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Summary

The present work investigates a non-destructive hyperfine state detection
method for neutral atoms in an one dimensional optical lattice. The atoms
are exposed to near resonant light and from their fluorescence image their
internal state can be extracted. Additionally a compression method is pre-
sented to densify an atomic ensemble in this trap.

Chapter 1 presents the experimental setup for trapping a small atomic en-
semble in an one dimensional lattice. Chapter 2 focuses on the compression
sequence and its efficiency. Chapter 3 is devoted to the state detection of
well separated individual atoms. It provides detailed studies of the imaging
system and the state dependent imaging is investigated experimentally and
theoretically.

In chapter 4 a Bayesian analysis of the fluorescence images is used to improve
the state detection fidelity. In chapter 5 the state detection is performed for
groups of atoms that cannot be individually resolved. For two atoms this is
done experimentally and the many atom case is simulated to compare differ-
ent analysis methods.

Finally, chapter 6 summarizes the results of this thesis and gives a short
outlook.
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Chapter 1

Introduction

Information transfer is one of the key elements of 21st centuries technology.
Making use of the laws of quantum mechanics, Quantum Information sci-
ence has the potential to make fundamentally change the way information is
transferred. Quantum Communication could lead to absolutely secure trans-
mission [1]. Furthermore, by transferring quantum states between multiple
parties entire quantum networks could be build [2].

The generation of entanglement over very long distances is one of the main
challenges for the realization of this ideas. A very prominent way of gener-
ating remote entanglement is the so called Duan Lukin Cirac Zoller (DLCZ)
protocol [3]. This protocol uses quantum memories as quantum repeaters to
swap and thereby extend the entanglement [3]. In order to work efficiently
a very high coupling strength between flying and stationary qubits is desir-
able [4].

Two methods are established for achieving this: Cooperative interaction and
cavity enhancement. When an ensemble of indistinguishable atoms absorbs
a photon a Dicke state is formed. The effective atom light coupling scales in
this case proportional with the square root of the atom number [5]. Alter-
natively, stationary qubits can be placed inside a resonant cavity where the
Purcell effect strongly enhances the atom-light interaction [6].

First demonstrations of quantum memories have been for example realized in
solid state systems [7,[8], an atomic ensemble in a ring cavity [9] and in free
space [10], and with a single photon inside an ultra high finesse cavity [11].
In our research group, we want to used a small atomic ensemble of atoms
inside a fibre based cavity which combines the beneficial effects of Purcell
enhancement and collective enhancement. Such fibre based cavities have for
example very successfully be implemented in on chip quantum circuits [12].
Due to their small mode volume fibre based cavities require a smaller finesse
to achieve the same coupling regime [13]. This makes them more stable and
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allows a higher photonic bandwidth [13].

To benefit maximally from the collective enhancement we are interested in
generating an atomic ensemble which is as dense as possible. The first part
of this thesis is about creating such dense ensembles of neutral atoms. These
studies are performed on neutral atoms inside an optical dipole trap.
Optically trapped neutral atoms are widely used in experiments in quan-
tum metrology [14], quantum simulation [15] and quantum information pro-
cessing [16]. In all those experiments atomic qubits are manipulated and
information is extracted from their internal states. This state detection is
usually done destructively by removing all atoms in a given state [17]. A
non-destructive method for the state detection would strongly increase the
measurement rate in these systems.

Previously non-destructive state detection in free space has been realized for
single atoms only [18,19]. Here, we demonstrate for the first time the non-
destructive simultaneous state detection of multiple atoms. but not for the
simultaneous detection of multiple atoms.



Chapter 2

Experimental Setup

All our experiments are done with Rubidium 87 atoms inside a ultra high
vacuum (UHV) apparatus. The atoms are trapped in a standing wave dipole
trap and imaged with an emCCD camera. In this chapter I will explain the
experimental setup in more detail.

2.1 Optical Transition in Rubidium

The electronic ground state of Rubidium 87 is the 52S;2 [20] state with
nuclear spin is 3/2 [20]. In all experiments we use the Dy line which is the
transition between the ground and the 52 P state at about 780 nm.

Figure [2.1] shows the hyperfine splitting of the Dy line. The hyperfine split-
tings of the ground states is much greater than the hyperfine splitting of the
excited states. The higher the hyperfine quantum number the greater is the
hyperfine splitting between two neighbouring excited states. As a short hand
notation I will use F” to refer to the hyperfine state of the excited state and
F' to the hyperfine state of the ground state. In the same manner I will use
mp and m'p.

Not shown in figure is the Zeeman splitting of the transition. All hyper-
fine states contain Zeeman sublevels with integer quantum numbers between
The interaction between the light fields and the atoms is dominated by dipole
interaction. All transitions therefore have to fulfil the selection rules

AF € {-1,0,1} (2.1a)
Amp € {-1,0,1}, mp =0 — m} =0 forbidden. (2.1b)
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Figure 2.1: Hyperfine structure of Rubidium 87 D, transitions. The excited
state is the 5°P3/2 which is split into four hyperfine states. Levels not to
scale.

Here, AF is the change in hyperfine and Am g the change of Zeeman quantum
number. The scattering rate Re. of an atom that is exposed to monochro-
matic light is given by [20]

R, = (2.2)

r S
214+4(A/T) + 5

where I is the natural linewidth, s the intensity normalized by the saturation
intensity and A the detuning.

2.2 Magneto-Optical Trap

A magneto-optical trap (MOT) forms the first stage in cooling and trapping
the atoms. A MOT was first realised in 1987 [21] and was awarded in 1997
with the Nobel price in physics. Today hardly any experiment with single
trapped atoms would be possible without a MOT.
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2.2.1 Working Principle

The MOT is based on the principle of velocity and spatially dependent light
scattering forces.

Optical molasses

An optical molasses typically consists of six laser beams although setups with
only four beams are possible [22].

The laser light is red detuned to a cyclic transition. If an atom moves towards
the beam it Doppler shifts the beam to the blue and it is more likely that it
absorbs a photon of this beam than from the others. In the absorption process
the momentum of the photon is transferred to the atom. When the atom
spontaneously emits a photon it gains momentum in a random direction.
After many repetitions of this process the overall momentum transferred by
the emission of photons averages to zero. Hence the temperature of an atomic
ensemble within the molasses is lowered [23].

Position Dependent Potential

The molasses cools the atoms but this is not sufficient to trap them. Two
coils in Anti-Helmholtz configuration give a position dependent magnetic
field which shifts the Zeeman sublevels. The zero of the magnetic field lies at
the intersection of the molasses beams. In the centre of the trap those coils
provide a linearly increasing magnetic field in all three dimensions.

Figure shows how the space dependent potential is formed. In a MOT
one of the counter propagating molasses beams is o' and the other one is
o~ polarized.

For positive magnetic fields the Zeeman shift brings the ¢~ transition closer
to resonance which results in a higher scattering rate. This results in a force
in parallel to the propagation direction of the ¢~ beam. On the other side
the effect is the other way around. The beams are propagating such that
the resulting force always points towards the center and therefore a trap is
formed.

