. Hence, the target
amplitude becomes

T →
√

T2 + ∆2 . (3.12)
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3 Frameworks of phase retrieval

Step 4: softness for sharp edges

For target with sharp edges, the OMRAF algorithm is not yet su�cient to reproduce high-accuracy
patterns that are required for the quantum walk experiment. Fringing artefacts which apparently look
like the knife-edge e�ect of Fresnel di�raction (Appendix A.1.1) occur when the OMRAF algorithm is
applied to reconstruct sharp-edged intensities. An empirical idea to suppress these fringing artefacts
is to introduce a tunable softness to the target pattern. The softness is obtained by convolving the
desired sharp-edged target pattern with a Gaussian kernel whose width is used to control the softness.
During the iterations, the softness can be reduced gradually to end up with the sharp edges.

Numerical simulations using MATLAB

For evaluation of the performance of the SOMRAF algorithm, two test patterns related the experiment
[11] have been chosen. For the sake of simplicity, the algorithm is demonstrated with the first test pat-
tern "plateau", the boundary of which is a quarter of a circle with a radius of 30 Fourier pixels1. This
binary-valued pattern is convenient for evaluating the achieved relative RMS and the signal-to-noise
ratio (SNR). To investigate the resolution of the algorithm and the experiment, a second test pattern
"ramps" will be used, the details of which will be described at the last of this subsection.

The matrix of the hologram is chosen to be 700×700 pixels.2 Let the physical size of the matrix
side length be d, then the Fourier pixel has a physical size of λ f /d, with λ = 852 nm the wavelength
and f = 150mm the focal length of the Fourier lens chosen for the holography experiment. The
calculated hologram will be transferred to an LCoS SLM with pixel pitch of 10.4 µm and thus the
Fourier pixel is 17.6 µm physically. In order that the discrete Fourier transform can resolve the output
plane and calculate the CGH in the input plane, the hologram matrix is embedded at the centre of a
1400×1400 zero matrix, known as zero-padding and required by the Nyquist sampling theorem. The
subsets NR and SR of the output plane introduced by the MRAF algorithm [23] are visualized in
Figure 3.3, based on the reconstructed pattern "plateau" in zoom-in view. The desired 30×30 Fourier
pixels pattern lies in the measure region (MR), surrounded by the red square; the signal region, se-
lected to be 105×105 Fourier pixels, is surrounded by the yellow square and includes the signal region.
The target amplitude is now imprinted in SR. The area outside the yellow square is the noise region,
where the phase and amplitude freedom are totally allowed.

Fig. 3.3: Visualization of the noise region (NR), signal region (SR) and measure region (MR) based on the
(zoom-in) reconstructed intensity pattern "plateau" using the SOMRAF algorithm.

1 In this thesis, the Fourier pixel is defined as the pixel of the output plane (Fourier domain), i.e. the resolution
unit of the algorithm. 2 Pixel of the input plane, in the implementation in Chapter 4 this corresponds to the
SLM physical pixel pitch.
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3.1 Projection-based framework

The quadratic initial phase, which should produce di�racted pattern in a similar scale as the desired
one, has the form

φQ = q · (x2 + y2) , (3.13)

with a single parameter q controlling the size of the di�racted pattern in the first iteration. For the
pattern "plateau", the optimal value of q is 0.22mrad/pixel2, manually1 determined by observing the
behaviour of the figure-of-merit function and the quality of the reconstructed intensity pattern for a
wide range of values. This is the principle of optimizing all parameters mentioned below. As also
observed in [23], it’s found that small change in q didn’t a�ect the final result. Comparisons of the
random initial phase guess and quadratic initial phase guess as well as the corresponding results
are shown in the Figure 3.4. In the OMRAF algorithm [24], the optimized o�set ∆2 was ∼ 1% of the
maximal intensity in the trapping plane and was only needed in the first iteration. The author believed
that very few vortices would be formed in the following iterations. In the SOMRAF algorithm, ∆2 is
optimized to 0.5% of the maximal intensity in the signal region and has to be maintained for every
iteration. The the optimized value of the relaxation parameter µ is found to be 0.4, in agreement
with the result of [24]2. The width of a normalized Gaussian kernel that controls the softness of the
sharp-edged pattern is optimized to 0.5 pixel.

Random initial phase Calculated hologram (naïve GS)

Diffraction of random initial guess Naïve GS result

Quadratic initial phase Calculated hologram (SOMRAF)

Diffraction of quadratic initial guess SOMRAF result

Fig. 3.4: Initial phase guesses and the reconstructed intensities of the naïve Gerchberg-Saxton algorithm and
the SOMRAF algorithm. The first column is the random initial phase guess and its di�raction; the
second column is the calculated result of the GS algorithm; the third and the fourth columns are the
situation of the SOMRAF algorithm. In the GS case, the calculated hologram contains numerous
phase singularities and the reconstructed intensity is consequently full of speckles despite the correct
shape. In the SOMRAF case, no optical vortex is found.

To gauge the performance of the SOMRAF algorithm and to optimize the parameters mentioned
above, a figure-of-merit function which visualizes the convergence of a algorithm is defined in the
output plane:

η =
1

NMR
·
| | Ĩn(u, v) − Ĩ0(u, v)| |

| | Ĩ0(u, v)| |
, (u, v) ∈ MR . (3.14)

In Equation 3.14, Ĩn = In/
∑
(u,v)∈MR In is the reconstructed intensity in the nth iteration and

Ĩ0 = I0/
∑
(u,v)∈MR I0 the target intenstiy, both normalized to have the same power in the MR. NMR is

1 In some very informal occasions, (funny) people called manual parameter optimizations the "GSS algorithm",
the full name of which is Graduate Student Search algorithm. In principle, one can define proper functions
that automatically optimize the parameters. However, the complexity usually increases exponentially with
increasing dimensions of the problem. Manual optimizations are more practical and preferred due to time
constraint. 2 Gaunt has documented the result µ = 0.4 in another unpublished article in 2011, Coherent
Optical Sculpting for Manipulating and Probing Ultracold Atoms.
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3 Frameworks of phase retrieval

the number of Fourier pixels in MR. Before discussing about the relative RMS and the SNR of the
reconstructed intensity pattern, the signal area and the background noise area1 are defined as the
plateau area (inside the quarter of circle) and its complement in the MR, respectively. The definitions
of RMS and SNR are

RMS(%) =
rms(Signal − mean(Signal))

mean(Signal)
, (3.15)

SNR(dB) = 10 · log10
mean(Signal) − mean(Background)

rms(Background − mean(Background))
. (3.16)

The light usage e�ciency (LUE), defined as the ratio of the intensity in the signal region to the total
intensity in the output plane, also causes attention. The LUE in the GS algorithm is supposed to
be 100% and in the relaxed versions much less, depending on the value of parameter µ. Now the
performances of the SOMRAF algorithm can be compared to the OMRAF algorithm and the naïve
GS algorithm in di�erent perspectives. The parameters q for the initial phase guess and ∆2 for the
intensity o�set are set the same for the OMRAF algorithm and the SOMRAF algorithm. The compar-
ison of algorithm convergence is shown in Figure 3.5 in two types of axis scaling. The reconstructed
intensities are compared with the desired one in 2D (Figure 3.6) and 3D (Figure 3.7). The relative
RMS, SNR and LUE of three algorithms are summarized in table 3.1. The calculated holograms can
be found in Appendix A.2.1.

Figure 3.5 shows that the GS algorithm is trapped in some local minimum after 25 iterations, while the
OMRAF algorithm has made a much larger drop already after 25 iterations. But the merit function
of the OMRAF algorithm is apparently not monotonically decreasing in this case. The SOMRAF
algorithm has enabled a further drop and keeps dropping, as it can be seen in the natural logarithmic
scaling plot. However, it seems that the SOMRAF algorithm has reached a tunnel that has been
discussed before (Figure 3.2). In figures 3.6 and 3.7, the speckle problem is very well visualized in the
intensity reconstructed by the GS algorithm. The OMRAF algorithm has solved the speckle problem,
but the edge behaviour in the reconstructed intensity is undesirable. After the softness is introduced,
the SOMRAF algorithm can finally reproduce intensity pattern that is very close to the desired one.
Since the Fourier domain amplitude freedom is partially released in the OMRAF algorithm and the
SOMRAF algorithm, light is allowed to be di�racted into the noise region without further care and
hence the LUE has dropped by a factor of 1/2. A correlation between the relaxation parameter µ
and the achieved LUE was not established though. Too large or too small µ led to speckles again.
Although the OMRAF algorithm has appreciably reduced the flatness RMS from the GS result 53% to
13%, the SOMRAF algorithm further brings it down to a level of few percent. Besides, the enhance-
ment (of a factor of 9) in SNR is large comparing to the GS and OMRAF algorithm.