2.2.2 Experimental Realisation

We use three laser beams that intercept each other perpendicularly. The
beams are back reflected into themselves. With a A/4 plate that is passed
two times we rotate the polarization from o~ in the original beam to ot po-
larization in the retro reflected beam. The beams are red detuned (10 MHz)
from the /' = 2 — F’ = 3 transition and have a power of 20 uW and a waist
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o+ light o- light

Figure 2.2: The magnetic field shifts the Zeeman sublevels. On the left side
of the zero the shifting causes the o™ transition to be closer to the resonance
than the 0~ ones. Therefore the atoms more likely absorb a photon of the
oT beam. This causes a radiation force towards the center. On the right
side the Zeeman shift is in the other direction which gain leads to a radiation
force towards the center.

of 350 um.

Off resonantly excited atoms can decay into the F' = 1 state and do not inter-
act with the cooling light any more. A laser resonant to the FF =1 — F' =2
transition acts as a repumper and ensures that the atoms stay on this cyclic
transition. The repumper excites the atom in the F’ = 2 state until they
decay in the F' = 2 state and interact with the cooling light again.

With this MOT we trap typically 5 to 10 atoms in about 3s. The background
gas pressure is about 107° mbar.

2.3 Dipole Trap

In the MOT the atoms are confined in a volume of several tens of micrometers.
We overlap the MOT with a strongly focused dipole trap in which we can
trap and localize individual atoms.

2.3.1 Dipole Force

In a classical picture a laser field contains an oscillating electric and magnetic
field. The oscillating electric field induces a dipole moment in the atoms.
This can be explained in the Lorentz model picture of an atom.

In the Lorentz model the atom consists of an electron (mass m., charge
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—e) that is elastically bound by the harmonic potential of the core (M >
m.). An external light field with frequency w which has the form E(t) =
Eg exp (iwt) + c.c. drives oscillations of the electron. This leads to an induced
dipole moment d = aE(t) with the complex polarization a.. Dipole radiation

leads to damping rate I', = Gﬁiicg. The electronic equation of motion is
given by [24,25]

T+ D2+ wi = —eE(t), (2.3)
where wy is the oscillation frequency of the electron. Using d(t) = —eZ(t) =

aE(t) and the stationary solution of formula[2.3{one can compute the polar-
ization as [24,25]

e? 1
= . 2.4
@ mewi — w? +il,w (2:4)

The dipole potential U = %JE is time dependent. Therefore, the effective
potential is given by the time average of the potential

m@:—@%d@:—gf

Re(a). (2.5)

The potential is proportional to the intensity of the light field. The gradient
of the potential gives the dipole force which pushes the atoms towards the
minima of the potential. The minima of the potential is given by the minima
of the intensity if wy < w (blue detuning) and by the maxima of the intensity
if wo > w (red detuning) [24}25].

Using the rotating wave approximation one finds that the potential is in-
versely proportional to the detuning while the scattering rate due to the
dipole trap is inversely proportional to the detuning squared [24].

A quantum mechanical treatment of a two level atom leads to the same ex-
pression for the ground state [24]. For the excited state the potential changes
sign. This means that an attractive potential turns repulsive whenever an
atom gets excited [24].

In a multi level atom all transition play a role and the situation is more
complicated [24].
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2.3.2 Standing Wave and Running Wave Configura-
tion

All state detection experiments will be done in the so called standing wave
configuration. During the compression experiment we switch between a
standing wave and a running wave potential.

The running wave configuration is caused by the potential of a single Gaus-
sian beam. The resulting trapping potential U(Z) is proportional to the
intensity.

wo 272 Re(a)I(0)
Ule ) = Un = axn [ — U, = ~A@)10) 2.6
(z,7) 0 w(z) exp ( w(z)2)’ 0 2eqc (2.6)
Une(zr)

Here wy is the beam waist, z is the coordinate in propagation direction, r is

2
’\2> is the beam

z
7'[w0

the distance from the optical axis and w(z) = wp4/1 + (

waist at position z.

A standing wave configuration is built up by two counter propagating beams
of the same intensity. The beams interfere with each other and give an alter-
nating pattern of maximal and minimal intensities. The trapping potential
in this case is given by

w 2r? 2 kr? 7
U(z,r) = 4U, WZ) exp (_W) cos [k:z — arctan (Ei) — } , (2.7)

P
Usw(z,r)

where k = 27/ is the wave number. For perfectly overlapping beams the
trap depth is 4 times the trap depth of a standing wave dipole trap with the
same intensity and wavelength.

Figure |2.3| shows an intensity plot of the standing wave potential.

2.3.3 Experimental Realisation

For the dipole trap we use a laser with 860 nm wavelength. The light that is
red detuned from the Rubidium D, line by 80 nm is emitted by a Titanium
Sapphire laser. The light is split into two arms and is passed through one
tapered amplifier in each arm to increase the power. The two arms are
aligned to counterpropagate and are focussed down to the same spot with a
waist of 5 um by two high numerical aparture lenses.
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AL e

Figure 2.3: Intensity of a running wave potential for wy = 2. Red means
the highest intensity and black the lowest.

By means of a Acousto Optic Modulators (AOM) the intensity in each arm
can be changed. To form a standing wave potential both arms have the same
intensity.

2.4 Imaging of Neutral Atoms

In order to observe the cooled and trapped atoms we perform fluorescence
imaging.

2.4.1 Detection System

When we image the atoms we illuminate them using the molasses beams The
fluorescence light has a wavelength of 780 nm and is collected by a high nu-
merical aperture lens. The light which is emitted in the antipodal direction
is retro reflected to further increase the collection efficiency.

The fluorescence light is send on an electron multiplying charge coupled de-
vice (emCCD) camera. We use an Andor Ixon 3 camera model DU-897D-
CSO-#BV with 512x512 pixels & 16umx16um and a quantum efficiency of
around 70 % for light with a wavelength of 780 nm [26]. To obtain an image
we expose the camera for time spans from 5ms to 100 ms. Figure depicts
the imaging system.

2.4.2 State independent Imaging

Normal or state independent imaging enables us to detect individual atoms
and get their position in the dipole trap.

The atoms are trapped in the dipole trap and illuminated by the cooling and
repumping beams. In this way all atoms independent of their initial hyper-
fine state scatter photons during the whole imaging time. Their fluorescence
signal is recorded by the camera and analysed by an image analysis toolbox
Andrea Alberti developed to calculate the atoms’ position.
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Figure 2.4: Imaging system. Top: Atoms are trapped in the dipole trap
and illuminated by the MOT beams. The fluorescence is collected by one of
the four lenses with a numerical aperture of 0.5. Image provided by Miguel
Martinez Dorantes. Bottom: Typical emCCD image of trapped atoms. The
FWHM of the LSF is around 3 pixels while one lattice site corresponds to 1.8
pixels. The brightest spot is caused by atoms in neighbouring lattice sites
that cannot be resolved.

The toolbox reads in the two dimensional images the camera provides and
sums over all pixels perpendicular to the trap to get a one dimensional inten-
sity profile. In this profiles it defines regions of interests (ROIs) where the
intensity profile is above a certain threshold. The resolution of the imaging
system is larger than one lattice side. Therefore multiple atoms can be in
the same ROI. With the total number of counts in a ROI its atom number
is determined. From the signal of the single photon ROIs the Line Spread
Function (LSF) is found experimentally. Using parametric deconvolution the
position of the atoms is finally calculated below the diffraction limit.

The intensity of the dipole trap is smaller the farther away from the centre
of the trap the atoms are. This results in a lower AC Stark shift that causes
the detuning between the molasses beams and the transition to get lower the
farther away from the centre of the trap the atom is positioned. Therefore
atoms far away from the center of the trap appear brighter than atom at the
center which has to be compensated for in the analysis of the images.



Chapter 3

Creation of a Dense Ensemble
of Neutral Atoms

The aim of the experiment is the storage of a photon in an atomic ensemble
inside of a fibre based optical cavity. The coupling between the atoms and
the cavity is collectively enhanced by a factor of /N where N is the number
of atoms inside of the cavity mode. Therefore, we need an atomic ensemble
which is as dense as possible.

3.1 The Basic Principle

The basic principle of the compression follows the idea presented in [27].
At the beginning of the sequence, atoms are trapped in a standing wave
dipole potential. By adiabatically lowering the intensity of one beam and
simultaneously increasing the intensities of the other dipole trap arm the
running wave potential is transformed into a running wave potential. It is
important to do this adiabatically with respect to the oscillation frequency
of the standing wave pattern to not heat the atoms.

In the standing wave potential the atoms are attracted to the centre of the
trap and start to oscillate. The atom density is increased since the atoms
are moving towards the centre. At the maximum density the potential is in
the same manner adiabatically changed back into the standing wave potential
with a high density at the centre of the trap. Figure depicts this sequence.
To ensure that the potential is adiabatically changed the action has to remain
invariant. This is strictly only true when w/w? — 0, e.g. the change of
potential is infinitely slow [28]. Since we need to change the potential in
finite time the change is not completely adiabatic. Therefore, the adiabaticity

11
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Figure 3.1: Illustration of the idealized compression sequence. Single atoms
are trapped in a standing wave potential (a). Adiabatically the standing
wave is changed to a running wave potential (b). Atoms start to oscillate
(c). After a quarter oscillation period (d) the potential is changed back (e) to
a standing wave potential (f). On the right the atom distribution is depicted.

parameter |w/w?| is kept much smaller than one by changing the potential
slowly.

3.2 The Harmonic Approximation
The main step in the compression sequence is when the atoms follow the
potential of a running wave dipole trap. Since a dipole trap causes a conser-
vative potential the classical equation of motion is given by

mr = —VU(F, 1) (3.1)

For atoms which are not positioned too far from the centre of the trap one can
Taylor expand the potential up to the second order. Since the Rayleigh length
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is about 90 um this is a good approximation for all atoms. The calculation
can be found the appendix and results in formula

. 22 2p°

which also can be found in [29]. This leads to radial w, and axial w, oscillation
frequencies of [29]

. = ~ 60000571, 3.3

w —" ( s) (3.3a)
2U,

w, = S (= 5000571, (3.3b)
mzR

3.2.1 Compression in the Harmonic Approximation

In the harmonic approximation one can compute the atoms’ behaviour an-
alytically. This is interesting because one can directly see the dependences
on the trap and the atoms initial condition. I neglect the effect of the radial
oscillation and treat this as a one dimensional oscillation.

The loading is a random process and therefore we cannot control where the
atoms are before the compression. But we can measure the initial distribu-
tion over many repetition which is approximately Gaussian with a width of
o0,. The centre of this distribution can be tuned to be at the centre of the
trap. The atoms have an initial temperature. According to this temperature
they move with a random velocity before the compression. In thermal equi-
librium this velocity distribution is also Gaussian distributed [30].

With its initial position xy and velocity vy the atom performs harmonic os-
cillation according to

x(t) = xg cosw,t + 0 sinw.t. (3.4)
Wy

The spatial standard deviation is defined as 02 =< z? > — < z >?. But
since < x >= 0 it simplifies to 02 =< z? >. The spatial standard deviation
as function of time

(02(1))? = cos? (wt)o? + sin? (wt)% (3.5)
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is obtained in the appendix in formula The minimal possible spread of
atoms is when cos (w,t) = 0, after a quarter oscillation period. In this case
one obtains a minimal deviation of

gmin — TV, (3.6)

T CL)Z

This means that the compression is more effective the colder the atoms are.
Additionally the higher the intensity of the trap the higher the oscillation
frequency and therefore the higher the compression efficiency. A higher trap
frequency can also be achieved through a shorter Rayleigh length.

3.3 The Experimental Realization

In the experiment we do not change the intensity of one arm but only the
intensity of the other because we cannot put four times the original power
into one arm. By this the trap depth of the resulting running wave potential
has only a quarter of the trap depth of the standing wave trap depth. With
the AOM we perform a sinusoidal ramp that has its minimum after 2ms.
After the atoms have been compressed the intensity is ramped up with the
same ramp.

To improve the compression efficiency the compression sequence is repeated.
The atoms are cooled in between each compression sequence. To characterize
the compression sequence we use a sparsely loaded trap to do this. A high
atomic density lead to a high probability that atoms share a lattice site.
Those atoms would be lost due to light assisted collision |31] in the imaging
process. If we use the compression sequence to have as many atoms as
possible inside the cavity mode volume we would of course use a dense loading
of the dipole trap.

An additional advantage of the sparse loading is that it is easier to extract
the atom number from the images

After we loaded the dipole trap we take a first image. Afterwards we start
the compression sequence and image the atoms again. Here, this is repeated
five times. The camera gives a two dimensional image of the atoms in the
dipole trap. By summing over all pixels perpendicular to the dipole trap we
get a one dimensional intensity profile of the atoms. To increase the statistics
we repeat the experiment with the same settings. In figure |3.2| one can see
the averaged intensity profiles of 500 individual trials. Those contain the flu-
orescence of 1000-1500 loaded atoms. If the compression is successful there
is an intensity peak around the centre of the trap.
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Figure 3.2: Top: Averaged intensity profile before the compression (blue
dots) and after 3 compression sequences of 0.6 ms (orange dots) of Raman
cooled (left) and Molasses cooled atoms (right). The shaded area marks
the cavity volume. Additional Gaussian fit to find the centre of the trap
(left). Bottom: Compression rate versus the repetition number (left, 0.4 ms
compression time) and the versus the compression time (right).

In the compression sequence the atoms are compressed at the centre of the
trap. Since the cavity will be placed at the centre of the trap it is very
important to know the centre of the trap. To get this we need the atoms’
positions after a successful compression. I define the mean of those positions
as the centre.

In the top left plot in figure [3.2| we have also fitted Gaussian to the intensity
peak and thereby determined the centre of the trap. The centre positions
found by this two methods differ less than one pixel. The shown intensity pro-
file was obtained by three consecutive compressions of Raman cooled atoms
with 0.6 ms compression time.

The width of the this Gaussian fit is 36 pixels. This corresponds to 20 lattice
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sites which are roughly 9 um. Raman cooled atoms have a temperature of
around 1 puK [32]. For a compression with our parameters and a temperature
of 1 uK formula predicts a width of only 2 um.

The top right image shows that atoms which are only cooled with the mo-
lasses and not with Raman cooling cause a broader intensity profile. Without
Raman cooling the atoms temperature of the atoms is around 50 uK [32].
Formula suggest a width of 14 um for the compressed ensemble. A fit to
the data shown in figure one finds a width of around 12 um which is very
near to the predicted value.

The waist of the cavity mode will be around 10 lattice side which are roughly
18 pixels. We define the compression rate C' as the fraction of loaded atoms
inside this mode volume. There are only two possibilities. Either the atom
is inside the cavity mode volume or not. The inaccuracy of the measurement
can therefore be given by the binomial error [33]

C1—-0)

A =
C N

(3.7)
where N is the number of loaded atoms. The bottom left image shows the
compression rate versus the number of compression sequences with a com-
pression time of 0.4ms. The compression rate does not change after three
compression sequences. Therefore we used three sequences to compress the
atoms.