Naïve GS OMRAF SOMRAF

LUE 99% 43% 45%

RMS 53% 13% 3.9%

SNR 13.1 dB 13.2 dB 22.5 dB

Tab. 3.1: Summary of reconstructed pattern "plateau".

1 Not the signal region and noise region defined in the algorithm structure.
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Fig. 3.5: Comparison of the figure-of-merit functions of reconstructing the pattern "plateau".
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Fig. 3.6: 2D visual comparison of the reconstructed intensities of pattern "plateau". The axes are rescaled to
the physical size in the output plane.
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Fig. 3.7: 3D visual comparison of the reconstructed intensities of pattern "plateau". The axes are rescaled to
the physical size in the output plane. All reconstructed intensities have been normalized to the power
of the desired intensity.

To examine resolution that the physical implementation can achieve (next chapter), the second test
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3 Frameworks of phase retrieval

pattern "ramps" is employed, which consists of two concentric squares with linear discrete ramps
inside each. The direction of ramps in the outer area is perpendicular to the ramps direction in the
inner square. Each ramp has 4 Fourier pixels. In the quantum walk experiment, an intensity raster
will be imprinted onto the atoms trapped in the optical lattice, 3 atoms (i.e. 3 lattice sites) per ramp
(Figure 3.8) [11]. The grating constant of the lattice site is 612 µm and the Abbe radius of the imaging
system is 463 µm according to Abbe’s resolution criterion rAbbe = 1/(2NA), where the numerical
aperture (NA) of the objective is 0.92 [29, 30]. In this scene, 4 Abbe radii will be projected onto each
ramp. To simulate this, 4 Fourier pixels (resolution unit of the Fourier transform, later implemented
by a physical lens) is put into each ramp. Entirely, the pattern "ramps" has 60×60 Fourier pixels. The
20×20 pixels inner square contain 5 vertical ramps and the outer area has 15 horizontal ramps. This
pattern is also reconstructed by the GS, OMRAF and SOMRAF algorithms. Results are shown in
figures 3.9 to 3.11 and the corresponding holograms can also be found in Appendix A.2.1.
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Fig. 3.8: Sideview of three ramps of the desired intensity pattern "ramps" [11].
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Fig. 3.9: Comparison of the figure-of-merit functions of reconstructing the pattern "ramps".
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Fig. 3.10: 2D visual comparison of the reconstructed intensities of pattern "ramps". The axes are rescaled to
the physical size in the output plane.
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Fig. 3.11: 3D visual comparison of the reconstructed intensities of pattern "ramps". The axes are rescaled to
the physical size in the output plane. All reconstructed intensities have been normalized to the power
of the desired intensity.

The convergences of the three algorithms (Figure 3.9) show very similar behaviours as in the first case
"plateau". The extremity of this test pattern is that along the corresponding ramps direction, adjacent
Fourier pixels are associated with distinct values. Therefore this pattern can be used to examine the
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3 Frameworks of phase retrieval

resolution of the algorithms. The GS result in Figure 3.10 and 3.11 turns out to be totally noisy, as it
was also the case for the other pattern. The OMRAF result can associate roughly the desired values
to the Fourier pixels, but the quality of the reconstructed pattern su�ers from the edge problem. The
SOMRAF algorithm is able to reconstruct the desired pattern very close to the target. For a further
visual comparison, the 15 outer ramps in two selected regions (Fourier pixel 1 - 20 and 41 - 60 along
the v-axis) are averaged and the 1D profiles of the three algorithms are compared to the target, see
Figure 3.12.
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Fig. 3.12: Comparison of the reconstructed average profiles of the selected ramps. The SOMRAF result (the 1st

plot) is very close to the target and the desired sharp edges are numerically very well realized, while
the OMRAF result (the 2nd plot) and the GS result (the 3rd plot) show obvious deviations from the
target profile.
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3.2 Other frameworks and benchmark problems

3.2 Other frameworks and benchmark problems
In the recent decade, scientists working in the fields of applied mathematics and computer science have
also developed various frameworks and algorithms to solve the phase retrieval problem. Remarkable
works are done by Emmanuel Candès from Stanford University, who worked with the Fields medal
winner Terence Tao in 2006 in Compressed Sensing that allows the recovery of objects with a below-
Nyquist sampling rate. Two frameworks for phase retrieval suggested by Candès and his collaborators
are conceptually reviewed in this section.

3.2.1 Convex optimization and gradient method
In the foregoing section, the non-convex property of the phase retrieval problem has already been
discussed and under this context, convex optimization encounters feasibility problem. However,
the PhaseLift technique [31] suggests to treat the (non-)convexity of optimization as a coordinate-
dependent problem. The phase retrieval problem can be reformulated as a rank-one minimization
problem, which is relaxed by a convex trace norm minimization [31]. Another similar convex re-
laxation PhaseCut [32] suggests to split the phase and magnitude via a complex semi-definite pro-
gramming. Applying conventional gradient methods like gradient descent or Newton’s method on
the phase retrieval problem also encounters feasibility problem. That is, a real function of complex
arguement z is not holomorphic (i.e. not complex-di�erentiable) unless it is constant. This can be
easily proven by the Cauchy-Riemann equations. And this is exactly the situation of Equation 2.2.
Therefore one needs to re-define the gradient and Hessian in order to use the gradient method for
the phase problem. The Wirtinger calculus provides such possibilities: f (z) is not holomorphic at z,
but f (z, z̄) is holomorphic at z for a fixed z̄, and vice versa. z̄ is the complex conjugate of z. This is
the essence of the Wirtinger Flow algorithm [33] for exact phase retrieval.

3.2.2 Benchmark problems

Physics
Biology
Mathematics
Computer Science
Statistics and Machine Learning

Fig. 3.13: Mathematical and numerical aspects of the phase retrieval problem have received considerable atten-
tions since 2011. Source: arXiv databank, November 2018.

These two frameworks have encouraged a wide range of mathematical and algorithmic approaches of
the phase recovery task. A rough count of arXiv articles with the keyword "phase retrieval" in abstract
has shown this trend (Figure 3.13). Veit Elser, professor of physics at Cornell University, has noticed
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3 Frameworks of phase retrieval

this trend and brought up the benchmark problems for evaluating the performance of algorithms [34]
and he also strongly suggested to solve the phase problem on the basis of fundamental physics rather
than pure mathematics. However, his proposal is based on crystallography in particular, where the
two constraint sets look di�erent from those in holography (sets C1 and C2 discussed in the Section
3.1.1 and 3.1.2). For atom confinement experiments, I haven’t found another competitive algorithm
that has been able to reconstruct high-fidelity and high-SNR intensity pattern e�ciently as the MRAF-
OMRAF-SOMRAF branch in the family of GS-like algorithms. In addition, the SOMRAF algorithm
has a succinct structure whose mechanism is physically clear.
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Chapter 4

Physical implementation: spatial light modulator

The phase change of a wave depends on the optical path length nd, with n the index of refraction and
d the thickness of the medium that the wave passes through. Static di�ractive optical elements (DOE)
such as phase plates with spatially varying thickness can serve as the carriers of the holograms. In
contrast to the human intervention during the acquisition stage of the phase plates, digital spatial
light modulators (SLMs) show increased flexibility and user friendliness, especially when dynamic
altering of the hologram is required during the experiment.

4.1 Introduction of SLMs

4.1.1 Construction of LCoS PAN and operation principle

A 10-bit 1050×1440 pixels Liquid Crystal on Silicon (LCoS) SLM in parallelly aligned nematic (PAN)
configuration from the company Santec is used in this experiment, operating for the 852 nm laser.
LCoS SLM is often called LC-SLM, which is a highly miniaturized (Santec SLM-100: pixel size 10 µm,
pixel pitch 10.4 µm) reflective active-matrix LC display. The principle of the phase modulation is to al-
ter the index of refraction seen by the extra-ordinary beam passing through the electrically controlled
birefringent LC material sandwiched between the transparent electrode and the pixelated reflecting
electrodes. Therefore, to obtain an optimal performance for the phase-only modulation, the polariza-
tion of the incident light should coincide with the optical axis of the LCoS in PAN configuration, see
Figure 4.1f.
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Fig. 4.1: Illustrations of PAN configuration with (a) OFF voltage and (b) ON voltage states.

The modulated phase of an LCoS device is give by

∆φ =
2π(2d)∆n

λ
, (4.1)
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4 Physical implementation: spatial light modulator

where d is the LC layer thickness and ∆n = neff − no the birefringence at wavelength λ [49, 50]. The
e�ective refractive index neff and hence the phase for each pixel can be altered (no < neff < ne) by
rotating the rod-shaped LC molecules. This is achieved by controlling the electric field over the pixel,
i.e. applying a voltage over the pixel electrode and the common electrode, see Figure 4.1 and Figure
4.3. The SLM is addressed with a 10-bit number, referred to as the grayscale level, which is converted
into voltage by the SLM driving hardware. In the ideal case, where no physical or electrical error is
present, the modulated phase is proportional to the grayscale level and the applied voltage uniformly
in the entire matrix. One advantage of reflective type LC-SLM can easily be seen in Equation 4.1 -
light passes twice through the LC layer and hence increases the modulation range. By choosing inci-
dent polarization along the LC director axis, it’s able to realize pure phase-only modulation without
influencing the polarization and the amplitude.