The bottom right plot of figure [3.2| shows the compression rate versus the
compression time. For a perfectly harmonic trap one would expect a sinu-
soidal dependence. The asymmetry of the trap leads to a damping of the
sinusoidal curve. The fitted curves assumed the damping to be exponen-
tial. The same kind of damping was observed in [27]. Raman increases the
compression rate to 40 %.

3.4 The Simulation

I analysed the complete behaviour of the atoms in the compression sequence
with a Monte Carlo simulationE]. In addition to the analytic treatment in the
harmonic approximation the simulation includes the asymmetry of the trap
and the three dimensional motion of the atoms. The atomic motion is still
classical.

For every atom random starting values for position and velocity are assigned.

For this I extended a one dimensional simulation Lothar Ratschbacher wrote in math-
ematica.
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Afterwards the equation of motion is solved for the atoms independently over
the whole time of the compression sequence. After the compression time
the movement of the atom is calculated for some additional time. Atoms
could gain so much energy that they are not trapped any more but are still
positioned within the cavity volume. Those atom leave the cavity volume
during the additional time.

The starting value for the velocity are Gaussian distributed according to their
temperature. In thermal equilibrium the standard deviation of the velocity
distribution is given by [30]

(3.8)

with the Boltzmann constant kg. Analogous to chapter the overall dis-
tribution is Gaussian. In the beginning there is a standing wave. Therefore,
the atoms’ position is always near the potential minimum. Because of this,
the Gaussian distribution is discretized. Inside of the lattice sides the spa-
tial distribution is according to the temperature Gaussian distributed with
a sigma of

Oy

_ % 3.9
JLs w ’ ( )

where w is the radial or axial standing wave trap frequency respectively.
The movement of the atoms is considered to be completely classical. The
equation of motion is therefore given by formula [3.1, The potential of 2
counter propagating beams is given by

U(Z,t) = AUs(t)Usw (%) + (U1 (t) — Us(t)) Urw (Z), (3.10)

where Uj(t) is the trap depth a running wave trap with the intensity of the
stronger beam would have and Us(t) the one with the intensity of the weaker
beam. Uy, and U, give the form of a running or standing wave potential that
are defined in formulae[2.7and 2.6 The intensities change in time to perform
the compression sequence. We can now consider different ramping scenarios
to study the performance of the compression sequence. The first ramping
type I will call adiabatic ramp since it keeps the adiabaticity parameter
constant. For this the intensity of one arm is ramped down according to

(3.11)
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where I' gives the speed of the ramping process. After the ramping time is
over Us(t) is set to almost zero. After a quarter oscillation the ramping up
process begins, where the intensity follows as

1

(3.12)

In the whole sequence the overall depth of the potential is kept constant. For
this purpose the other arm has to be ramped according to

0(t) = (2V/T00) ~ V(D)) (3.13)

The same ramping type is used in [27]. In the experiment we do not use this
ramp but a sinusoidal ramp. The sinusoidal ramp has only one parameter.
The speed of the ramp down is just given by the length of the ramp. It is
therefore much easier to find the optimal parameters.

The movement of the atom is simulated according to formula [3.10] and the
position of the atom is monitored at the end of the sequence. The interesting
figure of merit is again the fraction of atoms inside of the cavity mode C.
Figure |3.3] shows the evolution of spatial distribution of atoms in the com-
pression sequence. On the top left one can see the an example trajectory of
a single simulated atom. In the beginning this atom is trapped in one lattice
side (here -12) and performing oscillations. When the running wave potential
is lowered, the amplitude and the period of the oscillation is increased are.
When the intensity of one beam is turned off the atom is moving towards
the centre of the trap. After the standing wave potential is turned on again
the atom is trapped in lattice side -1. The vertical lines mark the start and
the end of the quarter oscillation period where the compression takes place.
The oscillations the atom performs in the last part of the simulation have a
higher amplitude since the atom gained energy in the process.

On the top right side of figure the spatial distribution of atoms before
the compression sequence is shown. Only few atom are positioned inside of
the mode volume (highlighted region). After a quarter oscillation period but
before the standing wave potential is ramped up again the peak density is
highest (bottom left). Note that since we do not have the altering potential
any more the atoms are not confined to lattice sites and the atoms can be
at intermediate position. The histogram therefore shows the intermediate
position which results in more bars. Next to this there is the histogram of
the final spatial distribution. The atoms are again confined in lattice sites
According to the experimental data an additional compression step leads to a
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Figure 3.3: Top left: Trajectory of a single atom in the compression sequence.
Top right: Spatial distribution of atoms before the compression sequence
obtained with 2000 atoms. Middle left: Spatial distribution of atoms after a
quarter oscillation period. Middle right: final spatial distribution of atoms
after one compression. Bottom: The distribution in a second compression
sequence.
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further increase of C'. The histograms shown at the bottom of figure 3.3 show
that this is also true for the simulated compression. This can be explained
due to the anharmonic trap. For a perfectly harmonic trap all atoms have
the same oscillation frequency, whereas this is not true for an inharmonic
trap. The outer atoms have a longer oscillation frequency in the trap and
are therefore not perfectly compressed. In the second sequence they start
near the centre and were the trap is nearly harmonic. Therefore those atoms
are compressed with the maximal possible efficiency.

The simulated compression leads to a higher compression rate than the ex-
perimental data. This is again due to the fact that classical motion is not a
good treatment for atoms cooled to the quantum mechanical ground state.
Optimal control algorithms could lead to a better agreement with the exper-
iment and can therefore be used to optimize the compression process further.
This simulation was made with the adiabatic ramp, a trap depth of 0.25 mK
and 2000 simulated atoms with an initial temperature of 1 uK.

3.5 Crossed Beam Compression

As explained in chapter the efficiency of the compression depends on
the trap frequency. One way to strongly increase the trap frequency is to
introduce a running wave potential perpendicular to the trap. Because of a
lack of analogue channels for the experimental control this was not imple-
mented in the current setup. In near future the experimental control will be
exchanged and then this can be experimentally realized.

The potential depicted in figure[3.4)is the potential of two running wave dipole
traps that crosses each other perpendicularly at their centre. In a compres-
sion with additional potential this perpendicular running wave dipole trap
beam remains unchanged in the whole compression sequence. The sequence
of the original two beams is the very same as before. The only difference is
that the compression time has to be adapted because of the higher oscillation
frequency.

A requirement for a successful compression is that all atoms reach the centre
of the trap in roughly the same time. For this, the potential has to be nearly
harmonic. The potential depicted in figure is not harmonic. If the atoms
are compressed before they are near the centre and within the waist of the
crossed running wave dipole trap the potential can be approximated by a
harmonic one. Therefore this compression has to be a two step compression.
The first step is without the additional compression and the second one with.
Figure shows the compression efficiency in this scheme. Although C' is
not increased in the second compression but slightly lowered one can see a
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Figure 3.4: The potential of two crossed running wave dipole traps (solid
line). The dotted line represents the potential of a single running wave po-
tential.

much higher filling of the central lattice sites. The shape of the distribution
changes. While the distribution of atoms after the first compression looks
Gaussian it is clearly non-Gaussian after the second compression. This is
due to the strongly anharmonic trap. Because of the higher filling of the
central lattice sides the two dimensional compression would be less effected
by changes in the position of the trap.
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Figure 3.5: Simulated spatial distribution of atoms in the crossed beam com-
pression sequence at six different times. The shaded area represent the cavity
mode volume. This was made with 2000 simulated atoms and a trap depth
of 1mK.