In addition to phase-only modulation, PAN configuration also allows polarization modulation, when
the component orthogonal to the SLM optical axis is present (see |↑〉 below):

|ψ〉 = α |↑〉 + β |→〉 ⇒ |ψ ′〉 = α |↑〉 + ei∆φβ |→〉 .

Consequently, amplitude/intensity modulation can also be realized:

I ∝ | 〈ψ |ψ ′〉 |2 ∝ cos(∆φ) .

4.1.2 The effect of spatial discretization
The discrete pixel structure leads to spatial digitization of the SLM and the 10-bit addressesd SLM
generates 1024 phase levels. The e�ect of the spatial digitization, known as pixelation noise, has
been derived by applying the convolution theorem in Section 1.3 in [35], which turns out to be a
sinc function1 in far field (Fourier plane). The di�racted intensity is thus globally sinc2-weighted.
This weighting can also be seen in the so called first-order di�raction e�ciency (DE) curve of blazed
gratings as a function of the reciprocal value of P, the pixel number per ramp. To avoid the zeroth-
order beam in the holography, blazed phase gratings superimposed on the desired phase pattern are
used and they di�ract the intensity pattern to other positions2 in the Fourier plane. The theoretical
DE of a blazed grating written on the SLM for qth di�raction order is given by the equation

ηq = sinc2
( q

P

) sinc2(q − Φ/(2π))

sinc2(
q−Φ/(2π)

P )
, (4.2)

with Φ denoting the peak phase and P the number of steps per period [36, 37]. For the first order and
a modulation height of 2π, Equation 4.2 reduces to

η1 = sinc2

(
1

P

)
, (4.3)

and is shown in Figure 4.2. The larger the step number per period is, the higher the DE will reach.
For example, the DE of a 4-step blazed grating theoretically reach 81%, and an 8-step grating 95%.
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Fig. 4.2: First-order DE curve of ideal blazed gratings.
1 Note that the Fourier transform of a square pulse is a sinc function. 2 O�-axis.
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4.2 Manufacture-limited electrical and physical phase errors

4.1.3 Flickering
To prevent damage to the LC cells, frequently flipped fields are applied instead of a static electric
field. The relaxation movements of the LC cells may cause an oscillation in amplitude and phase of
the di�racted patterns, referred to as the flickering e�ect which can be described as a low pass in time
and is related to the system’s response time [35, 38]. Santec SLM-100 has a response time of ∼ 100ms
according to the operational manual.

4.2 Manufacture-limited electrical and physical phase errors

4.2.1 Flatness error of SLM layers
In an LCoS device, a covering glass is assembled in front of the common electrode and the pixelated
electrodes are placed on a silicon backplane, see Figure 4.3. Conditioned on the manufacturing
process, both SLM [35] and digital micromirror device (DMD) [39] may have bent physical layer of
several λ, even if there is no voltage applying to the devices. An engineer from the company Santec
has revealed the producing procedure of the display during his visit to the quantum walk lab. The
manufacturer usually overfills liquid crystals between both electrodes in order to achieve high fill factor.
As the consequence, the display is bent. A correction kinoform is sometimes directly acquirable from
the manufacturer; if not, it can be measured by the customers. There are several diverse approaches to
measure the flatness error, including and phase-shifting interferometry [35, 40] and di�raction-based
measurement[35, 41]. The correction kinoform is just the inverse of the measured curvature.

4.2.2 Non-linear and inhomogeneous phase response
We have already mentioned that the SLM modulates the phase of incident light by altering the re-
fractive index, see Equation 4.1. Uniform and linear phase response could be expected, if there were
no electrical or physical hardware error. This is however barely the case. Non-uniform and non-
linear electric driving degrades both the homogeneousness and the linearity of the phase response.
In contrast to the non-linearity problem which would require more detailed knowledges on the electric
driving scheme, the inhomogeneity problem can be understood by illustration. All pixels in Figure 4.3
are kept DC-balanced, i.e. that the time-averaged applied voltage is 0V, except for the pixel at position
B. Also, thickness variation due to the non-parallel glass substrate and silicon backplane (compare
position A and C in Figure 4.3) leads to additional phase delay and contributes the inhomogeneity of
the phase response. A multi-dimensional look-up table (LUT) containing these informations is thus
crucial for addressing the desired phase on the SLM correctly.

A B C
Glass substrate
Transparent electrode
Liquid crystals
Pixelated electrodes
Silicon backplane

Fig. 4.3: Highly illustrated framework of a PAN LCoS spatial light modulator. The thicknesses of the SLM
at positions A and C are di�erent due to manufacture imperfection. All pixels bear zero potential
di�erence, except for pixel at B. This draft is inspired by [43].

4.2.3 Inter-pixel cross-talk effect
The fringing field e�ect is highly present in LCoS displays. This e�ect is referred to as the cross-talk
between neighboring pixels which arises if significantly di�erent phase/voltage values are applied to
the adjacent pixels, leading to the broadening of the phase profile [44, 45], see Figure 4.4. Phase
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4 Physical implementation: spatial light modulator

retardation is not constant over the entire pixel area and the smoothening e�ect at the edges acts as a
spatial low pass filtering of the phase retardation expected for an SLM without inter-pixel cross-talk.
This e�ect can be modeled as a convolution of the ideal phase with a spatially invariant kernel which
represents the inter-pixel cross-talk [42]. The kernel can be chosen to be a Gaussian or a generalized
Gaussian function. In this work, a Gaussian has been chosen to simulate the inter-pixel cross-talk e�ect
and to compare the simulated smoothened phase profiles with the measured ones (next section).

V=0 V≠0

Crosstalk region

Reflected wavefront

LC rotation axis

SLM optical axis

Fig. 4.4: Illustration of the cross section of two adjacent pixels. The electric field applied on a pixel is not
limited to the area of that pixel, therefore the molecules near the border of the neighboring pixel are
influenced (fringing field e�ect), causing a smoothened phase profile. This draft is inspired by [46].

4.3 Characterization and compensation
Before the holographic application of the LC-SLM, phase errors discussed in the Section 4.2 should
be measured and, if necessary and applicable, compensated. This is a prerequisite of the successful
holographic projection. Phase-shifting interferometry (PSI) is applied for the curvature measurement
in this work and di�raction-based method is used to reviewed the achieved flatness in Section 4.4 before
holographic applications. In this section, the measurement of the SLM surface information and the
establishment of the LUT of the phase response will be demonstrated, followed by a discussion of the
measured residual phase error. The cross-talk e�ect will be qualitatively investigated in the spatial
domain. The correlation between the inter-pixel fringing field e�ect and di�raction e�ciencies of
blazed gratings will be discussed in this spatial analysis and later verified in Section 4.4.3 based on
holographic measurements.

4.3.1 Determination of SLM curvature
To determine the wavefront distortion resulting from any curved physical layers of the SLM, the
device in OFF state (i.e. grayscale level of zero) is placed in one of the arms of a Twyman-Green
interferometer, with a reference piezo-driven mirror in the other arm, see Figure 4.5. Before entering
the interferometer, the incident beam has been expanded via two sets of amplification telescopes (L1

and L1, L3 and L4) by 30 times. The widening approximately enables a flat incident wavefront onto the
SLM. The interferograms are projected through a third telescope (L5 and L6) onto the camera1, with
the SLM (the mirror) and the camera fulfilling the 4f arrangement. The third telescope is a reducing
one due to the finite dimension2 of the CCD-chip, implying that the Nyquist sampling condition is
not fulfilled here. Nevertheless, for a global curvature determination in the order of ∼ λ, a non-linear
coordinate transformation3 relating the CCD coordinates and the SLM coordinates will be su�cient
to estimate and recover the aliasing.

1 Thorlabs 8-bit CMOS camera DCC1545M, loosely called CCD in the following context. 2 CCD-chip size:
1280×1024 pixels; CCD pixel size: 5.2 µm. SLM-chip size: 1440×1050; SLM pixel pitch: 10.4 µm. 3 The
measured surfaces in CCD coordinates are mapped into the SLM coordinates using the MATLAB function
fitgeotrans.
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L4

Optical fiber
Laser @852 nm

HWP
Polarizer
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Mirror

Aperture
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50 mm
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b
c

a+b+c=300 mm

CCD
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Aperture

Fig. 4.5: Setup: phase-shifting interferometric measurement of the SLM curvature. An 852 nm laser beam
coming out from an optical fiber is first collimated and its polarization is optimized by rotating the
half-wave plate and the polarizer after the fiber. To obtain a flat incident wavefront at the SLM stage,
two set of amplification telescopes (L1 and L1, L3 and L4) are inserted between the laser source and
the interferometer. The interferograms are than projected through a reduction telescope (L5 and L6)
onto the CCD-chip. The piezo reference mirror, the SLM and the CCD camera are controlled via
computer software.

The interferometric method bases on the theory of two-beam interference, for example a Michel-
son interferometer or its variant the Twyman-Green interferometer. The output intensity of such an
interferometer is given by

Iint = I1 + I2 + 2
√

I1I2 · cos(∆Φ) , (4.4)

with I1 and I2 the stationary components of both arms and the last term the crossing term. ∆Φ denotes
the phase di�erence of two arms, which can be divided into the phase di�erence k ·∆φ resulting from
the path di�erence (variable by shifting the piezo-driven reference mirror, k ∈ N) and the fixed term
φ resulting from the any non-flat surface. Treating I1 + I2 as some intensity o�set O and 2

√
I1I2 as the

interference amplitude A, the Equation 4.4 can be rewritten in

Iint = O (x, y) + A (x, y) · cos(k · ∆φ + φ (x, y)) , (4.5)

where (x, y) denotes the CCD pixel coordinates in the PSI scheme1. Calibrating the frequency ∆φ per
step2 and applying a pixel-wise cosine fitting to the single snapshots, the three parameters O, A and
φ can be obtained, see illustration in Figure 4.6.

1 The SLM coordinates are denoted as (X,Y ) in this context. Both CCD plane and SLM plane are in spatial
domain. 2 By means of the MATLAB function rootmusic.
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cosine fit

O0(x,y)

A0(x,y)

ϕ0(x,y)
1

2
3

k

... 
...

... 
...

GW=0

CCD camera 
single snapshot

Fig. 4.6: Scheme of PSI for measuring the SLM curvature. A series of interferograms are measured as the
function of piezo-driven reference mirror shifting step k. The SLM is in OFF state. A pixel-wise cosine
fitting gives the three fitting parameters, where φ (x, y) is the required curvature information. The index
0 in the three parameters indicates the voltage OFF state of the SLM. "GW" denotes the grayscale value
sent to all SLM pixels.

This technique is convenient without involving complex phase retrieval algorithms, i.e. the phase
information is directly obtained in the spatial domain. But one disadvantage of this approach is
that any imperfection of the beam splitter or/and reference mirror introduces new aberration into the
measured result; imperfect alignment could also lead to slight defocus and astigmatism. However,
such additional optical aberrations are able to be corrected by further approaches such as di�raction-
based method, depending on the precision required in the individual experiment. An unwrapping
technique is required during the evaluation because of the 2π-ambiguity of cosine functions. In this
work, the Ghiglia-Romero 2D unwrapping algorithm [51] is chosen to unwrap the phase in all PSI
measurements. The robustness of the frequency calibrating method, the pixel-wise cosine fitting
of surfaces and the unwrapping method has been proven by synthetic surfaces. In addition, the
sensitivity of the interferometer to di�erential path and common path was also qualitatively reviewed,
see Figure 4.7. After the three parameters (Figure 4.8) are acquired, the phase map φ0(x, y) has
been unwrapped and transformed into the SLM coordinates (X,Y ), then inverted and fitted by a 2D
polynomial smooth surface, which serves as the compensation mask, see Figure 4.9. The PV value of
the measured curvature is 2.14λ, lying in the expected range1.

Fig. 4.7: Testing the sensibility of the interferometer. An old transparent attenuator (a) was placed into the
common path (c), the mirror arm (d) and the SLM arm (e). It can be seen that the interferogram is
sensitive to phase di�erences in di�erential path, but not sensitive to phase distortion in the common
path, comparing with the situation that no attenuator is present (b).

1 The company Santec has revealed that the curvature is > 2λ.
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Fig. 4.8: Three parameters of the cosine fitting during the wavefront measurement.

Fig. 4.9: Measured curvature of the SLM (left) and the compensation mask (right).

4.3.2 SLM Gamma test
To create a correlation between the SLM voltage levels, which are mapped in grayscale levels via the
SLM hardware, and the modulated phase for the wavelength of 852 nm, the LC-SLM gamma curve
needs to be calibrated. Some authors have suggested the SLM display be divided into two areas and
brought into interfering with itself (di�raction-based, zeroth-order beam with first-order beam [35, 47])
or with a reference flat surface (interferometric [48]), simply assuming that all SLM pixels behave in the
same sense. Measuring the shifted positions of the interference fringes as the function of the relative
grayscale level between both SLM areas would deliver the overall gamma curve of the SLM. But
considering the inhomogeneity of the phase response discussed in Section 4.2, a pixel-wise treatment
is strongly recommended. This is easily achieved by just extending the curvature measurement from
the SLM OFF state to the entire grayscale range, explained in Figure 4.10.
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Fig. 4.10: Scheme of PSI for measuring SLM gamma curves. Using the same method introduced above, a series
of cosine fitting parameter sets are evaluated as the function of equidistantly spaced grayscale levels
GW.
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Fig. 4.11: Inteferometer drift.

The measurement was carried out in the entire grayscale range in step of 10 and it took 45 minutes.
Therefore the spatial drift of the interferometer needs to be measured and subtracted, in order not to
influence the measured phases. This is done by leaving a small patch at one of the corners of the SLM
matrix being in the OFF state during the entire measurement. The averaged fluctuation in this patch
as a function of time/step is shown in Figure 4.11. After the drift subtraction, the relation between
modulated phase and the SLM grayscale level can be established. Depending on the precision and
e�cience required for further experiments, di�erent models can be applied.

Linear and non-linear models

To visualize the gamma curve, the phase o�set φ0(x, y) is subtracted and the modulated phase for
each grayscale level is averaged, except for the pixels in the reference patch. Plotting the averaged
modulated phases against the corresponding grayscale levels yields the overall gamma curve, see the
blue curve in Figure 4.12. Apart from the saturation region which begins from grayscale level 950,
the measured overall gamma curve shows a sound linearity. A linear regression with the goodness of
fit (GOF [52]) of 0.99977 and the deviation of single point from it are presented in Figure 4.12 and
Figure 4.13, respectively.

The linear regression has also been carried out for each pixel except for the reference patch, since
some details might have been averaged out in the overall test. The pixel-wise linearity analysis pro-
duces the same average value of the slope, namely 14.1mrad/grayscale level. The distribution of the
individual slopes was not Gaussian based on a pre-analysis. The distribution of the GOF for all in-
volved pixels is shown as Histogram 1 in Figure 4.14, with a mean value of 0.99926. These indicate
that the phase response is neither uniform nor linear. The SLM display is not only bent, but also
has a slight spatial thickness variation. The PV value of the residual phase error after compensation
measures λ/7 in case of the overall and individual linear models. To achieve precision calibration,
a polynomial model up to the 9th order is adopted, such that the residual PV value can be reduced
to λ/15. Also, Histogram 2 in Figure 4.14 and the comparison of both histograms in the same axes
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scaling show that the polynomial model is far more appropriate than the linear model, having a mean
GOF of 0.99997. Despite of the increased complexity of the polynomial fitting, the increment of com-
putational time is only of factor 2. On a conventional PC with Intel® Core™ i5 processor and 8GB
RAM, the LUT calculation takes 0.2 second for each hologram using the linear model, and just 0.4
second if using the polynomial model.
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Fig. 4.12: Averaged overall gamma curve of the SLM phase response.
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Fig. 4.13: Deviation from the overall linear model.
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Histogram 1: GOF of pixel-wise linear regression
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Histogram 2: GOF of pixel-wise 9th-order polynomial fitting
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Fig. 4.14: Upper: goodness of fit distributions of pixel-wise linear model and polynomial model. Lower: com-
parison of both histograms in the same axes scaling. Comparing to the linear model, the GOF
distribution of the polynomial model is narrow and very close to 1.

4.3.3 Residual phase error measurement

Interferogram before SLM flatness correction Interferogram after SLM flatness correction

Fig. 4.15: Camera pictures before and after SLM compensation.

The compensation mask in unit of radian is translated into grayscale level via the LUT obtained in
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4.3 Characterization and compensation

the polynomial model and sent to the SLM. The flattening e�ect is enormous, see the comparison
in Figure 4.15. The compensated surface is measured again and compared with the uncompensated
surface in the same axes scaling in Figure 4.16. The flatness RMS of the corrected wavefront measures
λ/78.

Fig. 4.16: Measured wavefront before and after SLM compensation.