Chapter 4

Non-Destructive Free Space
Hyperfine State Detection

Every experiment which uses qubits needs a method to read out the qubit
information. Since we are using the hyperfine ground state of Rubidium
in the experiment we need a method to distinguish between both hyperfine
states. A standard method for trapped neutral atoms is the so called push
out technique which has been used in our group for several years now [34]. A
strong resonant laser pushes out atoms in one hyperfine state but not in the
other. This is destructive in the sense that atoms cannot be used in multiple
measurements and the dipole trap has to be reloaded.

For trapped ions the trap is usually several 1000 K deep. Therefore ions
cannot be pushed out of their trap using laser light. The standard method
there is to use the different fluorescence signals of the ion states to distinguish
between them [35,36]. Here one state acts as the bright state which emits
photons and the other state of the qubit act as a dark state which does not
emit any photons. From the collected photons the ion state can be inferred.
The detection error of method has been shown to be below 107 [36] for
multiple atoms observed with a camera.

A non-destructive state detection for neutral atoms using there fluorescence
signal has been realised with a 2 % error using an optical tweezer |18] and 5%
using a standing wave dipole trap [19]. All those measurements were done
with individual atoms and a single photon counter. Here, we demonstrate
the simultaneous non-destructive state detection for neutral atoms using a
CCD camera.

In all non-destructive methods there is still a certain probability to lose the
atom. Therefore there are two different important figures of merit. The first
one is the survival probability, which is the probability that an atom is still
trapped after it is imaged consecutively in the both hyperfine states. In an
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ideal push out scheme this is 0 since all the atoms are lost while imaged in
one hyperfine state. In an ideal non-destructive method this is 1. Here we
are interested in a survival probability of above 0.95. The other important
figure of merit is the detection error which is the fraction of wrongly detected
atoms in a single shot experiment.

Fast non-destructive state detection of neutral atoms is also possible inside
an optical cavity [12] but this method cannot be applied for multiple atoms
simultaneously.

To do non-destructive state detection simultaneously for multiple atoms one
has to use a camera. There is an intrinsic trade off between spatial resolution
and state detection fidelity. If the light would be focussed on a single pixel
the noise of the detected signal is lowest. But there would be no way to tell
which signal comes from which atom. For this reason it is more difficult to
do the state detection with multiple atoms.

4.1 State Dependent Imaging

For state dependent imaging one needs a transition where atoms in one hy-
perfine ground state scatter photons and atoms in the other do not. Since
the atoms shall scatter as many photons as possible we use a cyclic transition
where the atom can only fall back in its original state after one absorption-
emission cycle.

There are two different cyclic transitions available if the D2 line is used.
Either we use the ' = 1 — F' = 0 or the ' = 2 — F’ = 3 transition.
In the same manner as explained in chapter off resonant excitation will
occur. The longer the atoms stay on the cyclic transition the more photons
they emit. Using the outermost Zeeman sublevels one can suppress off reso-
nant excitation not only by frequency but also be polarization. We therefore
choose the F' = 2 — F’ = 3 transition. The atom is illuminated with circular
polarized light along the quantization axis which is defined by a magnetic
field generated by the same coils that create the MOT field.

The F = 1 state will be referred to as the dark state since atoms in this
state will not scatter photons. Atoms in the F' = 2 state will scatter photons
and therefore I will refer to them as bright atoms. Figure depicts this
state depending imaging transitions. In all measurements presented here the
atoms are imaged for 5 ms.
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Figure 4.1: Level structure of the Rubidium 87 D5 line. In green: the cyclic
transition used for state dependent imaging. In red: dominant leakage paths
to the dark state

4.2 The Detection Error

Based on the on the photon record the most likely state of an atom is inferred.
A certain criterion is applied to a photon record in order to make the state
detection decision. This criterion is not perfect. The detection error € is the
fraction of atoms that are wrongly detected in a single shot measurement.
In the simplest case this criterion is a threshold. If the record is higher than
this threshold the atom is considered bright and if not it is considered dark.
If the fluorescence signal of an atom is above this threshold it is considered
to be bright, otherwise it is considered dark. Since this two distributions will
overlap some of the dark atoms will considered bright and vice versa.

We define the the bright state error eg(7") as the fraction of bright atoms
that are wrongly detected as dark ones and the dark state error ep(7") as the
fraction of dark atoms that are wrongly detected. The mean error €pean(7)
is defined of the mean of this two errors.

In figure this is depicted. The blue shaded area gives the eg and the red
shaded area gives ep.

All those errors depend on the threshold position 7. A scan of possible
threshold positions lead to a minimal mean error which we define as the
detection error e. This method is very commonly used [18,19,35]
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Distribution

counts

Figure 4.2: Exemplary distribution of counts for bright atoms (blue curve)
and dark atoms (red curve). The grey line depicts the threshold. Bright
atoms with their fluorescence signal in the blue shaded area are wrongly
detected. The same is true for dark atoms in the red shaded area.

4.3 Experimental Sequence and Analysis Pro-
gram

To measure the detection error and the survival probability for given imag-
ing conditions we use a test sequence. The first step in this sequence is of
course loading the dipole trap. To have mostly separated atoms we load the
dipole trap sparsely. To ensure that the Stark shift does not lead to different
transition frequencies for different atoms we compress the atoms.

The detection error is the mean of the fraction of wrongly detected bright and
dark atoms. To calculate this we need to image atoms in the dark and in the
bright state independently. After loading the dipole trap and compress the
atoms we take a state independent image. Afterwards we pump the atoms
in the dark state and take a state dependent image. This is repeated with
the bright state. To check which atoms have survived the imaging process an
additional state independent image is taken. In principle with this sequence
we measure the detection error plus the preparation error. With traditional
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push out method we checked that the preparation can be neglected compared
to the detection error. This sequence is repeated 100 times before the dipole
trap is reloaded. Figure the images taken in one of this sequences.

With help of the image analysis toolbox Andrea Alberti developed I wrote a
program that calculates the detection error and the survival probability. In
a first step the program fits the position of all individual atoms. If the posi-
tions of one atom differs less than one pixel in both state independent images
the atom must have survived the imaging process. The survival probability
directly follows from the fraction of atom that survived. We postselect the
data of survived atoms.

We define a region of interest (ROI) for each atom. This ROI consists of
the pixel at the fitted position of the atom and two additional pixels to the
right and left of this central pixel. We measure the integrated counts inside
this ROI for the state dependent images for the dark state and the bright
state individually. By doing this for all atoms a histogram of those integrated
counts gives the desired distributions. The distribution measured for a given
set of imaging conditions are shown in figure [4.4] From those distributions
the detection error can be extracted.

The survival probability S is the fraction of survived atoms. Since this is
a binary information, either the atom has survived or the atom has not,
the statistical error of the survival probability can be given as the binomial
error [33]

S(1—-29)

AS = a

(4.1)

where N is the sample size which mean here the number of detected atoms.
The error calculation of the detection error is more complicated and has to
be calculated with a bootstrap algorithm.

The detection error is calculated from a sample of N measured atoms. From
this sample k subsamples of the same size are created. Each element of this
subsamples is a randomly chosen measured atom. The same atom can be
chosen multiple times within one subsamples. The detection error is now
calculated from every subsample and by this a distribution of detection error
is created.