4.3.4 Qualitative investigation of inter-pixel cross-talk

In the framework of PSI, the cross-talk e�ect can be investigated in the spatial domain by replacing
the reduction telescope (L5 and L6 in Figure 4.5) with an amplifying one. A 10 times amplification
is suggested in [42]. In our experiment, a telescope with an 80mm lens and a 1000mm lens provid-
ing 12.5 times amplification was used, such that one SLM pixel was projected onto 25 CCD pixels.
Observation in the spatial domain however only provides an estimation of the inter-pixel cross-talk
e�ect, because the smoothened phase gets convolved with the point spread function (PSF) of the
imaging system again and thus becomes broader in the observation plane. In practise, low-order op-
tical aberrations such as defocus and astigmatism can hardly be avoided, making the situation worse.
Nevertheless, the cross-talk e�ect under the additional influence of an ideal PSF can still be roughly
simulated.

The vertical direction

This measurement was carried out separately in the vertical and horizontal directions. Three phase
patterns were selected and sent to the SLM: a binary phase step of 1.5π, a single pixel lifted by 1.5π
comparing with its neighbours and four 8-step 2π ramps, all along one direction. The wavefronts
were measured by PSI again and the average values along the perpendicular direction is calculated.
The 1D phase profiles (blue curves in three sketches in Figure 4.17) were obtained by this mean.
The NA of the amplifying telescope is 0.161 and the associated ideal PSF with an Abbe radius
rAbbe = λ/(2NA) = 0.26 SLM pixel is shown in the left sketch of Figure 4.18. Under this model,
the blurred phase profiles without cross-talk e�ect (yellow curves in Figure 4.17) and under cross-talk
e�ect (magenta curves in Figure 4.17) are simulated and can be compared with the measured ones.
The width of the assumed Gaussian kernel is adjustable and controls the broadening of the phase
profiles. In this visual comparison, the Gaussian width σ is optimized at 0.2 SLM pixel, shown in the
right sketch in Figure 4.18. That optical aberrations cannot be totally eliminated in practise, indicates
that the width of the Gaussian kernel is smaller than 0.2 SLM pixel.

1 Diameter of the 80mm lens is 25.4mm.
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Fig. 4.17: Simulated and measured phase profiles.
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Fig. 4.18: Estimated kernels of the imaging system and the cross-talk e�ect.

There are two consequences of the cross-talk e�ect, which counteract each other:

• for continuous phase structures, e.g. the ramps of blazed gratings, the smoothening e�ect
actually enhance the DE, because it suppresses the discretization;

• for the phase jumps 2π → 0, this smoothening e�ect sends light to unwanted directions and
hence reduces the DE.

As a net result of these two facts, it can be expected that the first-order DE curve of blazed gratings
deviates from the theoretically predicted one in this way: the smaller the pixel number P per ramp is,
the smaller its DE will be. We will confirm this expectation with experimental data in Section 4.4.3.

The horizontal direction

As a consequence of the anisotropic arrangement of rod-shaped LC molecules in one SLM pixel and
hence probably di�erent magnitudes of the fringing field e�ect in vertical and horizontal direction, a
disparity in measured di�raction e�ciencies of the two directions could be expected. Indeed, this DE
disparity was observed in [36] and [42]. Unfortunately, the same measurements and analysis in the
horizontal direction were not possible for the Santec SLM-100 due to some unclear electric/electronic
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4.4 Investigation in Fourier domain

driven scheme of the display. A report on this issue is attached separately and has been sent to the
manufacturer. The device was also sent to Japan for investigation, after all holographic data were
acquired.

4.4 Investigation in Fourier domain
The SLM flatness correction and phase response calibration have been done with a satisfying result,
but it’s still interesting to know if the achieved flatness satisfies the condition of a di�raction-limited
system, when the setup is changed. This is important for the final goal of this work - reconstructing
structured intensity patterns with the pre-calculated holograms. For this purpose, doughnut modes
introduced in the earlier chapter come back to the play. The telescope between the SLM and the
camera is replaced by a 2f-correlator with focal length f = 150mm and the beam in the reference
mirror arm of the interferometer is blocked. An Iris aperture was placed in front of the SLM display to
create a circular aperture which covered the 700×700 pixel hologram matrix. Holograms containing
the SLM compensation mask, spiral phases with topological charge l = {0,1,2,3} and a 64-step blazed
grating are transferred to the SLM. Di�racted patterns in the conjugate plane (camera) are measured
as single snapshots.

4.4.1 Creating an Airy disc (LG00 mode)
[30] has demonstrated a method based on Fourier optics to evaluate the measured Airy disc and to
estimate the phase error of wavefront at the aperture. The essential idea is to estimate the NA in
the Fourier domain by the Abbe cut-o� of the modulation transfer function (MTF). High-frequency
noise can be Fourier filtered out and data can be interpolated according to the Whittaker-Shannon
interpolation theorem. The Airy disc is here the ground LG mode with topological charge l = 0.
Figures 4.19 and 4.20 show the raw data and interpolated data of the LG00 mode in 2D and 3D,
before and after the SLM correction. The second maximum of the correlated Airy disc can be clearly
seen, while the uncorrected mode does not even have the Airy disc form - totally distorted. The Strehl
ratio of the corrected LG00 mode reaches 82%, fulfilling Maréchal’s criterion1. The uncorrected mode
only has a Strehl ratio of 24% - this persuasively explains why it’s so important to calibrate the SLM
before any further holographic application. The MTFs and PSFs of both cases are both shown in
Figure 4.21.

1 According to Maréchal’s criterion, a system can be considered as di�raction-limited, if the Strehl ratio is not
less than 80%.
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Fig. 4.19: Measured Airy disc (LG00 mode) before SLM compensation.
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Fig. 4.20: Measured Airy disc (LG00 mode) after SLM compensation.

34



4.4 Investigation in Fourier domain

Radial average of MTF before SLM correction

0  0.5 1  
Spatial frequency (1/r

Abbe
)

0  

0.5

1  

M
T

F

Measured MTF of LG
00

 mode

MTF of an ideal Airy disc
Abbe cutoff with NA

est.
 = 0.026

Radial average of PSF before SLM correction

0 16 30 44

0  

0.8

1  

N
or

m
al

iz
ed

 in
te

ns
ity

Measured LG
00

 mode with Strehl ratio = 0.24

Ideal Airy disc with NA
est.

 = 0.026

The 1st Bessel zero / Abbe radius

Radial average of MTF after SLM correction

0  0.5 1  
Spatial frequency (1/r

Abbe
)

0  

0.5

1  

M
T

F

Measured MTF of LG
00

 mode

MTF of an ideal Airy disc
Abbe cutoff with NA

est.
 = 0.026

Radial average of PSF after SLM correction

0 16 30 44

0  

0.8

1  

N
or

m
al

iz
ed

 in
te

ns
ity

Measured LG
00

 mode with Strehl ratio = 0.82

Ideal Airy disc with NA
est.

 = 0.026

The 1st Bessel zero / Abbe radius

Fig. 4.21: Evaluated modulation transfer functions and point spread functions. Upper: before SLM compensa-
tion. Lower: after SLM compensation.

4.4.2 Laguarre-Gaussian modes

Remarkable di�erences can also be observed for the other LG modes, see Figure 4.22. The measured
modes are displayed in colormap such that the second maxima can be clearly seen. The correlated
doughnut modes agree with the numerical simulations in Figure 2.2 extremely well and this again
confirms the fidelity of the SLM compensation.

Fig. 4.22: Uninterpolated CCD pictures of LG modes in colormap before (the 1st row) and after (the 2nd row)
SLM compensation.
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4 Physical implementation: spatial light modulator

4.4.3 Measuring DE curves
The pixelation problem and the cross-talk e�ect which a�ect the DE have already been theoretically
discussed in previous sections, to investigate this issue, I measured the ratio between the intensity
of the first-order pattern and the intensity of the zero-order pattern when no grating is applied, and
defined this ratio as the di�raction e�ciency (DE) in this context. The measured DEs of a series of
vertical blazed gratings are plotted and compared with the theory curve in Figure 4.23. The expected
deviation from the theory curve is observed: as P is decreasing, the DE decreases o� the theory curve
too. For a good performance of the holographic projections, a blazed grating with more than 8 steps
is recommended.
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Fig. 4.23: Theoretical and measured DE curve.