Following [37] the margin of error is defined as the 16 % and the 84 % quartile.
This gives a hint how to choose k. The the margin of error converges and
therefore k has to be large enough that the margin of error does not change
significantly when more subsamples are considered.



[\
oo

CHAPTER 4. STATE DETECTION

I I 1 BT

Figure 4.3: Schematic depiction of the test sequence. Top: State independent
image of three atoms. The position can be calculate and a ROI (white boxes)
can be found. Afterwards the atoms are pumped in the dark state and a SD
image is taken (second image) before the atoms are pumped in the bright
state and a second SD images is taken (third image). With an additional
state independent image the survival of the atom is checked. This additional
normal image also works as the first image of the following sequence.
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Figure 4.4: Example of the detection error estimation. Top: a histogram
of measured dark state integrated counts. Middle: the same for the bright
state. Bottom: the mean error for a big set of possible thresholds with a
minimum of 4.05 %
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4.4 The Camera

In the experiment we focus the fluorescence light of the atoms onto an em-
CCD camera to observe the atoms. In this section I will explain the camera.
This camera is the main information source of the system. The camera is an
imperfect detector. We need to have a understanding of the camera in order
to theoretically study different imaging parameter regimes and optimize the
state detection.

4.4.1 Working Principle

Figure shows the working principle of an emCCD camera which is iden-
tical to the one of a conventional CCD but with an additional gain register.
Photons hit the active area of the CCD creating electron hole pairs on the
individual pixels. The charge created by the photoelectrons is accumulated
on the individual pixel during the imaging time. After the exposure the elec-
trons are shifted vertically. This happens by changing the electric potentials
and move the electrons to the position of the next pixel. By this the photo-
electrons of one row of pixels reach the readout register.

In a normal CCD those pixels would be horizontally shifted and electron-
ically read out. In an emCCD the electrons are horizontally shifted in a
multiplication stage. The shift in the gain register works similar to the pre-
vious shift but the potential of the neighbouring stage is much steeper than
before. Therefore, the electrons gain momentum and can cause impact ion-
ization which creates an additional electron hole pair. The probability that
this happens is quite low (around 1% per electron per stage [38]) but since
there are couple of hundred those stages [38], a gain of factor of several 103
can be achieved. This electron multiplied signal is then electronically read
out.

After the complete row of pixels is read out, a new row of pixels are shifted
vertically into the read out register and the multiplication procedure starts
again.

4.4.2 Important Functions

There are multiple settings the camera software provides that can be modi-
fied in order to get an optimal signal to noise ratio. I will briefly explain the
most important ones.

Baseline clipping: There is a certain offset in counts for every single pixel.
Baseline Clipping ensures that this offset (baseline) stays at 100 counts for
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Figure 4.5: Working principle of an emCCD camera. A photon hits the active
area of the camera and a electron hole pair is created. The electron (black
dot) is kept in a electric potential which forms a pixel. When the image is
read out the electron is (vertically) shifted into the read out register (light
green boxes). Afterwards the photoelectron is shifted in the gain register
(dark green boxes where it is multiplied. The electronic read out of this
gives a count for every single pixel. Note that the efficiency of electron
multiplication is strongly exaggerated

all pixels. This is done by subtracting an average bias for each pixel [3§].

Read out speed: The read out speed gives the shifting rate. The higher
this rate the faster the readout. For faster read out Clock Induced Charges

(see chapter [4.4.3) are less probable [38].

EM gain level: The higher the EM gain level the higher the counts per
photon. This increases the signal to noise ratio. High gain level lead to an
ageing effect of the camera which lowers the effective gain with time [3§].

Clock Amplitude: A high Clock amplitude enables even faster readout and
charge leakage to neighbouring pixels gets suppressed . A high amplitude
also leads to more Clock Induced Charges [38]( see section [4.4).
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4.4.3 Camera Noise

It is important to understand the noise sources of the camera. In the state
detection images the signal to noise ratio is one of the limitation.

Noise sources

The camera noise can be generated at different stages.
Read out noise: Noise that is generated by the electronic read out [25].

Clock Induced Charges (CIC): Electron hole pairs which are generated
in the shifting process. Those are amplified in the whole amplification stage
and therefore indistinguishable from real photons [25].

serial Clock Induced Charges (sCIC): CIC generated in the amplifica-
tion stage. They are therefore not amplified by the entire magnification stage
and lead to less counts than CIC [39).

Dark Current: Thermally generated electron hole pairs in the substrate of
the CCD chip while exposure. The amount of electrons which are accumu-
lated is proportional to the exposure time [25]. Since we operate the camera
with a temperature of -90°C and have very short exposure times noise due
to dark current can be neglected.

Photo-response non-uniformity: The noise due to variations in the pho-
ton response of the individual pixels, which can be caused by imperfect ma-
terial or geometry of the pixels [25].

Noise Characterization

To characterize the noise of the camera we took images with a closed shutter.
Figure 4.6| shows a histogram of pixel counts obtained by in this way. I will
refer to this as a noise spectrum. The data was obtained by using maximum
gain of 1000. Around 107 individual pixels contribute to this.

If no electron hole pairs are created due to dark current or CIC the electronic

read out is the only noise contribution and one would expect a Gaussian
noise spectrum. Indeed, one can find a Gaussian peak in the noise spectrum.
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Figure 4.6: Camera Noise Spectrum

The yellow line in figure 4.6| shows a Gaussian fit to the the data. The
corresponding noise distribution is

1 (c—p)?
Dread(C> 22 0) - % exp < 20_2) )a (42)

with the offset p and the width o. Towards higher counts the noise spectrum
is exponential. This is due to photoelectrons. In literature one finds that
the counts of a photoelectron are exponentially distributed [39,40]. Those
photoelectrons are either CIC or generated by dark current. The green line in
the figure |4.6| shows the distribution of counts for the read out noise and the
contribution of one photoelectron. Since the probability of a photoelectron
for a dark image exposure is quite low I neglect the possibility of getting
multiple photoelectrons per pixel here. The exponential distribution of EM
multiplied electrons needs to be convoluted with the Gaussian electronic read
out noise. The one distribution of counts for a single pixel that has recorded
one photoelectron is given by

e—)\c

Di(c,p,0,N) = @(C)TDread(c) (4.3a)

1 2 - 2
o3 (20+20420%) \ g (M) : (4.3b)
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where erfe(c) = 27%5 [ da exp (—2?) is the complementary error function,
O(c) is the Heavyside step function and A~! is the mean number of counts
per photon.

Figure |4.6| also shows that in the regime where the exponential takes over
to be the dominant part of the spectrum the green line differs from the
data. This is because of sCIC. Since the sCIC are produced later in the
multiplication stage they are amplified less. The mean number of counts per
sCIC therefore depends on the stage where the sCIC is created. Following
[39] the mean number of counts for a sCIC created in the i-th of Ngage
amplification stage is given by 1/)X = \=#/Nstages,

With this three contributions the noise function can be written as

N(C) = CLD1 (Cv W, o, )‘) + bDSCIC(C7 M, 0, )\) + (1 —a— b)Dread(Ca H, U) (44)

The orange line in figure [4.6| shows the best fit for this model.

For very low count rates the red line differs from the data. This is due to
a change in offset. If one does not use baseline clamping this effect is much
bigger. It seems like baseline clamping does not work perfectly.

Noise Dependence on the Trigger Modes

In the experiment we observed that the camera noise differs with the trigger
mode. There are three different modes available.

External trigger: The camera takes takes an image every time a hardware
TTL trigger is send. This would be the obvious choice for any kind of se-
quence since there is no synchronizing between the camera and the sequence
necessary.

External start:. Here the camera waits for a trigger and then takes images
in predefined time steps. After all images of one file are taken the camera
waits for a new trigger to begin the next file. In this mode it is necessary to
synchronize the sequence and the timing of the images within one file.

Internal trigger. After the camera is initialized no trigger is used for the
timing of the images. When started the images are taken in predefined time
steps the in the same way as in the external start mode. After the images
of one file are taken, a new file automatically starts. In this mode it is im-
possible to synchronize an experimental sequence and the camera because
not only the time within the sequence has to be be matched but also the
overall of the sequence. Normally, the sequences are repeated hundreds or
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Figure 4.7: Noise spectrum of images taken with closed shutter using different
trigger modes. All images were taken with an EM gain of 300.

even thousands of times.

Figure[£.7/shows an the noise spectra of different trigger modes. On first sight
one can see the difference in the probability of getting a photoelectron. With
the external start mode (blue curve) one gets by far the lowest probability
(around 1.1%). By using the internal trigger (green curve) this increases to
around 5.9 %. When the external trigger is used the shape of the noise spec-
trum changes. There are so many photoelectrons that the two photelectron
distribution has a significant impact on the noise which, therefore, cannot be
described by formula [4.4]

For the state detection as well as for every other kind of measurement we
want to have a signal to noise ratio which is as good as possible therefore
the external triggering is not an option. Therefore much effort has to be
put in the synchronizing between the camera timing and the experimental
sequence. The same conclusion was found in [36].

It is not clear why the trigger modes lead to different results. This may have
something to do with clearing the charges from prior exposures.

Binning of pixels

When we image a single atom the fluorescence light hits multiple pixels and
we collect the counts in a region of interest (ROI). We can do this in two
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Figure 4.8: Left: Noise spectrum for different binnings using external start.
Right: using internal trigger

possible ways. Either we read out every pixel individually and add the counts
afterwards, which I will call software binning, or we use hardware binning.
The latter means that the photoelectrons of several pixels are merged to-
gether on the CCD chip before the read out. It is important to differentiate
between vertical binning and horizontal binning.

Vertical binning means that the binning is performed parallel to the first
shift direction and horizontal binning means that the binning is performed
perpendicular to this.

Since the camera noise differs for the possible trigger modes it I will compare
the binning for all trigger modes individually.

Figure shows the camera noise spectrum when hardware binning is used.
The top image shows data taken with the external start mode.

The noise spectrum when vertical binning is used (orange) looks like the sin-
gle pixel noise spectrum (blue) with an increased photoelectron rate. There
is a clear difference between the horizontal (green) binning and the vertical
binning. In the horizontal binning mode more photoelectrons are created.
With the naked eye one can see a difference in the slope of the exponential
tail. Obviously the binning has an effect on the gain.

The right image shows the behaviour when internal binning is used. There
is no difference in the noise spectrum between the single pixel read out and
the vertical binning. The noise spectrum with horizontal binning has again
a higher photoelectron rate and a higher gain.

The noise shows dependences that are not recorded in the datasheet. With
this measurements we tried to find optimal conditions for state detection
with a signal to noise ratio that is as good as possible. We learned that the
lowest noise can be obtained by using vertical binning and the external start
trigger mode.

Since we can only bin pixels perpendicular to the dipole trap we had to ro-
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tate the camera and we had to change the experimental control in order to
communicate with the camera.

stray light

Everything presented in this section so far are effects of the camera itself.
An additional noise source is stray light. Photons can hit the CCD that are
not emitted by atoms but by any other source.

4.5 Modelling the Count Distribution

The threshold method does not require any knowledge about the origin of the
distribution. Nevertheless, it is important to know what the limiting effects
for the state detection are. Without a functional model it is not possible
identify the limiting effects. For this we developed an analytic model for the
count distributions when atoms are imaged in the bright and dark state. To
develop such a model one needs two things. The photon distribution D,p,(n)
and the response of the CCD camera.

As it was found in chapter 4.4]the distribution of counts of a single photoelec-
tron is exponentially distributed. If now multiple photons hit the CCD, mul-
tiple photoelectrons are created and amplified independently of each other.
Therefore the n photoelectron distribution can be calculated by the convo-
lution of n single photon distributions.

Dy(c) = Di(c)Di(c)--- Di(c) (4.5a)
nagles
—Xc
e
= " 4.5b
© Nl (4.5b)

This distribution is known as the Erlang distribution [39]. Of course, the
read out noise has to be also included. Analogous to chapter this leads
to a corrected n photoelectron distribution D™ (c)

D (¢) = Du(e) * Dreaa(©) (4.6)

The analytical solution for formula is given in formula in the ap-
pendix. This formula was calculated with mathematica. In principle the
effect of the sCIC could also be included. This is not done since sCIC are
not as likely as CIC and they produce less counts. Therefore their effect is
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not severe. Additionally the consideration of sCIC would increase the com-
putational effort to use the distribution.

While imaging photons emitted by an atom hit different pixels in the ROI
and therefore more than one pixels have to be taken into account. If n; pho-
tons hit the first pixel n, photons hit the second pixel and so on the overall
distribution of counts in ROI of m pixels is given by

Droi(c) = Dyixet1(¢) " Dpixel m (4.7a)
- D) DC°"< ) (470)
Dreaa(c) -+ - Drcaa(c) Dn, (¢) -+ - D, (¢) (4.7¢)
m times
= pread(c) e Dread(cl pl(c) -+~ Dy(c) (4.7d)
::Dr;a,d, ROI n=mni+ 7:2,4’ ... times
= Dread, Ro1Dn(€) (4.7¢e)

The term Dieaq, ro1(c) is just a m fold convolution of Gaussian with a constant
width, which is a Gaussian with a width increased by a factor of \/m. In the
following the width of the read out describes the read out of a complete ROI.
The term D, (c) shows that it is sufficient to treat the the overall number of
photons and that hit the CCD and it is not necessary to treat every pixel
individually.

The other part which is needed to explain the distribution of counts is the
photon distribution. For the dark state this is very simple. The atom does
not scatter any photons. In principle the atom could be off resonantly excited
in the bright state but because of the big hyperfine separation between the
Rubidium ground state (see chapter this is very improbable and can be
neglected.

DB, (n) = by (48)

For the bright state this is more complicated. There are three possible ways
why the atom should stop emitting photons. First, the imaging time has
passed and the atom is not longer exposed to the imaging light. Second,
it can be off resonantly pumped into the dark state. A third possibility
is that the atom gets lost. Since we are interested in the non-destructive
regime of state dependent imaging setting we choose only setting with a
survival probability of above 95%. In this regime we can neglect effect of
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atom loss on the bright state distribution. An analytical model of the photon
distribution neglecting atom loss can be found in [35]

e_(1+0‘//77)>‘0)\8 0//7]
n! (1+ o /n)ntt

Dp(n) = C(n+1,(1+a/n)X). (4.9)
Here o is the leakage probability per emitted photon, n the detection effi-
ciency and Ay the mean number of detected atoms when the atom stays on
the cycling transition the complete imaging time. In the following I will use
the leakage probability per detected photon v = o'/n since the detection
efficiency is not known exactly.