Another factor that a�ects the DE is the fill factor of the LC-SLM. The theoretical fill factor of pixel
size 10 µm and pixel pitch 10.4 µm is calculated to 92.5%, which means, only 92.5% of the reflected
light gets modulated. However, in the fabrication procedure, the display is usually overloaded with
LC molecules, also in the gaps between adjacent pixels. Therefore an e�ectively near 100% fill factor
is achievable and this is the case for the 64-step grating (99.84%). After the analysis of the di�raction
properties and the acquisition of data for reconstructed intensity patterns (next chapter), the physical
lens was removed and a thin lens function with f = 300mm was superimposed with the hologram of
the LG00 mode and SLM compensation mask. In this case, no blazed grating is needed, because the
zeroth-order light will not be focused but rather they propagate freely along the optical axis, acting as
a very week background in the observation plane. The Strehl ratio is now measured against, (almost)
without additional aberration from the supporting optics. The result is 88%, as shown below. The
flatness RMS of the wavefront is as expected degraded from λ/78 to λ/18, but still lies the safe range.
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Fig. 4.24: Evaluated modulation transfer function and point spread function after compensation in case of the
thin lens function (f=300mm).
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Chapter 5

Experimental results and outlook

Now the SLM is prepared for holographic applications. The data measured for both test intensity pat-
terns "plateau" and "ramps" are obtained in the same 2f-correlator for the LG modes measurements.
The holographic projection is still taking place in the vertical di�raction direction, but the light re-
flected by the SLM area outside the 700×700 pixels hologram matrix and inside the larger circular Iris
aperture is di�racted into the horizontal direction. This step is optional and moves the light gathering
in the zeroth-order position away, such that the target pattern has a relative clean background.

Fig. 5.1: Demo pattern "Averangers" with the zeroth-order spot untouched (left) and with attenuated zeroth-
order spot (right). If the zeroth-order spot is too strong, its fringes a�ect the target pattern. The
measured demo pattern has a size of 1.2mm × 1.2mm.

5.1 Result of the SOMRAF algorithm
For each test pattern, the pre-calculated hologram is superimposed with the SLM compensation mask
and several gratings of di�erent grating periods. The di�racted patterns at the corresponding di�rac-
tion positions are measured (Appendix A.2.2) and averaged after careful alignment, such that spatially
varying background interferences can be averaged out. The results are displayed in Figures 5.2 and
5.3. Same as the simulations, there is no optical vortex detected. To check the quality of the results,
the evaluations of RMS, SNR and resolution discussed in Section 3.1.3 are carried out again for the
experimental data. However, due to the blur e�ect of the imaging system, the regions where the
evaluations take place are re-defined, in order to avoid the pattern-background crossover (Figures 5.4
and 5.5). Now the relative RMS of the plateau area of the test pattern "plateau" is measured 7.6% and
the SNR 24.1 dB, in the same magnitude of the simulated results (3.9% and 22.5 dB, respectively). In
the phase retrieval algorithm, the incident beam was assigned with a flat wavefront and a uniform
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5 Experimental results and outlook

intensity, while in practise this was not the case. This contributes to the degradation of the flatness
RMS. Also, new phase error has been introduced after the 4f-system was replaced by the 2f-correlator,
which a�ects the quality of the reconstructed pattern as well.
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Fig. 5.2: Measured and averaged pattern "plateau".
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Fig. 5.3: Measured and averaged pattern "ramps".
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Fig. 5.4: Left: averaged image of pattern "plateau"; the area surrounded with dark line is selected for signal
analysis and the area surrounded with bright line is selected for background noise analysis. Middle:
selected signal area. Right: selected noise area.
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5.1 Result of the SOMRAF algorithm
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Fig. 5.5: Averaged image of pattern "ramps". The areas in both high-lighted rectangles are used for investigation
of achieved resolution.

For the test pattern "ramps", the averaged profile in the selected outer ramps is to be compared with
the simulated one. Since each Fourier pixel is projected onto roughly 3 CCD pixels, the simulated data
(the 1st plot of Figure 5.6) is first interpolated with a factor of 3 (the 2nd plot of Figure 5.6) before
comparing with the measured one (the 3rd plot of Figure 5.6). After translating the Fourier pixel
and the CCD pixel into physical sizes, now the simulated and the measured profiles are compared
in the 4th plot of Figure 5.6, where a remarkable coincidence is observed. The result of this extreme
test pattern has securely confirmed the quality of the SLM characterization and the robustness of the
SOMRAF algorithm.
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Fig. 5.6: Average profiles of the ramps in the selected region. After interpolation with a factor of 3, the simulated
ramps are compared with the measured ones along one direction in the 4th plot. The measured profile
coincides with the simulated one very well, except for small deviations in the outer ramps.
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5 Experimental results and outlook

5.2 Result of the naïve Gerchberg-Saxton algorithm
For comparison purpose, the GS results were also measured experimentally (Figure 5.7). As discussed
and expected, speckles were ubiquitous in the reproduced patterns. Speckles act as scattering centres
and make the reconstructed patterns inappropriate for atom confinement experiments.
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Fig. 5.7: Single images of patterns reconstructed via naïve GS.

5.3 Outlook
The experimental results of reconstructed intensity patterns coincide with the simulations through
the SOMRAF algorithm in an accuracy at the percent level. To further enhance the precision, several
measures can be taken. There are three main factors that might need some concern:

1. Spatial information of the incident beam: the 2f system needs to be extended such that
simultaneous spatial measurement is possible;

2. Presicion phase error correction: di�raction-based in-situ phase error correction suggest by
[35] is suitable for the 2f setup, without further extension;

3. Global intensity modulation due to pixelation noise: depending on the sizes of the tar-
get patterns, the global sinc2-weighted intensity modulation can be suppressed with the active
feedback method suggested by [24].
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Chapter 6

Conclusion

This thesis has presented a journey of the phase retrieval problem starting from a historical and mathe-
matical exploration of the phase problem, followed by the correlation with the task of the topologically
protected edge-state analysis in the 2D quantum walk experiment. After investigating the properties
and limitations of the widely used phase retrieval method - the Gerchberg-Saxton algorithm, heuristic
improving measures proposed by pioneers can be understood based on the underlying physics. As
stated in [24], none of the existing GS-like variants is a overall winner in recovering phase (also known
as CGH calculation in holography); the performance of the algorithms highly depends on the require-
ment of the individual experiment, such as relative RMS, spatial resolution, light usage e�ciency,
temporal stability, etc.. In particular, the SOMRAF algorithm for the quantum walk experiment in-
troduces softness into the iterative routine in oder to prevent fringing artefacts at sharp edges. The
reconstructed binary intensity pattern after 200 iteration (1 minute runtime) has a relative RMS of
3.9%, comparing with the OMRAF result 13% with the same parameters.

The holographic projection is also physically implemented using an LC-SLM, after the wavefront
flatness error and the inhomogeneous and non-linear phase response are corrected by means of pixel-
wise phase-shifting interferometry. The result of the SLM characterization is proven to be reliable,
according to both spatial and holographic residual error measurements. The experimentally recon-
structed binary intensity pattern has achieved a relative RMS of 7.6% with a sound SNR.

To examine the resolution of the algorithm and the holographic experiment, a more complicated
pattern based on the quantum walk experiment is also used, where adjacent pixels are associated with
distinct intensity values along one direction. Both the simulation and the experimental result have
shown a considerable coincidence with the desired pattern. For both test patterns, no speckle has
been detected in the simulated data or in the measured data. Speckles act as scattering centres and
hence have been considered as the biggest problem of GS-like algorithms. The SOMRAF algorithm
is thus a powerful candidate for similar atom confinement experiments.
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6 Conclusion
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Appendix

Note: in the context of this thesis including the appendix, the personal pronouns "we" refers to the
reader(s) and me, the author of this thesis.

A.1 Wave propagation and Fresnel-Kirchhoff’s integral
The derivations in this section are supported by the books [53, 54, 55].
The propagation of (optical) waves can be described by the Fresnel-Kirchho�’s integral which is based
on the Huygens principle.

.
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Fig. 7.1: Sketch for derivation of Fresnel-Kirchho�’s integral.

Let the incident wave be a scalar field and the resulting field at the aperture (z = 0) be denoted by
Es(x, y) = A(x, y) · eφ(x,y), with A(x, y) the amplitude and φ(x, y) the phase of this field. According
to the Huygens’ principle, an infinitesimal area element dσ = dx · dy in the aperture plane emits
secondary waves, which contributes

dEP(u, v) = C ·
ES(x, y) · dσ

r
eikr (k = 2π/λ) (7.1)

to the field at point P(u, v) in the plane z = z0. The factor C = − i
λ

1+cos θ
2 is called the proportionality

factor and can be reduced to − i
λ under paraxial approximation. Therefore, the entire field of the

aperture σ yields the total field at point P(u, v)

EP(u, v) =
∫
σ

C · ES(x, y) ·
eikr

r
dσ . (7.2)

Equation 7.2 is called Fresnel-Kirchho�’s di�raction integral.

A.1.1 Fresnel approximation: near-field diffraction
After the Taylor expansion of distance r between the points in dσ and the observation point P(u, v)

r =
√
(x − u)2 + (y − v)2 + z2

0 ≈ z0

(
1 +
(x − u)2

2z2
0

+
(y − v)2

2z2
0

+ ...

)
(7.3)
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and the approximation r ≈ z0 in the denominator of Equation 7.2, we reach the Fresnel approximation,
namely the near-field di�raction:

E(u, v; z) =
eikz

iλz

∫ ∫
ES(x, y) · exp

[
iπ
(x − u)2 + (y − v)2

λz

]
dx dy . (7.4)

This can be seen as a convolution relation, if we define a kernel Dz(u, v) = 1
iλz exp

(
iπ u2+v2

λz

)
. The

Equation 7.4 is then re-written as

Ez(u, v) =
[
eikz ES(u, v)

]
~ Dz(u, v) , (7.5)

where the first term in the RHS of the equation expresses the propagation of the wave on distance z
and the kernel Dz(u, v) here represents the complex amplitude of a spherical wave at centre O. This
convolution relation expresses Ez(u, v) as the sum of spherical waves produced by point-sources in the
plane z = 0. The kernel Dz(u, v) is the amplitude point spread function of the Fresnel di�raction and
it’s a normalized function: ∫ ∫

Dz(u, v)du dv = 1 . (7.6)

A numerical simulation of Fresnel di�raction at the wavelength of 852 nm is shown in Figure 7.2.
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Fig. 7.2: Simulated Fresnel di�raction of a square aperture.

A.1.2 Fraunhofer approximation: far-field diffraction
Now let’s rewrites Equation 7.4 again as

Ez(u, v) =
eikz

iλz
exp

(
iπ

u2 + v2

λz

) ∫ ∫
ES(x, y) · exp

[
iπ

x2 + y2

λz
− i2π

xu + yv

λz

]
dx dy , (7.7)
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A.1 Wave propagation and Fresnel-Kirchho�’s integral

and introduce the Fresnel transform

Ez(u, v) =
eikz

iλz
exp

(
iπ

u2 + v2

λz

)
F

[
ES(x, y) · exp

(
iπ

x2 + y2

λz

)]
, (7.8)

where the symbol Fdenotes the Fourier transform with spatial frequencies u
λz and v

λz . For z →∞ we

reach the limit of the Fresnel di�raction - the Fraunhofer di�raction. The phase term exp
(
iπ x2+y2

λz

)
in

Equation 7.8 tends towards 1. The complex field becomes

Ez(u, v) =
eikz

iλz
exp

(
iπ

u2 + v2

λz

)
ÊS(

u
λz
,
v

λz
) , (7.9)

where we denote the Fourier transform of ES by ÊS for succinctness. Two numerical examples of
Fraunhofer di�raction are shown in Figure 7.3. The far-field patterns of two rectangular apertures are
simulated for a distance of 1.2m.

Square aperture 1 Far-field amplitude Square aperture 2 Far-field amplitude

Fig. 7.3: Simulated Fraunhofer di�ractions of two rectangular apertures.

A.1.3 Fourier transform property of a thin lens and the 2f-system

When working with laser which has a wavelength of several 100 nm, it’s practical to use a converging
lens with focal length f that allows us to observe the far-field di�raction at finite distance. To this, we
shall introduce the thin lens transmission function [56] which acts as a phase transformation

t f (x, y) = exp

(
−iπ

x2 + y2

λ f

)
(7.10)

to derive the property of a lens. f is positive for a converging lens and negative for a diverging one.
Let’s suppose that this lens is superimposed with the aperture at plane z = 0, so the total action on the
incident wave can be expressed as the product ES(x, y) · t f (x, y). In the Fresnel transform in Equation
7.8, there is a particular distance z = f for which the Fresnel di�raction takes the form of a Fourier
transform

E f (u, v) =
eik f

iλ f
exp

(
iπ

u2 + v2

λ f

)
ÊS(

u
λ f

,
v

λ f
) . (7.11)

This is very similar to Equation 7.9. However, Equation 7.11 is only valid at z = f , whereas the
Fraunhofer Equation 7.9 is valid at any large z.
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What would happen if the lens is not superimposed with the aperture? Figure 7.4 shows an additional
configuration of interest. That is, the input plane lies at some distance d to the left plane of the lens
and the observation plane is still the back focal plane of the lens. To deal with this scene, there is a
two-step process.

• Step 1 (Fresnel di�raction): calculate the propagation of ES(x, y) from the (x, y) plane to the
(x ′, y′) plane, i.e. Ed(x ′, y′). For this, we apply the convolution theorem and rewrite Equation
7.5 as

Êd(kx, ky) = eikd ÊS(kx, ky) · D̂d(kx, ky) , (7.12)

with kx = x ′/λd, ky = y′/λd. The transfer function D̂d(kx, ky) = exp
[
−iπλd(k2

x + k2
y)

]
1 is

normalized and we have D̂d(0,0) = 1. Therefore, the Fourier transform of the field at the lens
plane is expressed as

Êd(kx, ky) = eikd exp
[
−iπλd(k2

x + k2
y)

]
ÊS(kx, ky) . (7.13)

• Step 2 (thin lens transformation): calculate the transformation of the field from (x ′, y′) plane
to the (u, v) plane to obtain the final result Ed+ f (u, v). This can be simply done by inserting
Equation 7.13 into Equation 7.11:

Ed+ f (u, v) =
1

iλ f
eik f exp

(
iπ

u2 + v2

λ f

)
eikd exp

[
−iπλd

u2 + v2

(λ f )2

]
ÊS(

u
λ f

,
v

λ f
) (7.14)

=
1

iλ f
eik( f+d) exp

[
iπ

u2 + v2

λ f 2
· ( f − d)

]
ÊS(

u
λ f

,
v

λ f
) . (7.15)

The result is still proportional to the Fourier transform of the input field ES . In the special case
d = f , known as a 2f-system, the quadratic phase factor is equal to 1 and Equation 7.15 reduces
to

E2 f (u, v) =
1

iλ f
e2ik f ÊS(

u
λ f

,
v

λ f
) , (7.16)

having the exact Fourier transform relation up to a global phase factor, which is negligible.

1 D̂d(kx) = F[Dd(x ′)] =
√

1
iλd

∫ +∞
−∞

exp
(
iπ x′2

λd − i2πkx x ′
)

dx ′ = e−iπλdk
2
x . Extending this to two dimensions

yields D̂d(kx, ky) = exp
[
−iπλd(k2x + k2y )

]
.
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A.2 Experimental data

A.1.4 Fast Fourier transform (FFT) in MATLAB and Parseval’s theorem
In the numerical simulations of the di�raction and phase retrieval in this work, it’s crucial to preserve
the norm of the matrix in order to produce correct results. The energy is conserved if the Parseval’s
theorem is obeyed. In case of an N × N matrix, the 2D fast Fourier transform fft2 in MATLAB
R2018a is defined as

f̂ [µν] = fft2 ( f [ j k]) =
∑

f [ j k] · exp
−2πi µ j+νk

N2 , (7.17)

with µ, ν and j, k the matrix indices in the spatial plane and Fourier plane, respectively. In Equation
7.17, the transformation matrix is unitary. However, before verifying Parseval’s theorem, let’s define
∆x = 1 pixel as the sampling interval, Ks = 1/∆x as the sampling rate and ∆k = Ks/N as the frequency
increment. Parseval’s theorem required1∑

| | f [ j k] | |2 · ∆x2 =
∑
| | f̂ [µν] | |2 · ∆k2 . (7.18)

| | · | | denotes the norm. Therefore, ∆k = 1/N needs to be "merged" into f̂ [µν], because the numerical
process is operating in the unit of pixel. The 2D fast Fourier transform is thus rescaled as

f̂ [µν]resc. =
1

N
fft2 ( f [ j k]) (7.19)

with the modulus scaling factor 1/N . The definition of the inverse 2D fast Fourier transform ifft2
in MATLAB is

f [ j k] = ifft2
(

f̂ [µν]
)
=

1

N2

∑
f̂ [µν] · exp

2πi µ j+νk

N2 , (7.20)

with an additional factor 1/N2 which is to be compensated by multiplying with N2. So the inverse
Fourier transform is

f [ j k]resc. = N · ifft2
(

f̂ [µν]
)
. (7.21)

after rescaling. In case of a general N × M matrix, the modulus rescaling factors for fft2 and ifft2
are 1/

√
N M and

√
N M, respectively.

A.2 Experimental data

A.2.1 Calculated holograms
Hologram calculated via SOMRAF
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Hologram calculated via OMRAF
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Hologram calculated via naïve GS
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Fig. 7.5: Calculated 700×700 pixel holograms for pattern "plateau".

1 Not
∑
| | f [ j k] | |2 =

∑
| | f̂ [µν] | |2 .
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Hologram calculated via SOMRAF
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Hologram calculated via OMRAF
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Hologram calculated via naïve GS
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Fig. 7.6: Calculated 700×700 pixel holograms for pattern "ramps".

A.2.2 Single images of reconstructed patterns
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Fig. 7.7: Single images of pattern "plateau" measured at di�erent di�racted positions (SOMRAF).
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Fig. 7.8: Single images of pattern "ramps" measured at di�erent di�racted positions (SOMRAF).
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Abstract
In this report, we summarize the qualitative observation (spatial domain) and the quan-

titative investigation (Fourier domain) on the pixel cross-talk effect of the LCoS SLM-100
from Santec in both vertical and horizontal directions. In these tests, the horizontal diffrac-
tion direction has shown an anomalous phenomenon where the diffraction efficiency in the
horizontal direction is much lower than our theoretical expectation and, most importantly,
lower than the corresponding diffraction efficiency in the vertical direction. Experimen-
tal methods and setups as well as measured physical quantities and the results will be
demonstrated with figures in this report.
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2 Indirect investigation in the Fourier domain 4
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1 Direct observation in the spatial domain
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Figure 1: Setup: phase-shifting interferometric measurement of the SLM curvature. An 852 nm laser beam coming out
from an optical fiber is first collimated and its polarization is optimized by rotating the half-wave plate and the
polarizer after the fiber. To obtain a flat incident wavefront at the SLM stage, two set of amplification telescopes
(L1 and L1, L3 and L4) are inserted between the laser source and the interferometer. The interferograms are than
projected through a reduction telescope (L5 and L6) onto the camera chip. The piezo reference mirror, the SLM
and the CMOS camera are controlled via computer softwares.

Before the observation of the SLM pixel cross-talk effect, we measured the physical curvature of the
SLM layers using phase-shifting interferometry [1] (PSI, configuration: Tywman-Green interferome-
ter). The setup is shown and explained in Figure 1. We also carried out a pixel-wise gamma test of the
phase response using the same method in case of 852 nm, the wavelength required in our experiment.
The PV value of the measured SLM curvature read 2.14 λ and after compensation the residual RMS
measured λ/78. The result of the compensation is shown in Figure 2.

Figure 2: Interferograms of the Twyman-Green interferometer before (left) and after (right) the SLM curvature correction
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Then we replaced the reduction telescope (L5 and L6) by an amplifying one (80 mm - 1000 mm , i.e.
amplification of 12.5 times) in order to observe the pixel cross-talk effect spatially. Our CMOS camera
has a pixel size of 5.2 µm and thus every SLM pixel was projected onto 25 camera pixels theoretically.
This measurement was carried out separately in the vertical and horizontal directions. We applied
different phase patterns onto the SLM such as a binary barrier, a simple phase step and linear ramps
along one direction. Then we measured the phase via PSI again and took the average values along the
corresponding direction to obtain the 1D phase profiles. In these measurements, the imaging system
had slight astigmatism and we have adjusted the distance accordingly for each direction to ensure
sharp images.

The vertical direction

A one-pixel-barrier of 1.5 π, a phase step of the same height and four 8-pixel linear ramps (blue curves
in the three plots in Figure 3) as well as their complementaries (magenta curves) were measured in the
vertical direction.

Figure 3: Upper row left: one-pixel-barriers of 1.5 π, the SLM pixel with distinct phase value as the other pixels is high-
lighted; upper row right: steps of 1.5 π; lower row: four 8-pixel 2 π ramps, 16 SLM pixels are highlighted in the
central two ramps. The phase patterns and their complementaries are plotted in blue curves and magenta curves,
respectively. The results agree with our expectation of the cross-talk effect qualitatively.

The observation in the vertical direction agrees with our expectation of the cross-talk behaviour, when
significantly different phase/voltage values are applied onto the adjacent pixels. However, the mea-
surement of linear ramps in the horizontal direction came out to be chaotic, which brought us to
investigate the horizontal cross-talk effect in concrete pixel coordinates.

The horizontal direction

We first observed the SLM surface by the Thorlabs camera through the telescope while applying
different phase patterns onto it. This direct observation has shown a two-pixel periodicity of some
anomalous phase response between adjacent pixels in case of significantly different phases. For N ∈
[1, 1440/2], if the involved two pixels were pixel No. 2N−1 and pixel No. 2N, the phenomenon did
not occur and it looked like the vertical direction; but if the involved two pixels were pixel No. 2N
and pixel No. 2N+1, this phenomenon arose. Let’s look into this problem in details, see Figure 4. If a
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single binary phase barrier of even number width is applied to the SLM, both edges behave the same
way: both anormal (the first plot of Figure 4) or both normal if the barrier is translated by one pixel
(the second plot of Figure 4); if the barrier width is odd, both edges behave contrarily: one is anormal
while the other is normal, and vice versa if the entire barrier is translated by one pixel (the third and
the fouth plots of Figure 4).

Figure 4: The anomalous phase behaviour of the horizontal direction, which seems to be 2-pixel periodic. If the cross-talk
behaves normally, it affects the two involved adjacent pixels (green areas), otherwise four pixels (red areas).

Figure 5: The horizontal direction works only in superpixel modus if the pixels are binned correctly and at the cost of
losing half of the resolution. 16 SLM pixels are highlighted in the left half of the patterns. Every two adjacent
pixels make a superpixel.
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Binning the adjacent pixels at the problem positions to avoid phase difference there could help to avoid
anormal phase behaviour, for example we were able to measure linear ramps without having chaotic
problem any more (Figure 5), but we lost half of the resolution in this direction.

2 Indirect investigation in the Fourier domain

After characterization of the SLM flatness and gamma curve, we created some simple Faunhofer
diffraction patterns in the Fourier plane of a 2f-correlator. Figure 6 shows the first-order diffracted
patterns of OAM beams before and after our SLM flatness compensation while applying a vertical
blazed grating.

Far-field images of OAM beams (LG
00

, LG
01

, LG
02

) without SLM flatness correction

Far-field images of OAM beams (LG
00

, LG
01

, LG
02

) after SLM flatness correction

Figure 6: OAM beams before and after SLM flatness error correction.

In the horizontal diffraction direction we also obtained the patterns with similar quality, but the bright-
ness was much smaller, the reason for which was that part of the incident light has been diffracted into
other orders due to the anormal phase response discussed above. Thus we measured the ratio between
the intensity of the first-order pattern and the intensity of the zero-order pattern when no grating is
applied, and defined this ratio as the diffraction efficiency (DE) in this measurement. The DE is mea-
sured for both directions for blazed gratings of varying periodic lengths and the results are shown in
Figure 7.
The theoretical curve is given by [2, 3], under the assumption of an ideal SLM with 100% fill fac-
tor and without pixel cross-talk effect. Due to a finite fill factor and the existing cross-talk effect
of a conventional LC SLM, the measured curve will lie under the theoretical one. It’s obvious that
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the horizontal direction is suffering from the anormal phase behaviour and the its DE curve (green)
significantly deviates from the vertical one (red). Binning the adjacent pixels to create a superpixel
enhances the DE (blue) but loses half of the resolution. In a different attempt to correct for the prob-
lem, we addressing the pixel pairs with anomalous behaviours, and lift the lower phase by 2π when
the phase difference exceed 60% of 2π preserves the resolution but the enhanced DE (magenta) still
lies far below the vertical curve. The distortion of the diffracted pattern increases with the steepness of
the grating, where the situation in the horizontal direction is again worse than in the vertical direction,
compare the first column and the second column of Figure 8.

1/64 1/32 1/16 1/8 1/7 1/6 1/5 1/4 1/3 1/2

1/P (grating period: P pixels)

0

0.41

0.81

0.95

0.99
1

D
if
fr

a
ti
o
n
 e

ff
ic

ie
n
c
y

1st order diffraction efficiency of blazed gratings

Theory: sinc2(1/P)

Measured vertical

Measured horizontal

Measured horizontal (bin)

Measured horizontal (lift)

Figure 7: First-order diffraction efficiencies of blazed gratings.

6-step vertical

4-step vertical

6-step horizontal 6-step horizontal (bin) 6-step horizontal (lift)

4-step horizontal 4-step horizontal (bin) 4-step horizontal (lift)

Figure 8: First-order diffraction patterns of LG07-mode for 6-step and 4-step blazed gratings. First column: vertical grat-
ings; second column: horizontal gratings; third column: horizontal gratings in bin modus; fouth column: hori-
zontal gratings in lift modus. The distortion of the doughnuts in case of steep ramps in the horizontal direction
is larger than in the other direction. The two mentioned DE enhancing methods could also correct the distortion.

5



References

[1] A.Jesacher, Applications of spatial light modulators for optical trapping and image
processing, PhD Thesis, Leopold-Franzens University, Innsbruck 2007

[2] C.Lingel, T.Haist, and W.Osten, Optimizing the diffraction efficiency of
SLM-based holography with respect to the fringing field effect, OSA 2013,
DOI:10.1364/AO.52.006877

[3] H.Dammann, Spectral characteristic of stepped-phase gratings, Optik 53, 409-417
(1979)

6


	Weiqi_Zhou_Report_Santec_bild.pdf
	Direct observation in the spatial domain
	Indirect investigation in the Fourier domain