CIC and stray light can occur in the region of interest and have therefore
to be included in the distribution. CIC happen with a constant rate inde-
pendent of each other in a fixed space interval and are therefore Poisson
distributed [41]. The mean of the distribution is given by mpcic where m is
the number of pixels and pcic is the mean number of CIC per pixel.

e~ mpcic (mpcw)"
n!

Deic(n) = (4.10)

The photoelectron distribution is given as the convolution of the photon
distribution and the CIC distribution

DyP(n) = DEI{D( ) Parc(n ) (4.11a)

—mpcIc i
_ Z D%P(n (mperc) (4.11b)

7

Note that the dark state photoelectron distribution is the CIC distribution.
Now the distribution of photoelectrons and the distribution of counts for
arbitrary photoelectrons is known and the distribution of counts for atoms
in the bright or dark state can be calculated.

Dg,p(c) ZDB/D ) D (¢) (4.12)

Note that here D™ (c) contains the read out noise of the whole ROI. With
formula the bright state and dark state distribution can be completely
described with six parameters. Those are summarized in table
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o standard deviation of Gaussian read out noise

1/X | mean counts per photoelectron

pcic | mean number of CIC per pixel

« leakage probability per detected photon

Ao mean number detected photons if the atom remains bright
m number of pixels in ROI

Table 4.1: Meaning of the distribution parameters.

4.6 Monte-Carlo Simulation

The imaging process can also be simulated. Since the analytic model is
known one could think that the simulation is not necessary because one can
calculate the detection error instead of simulating it but there is a reason
why a Monte Carlo Simulation is important. In chapter 5 I will use Monte
Carlo simulations that include the spatial spread of the counts. There is no
analytic model that gives the detection error in this case. Therefore it is
important to show that the Monte Carlo simulation indeed is equivalent to
the analytic treatment.

4.6.1 Working Principle of the Simulation

The input of the simulation are the five distribution parameters. With this
parameters the distributions defined in are simulated. From this one can
easily extract the detection error this is depicted in figure 1.9 The dark
state and the bright state atoms are simulated independently.

Dark state: Only the read out noise and the CIC contribute. First the
read out noise is added by generating a Gaussian distributed random num-
ber with a width of y/mo. For each atom he number of CIC is Poissionian
distributed with a mean of mpcic. For each atom the number of CIC is
randomly assigned following this distribution. Since there are no incident
photons the number of CIC is equal the number of photoelectrons n. The
camera response is inserted by adding a n random numbers from a exponen-
tial distribution (mean 1/)\) independently. With this the final number of
counts is reached.

Bright state: Atomic fluorescence creates additionally incident photons.
The photon distribution follows formula[4.9} The number of incident photons
is added to the number of CIC and one gets the number of photoelectrons n.
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The number of counts for an atom is calculated in the very same way as it is
for atoms in the dark state. We still need to generate the number of incident
photons.

To do so one has to simulate the photon distribution. The time atoms spend
on the cyclic transition is exponentially distributed. The lifetime 7 is can be
extracted from the distribution parameters. For this one needs the scattering
rate Rs.. When an atom stays on the cyclic transition the complete imaging
time tp we collect in mean Ay photons. Therefore

A
Ry = —. (4.13)
o

The mean number of photons scattered before the atom falls into the dark
state is o/~!. The lifetime is the time which is needed to scatter that many
photons. Therefore

1 tp
= —, 4.14
o' Ree oo ( )

A bright atom the time ¢ on the cycling transition. The time ¢ is randomly
assigned following an exponential distribution with mean 7. In the time ¢
the expectation value of detected photons is given by

- t
Npn = Ao~ (4.15)
tp

Of course the atom can not scatter photons longer than the imaging time.
Every t > tp is therefore set to ¢ = tp. The actual incident photons is a
random number from a Poisson distribution with an mean of Nph.

This is done for N atoms independently.

4.6.2 Results of the Simulation

It is important that the simulation give the very same result as the analytic
model. Figure shows the simulated bright and dark state distribution.
This results include 10 million individual simulated atoms. The distribution
parameters given in [4.2]
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Figure 4.9: Simulated data and analytic model for the bright state (top) and
the dark state (bottom). Perfect agreement between both.

A 0.01
« 0.015
Ao 20
pcic | 0.15
o 4.5

Table 4.2: Parameters for the simulation of bright and dark state distribu-
tions

Those parameters are close to experimentally found parameters. One can see
a perfect agreement between the simulated data and the analytic model. This
confirms that the Monte Carlo simulation indeed works without problems.
The detection error calculated with simulated data is (4.295+0.006) % while
the analytic expressions lead to 4.299 % Since the simulation and the analytic
model lead to the same distribution the detection error is the same.

In principle the error for the detection error should be calculated with the
bootstrap method. Since 107 atoms are simulated this is not possible within
reasonable computational time. The shown error is the binomial error which
should be similar to the one obtained with bootstrap.

From this one can tell that the results of the simulation can indeed be trusted.

4.7 Experimental results

In this section I will presentd experimental data. First I will show a starting
point. Afterwards I will present a systematic search for the best possible
settings. In the third part I will show that the model developed in chapter
describes experimental data very well. Afterwards I will explore the
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parameter space with the analytic model. What we found in this exploration
will lead to an improved state detection presented in the last part of this
section.

4.7.1 The first try

When we tried the state detection the very first time we have had done no
optimization. We did not use on chip binning. Neither the polarization of
light was optimized nor the magnetic fields. No proper parameter scan was
done. Nevertheless we found an detection error of

e=21.3"08% (4.16)

The margin of error is so large because the it was a very small data set
which only contained 80 atoms. Although more than a fifth of all atoms is
wrongly detected this result was very promising. Without much effort we
could observe a significant difference between the hyperfine states which was
an encouraging result.

4.7.2 Frequency Scan

After this first attempt we optimized the polarization of the light to suppress
off resonant excitation and used on chip binning to reduce the noise. There
are three experimental parameter one can change. The trap depth, the power
of the imaging light and its frequency. We started at a fixed trap depth of
3.3mK and scanned the frequency and the power. For each frequency we
took multiple data sets with different intensities. The data presented here
have an survival probability of around 95%. The detection error of every
frequency is represented by the data where the survival probability is near
this value.

Figure [4.10] shows the the detection error versus the frequency. The 0 in
the detuning is the F' = 2 — F’ = 3 transition with the Stark shift due to
the dipole trap included. The detection error is experimentally measured as
explained in section

One can clearly see that there is an optimal frequency to perform non-
destructive state detection. This is due to two different effects. The fre-
quency suppression of off resonant excitation is stronger the closer to reso-
nance. Therefore atoms do not scatter many photons until they fall into the
dark state if the intensity is low.

When the atom gets excited the dipole force is repulsive. Therefore the atom
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Figure 4.10: Detection error versus the frequency. Only measurements with
a survival probability of around 95 % are shown. In red: fitted parabola to
guide the eye

gains energy when it is in the excited state. This leads to heating . By
using red detuning the atom looses energy in every absorption cycle. The
further the light is red detuned the lower is this atom loss.

This two effects lead to an optimal frequency of around 50 MHz red detun-
ing. The errorbars in figure are quite big. Every of the shown points
represent a dataset of a couple of hundred measured atoms. This scan gives
a reasonable estimate the detection error.

4.7.3 Comparison of the Model and Experimental Data

To analyse how well the analytic model developed in section describes
experimental data we did the state detection with 14’442 atoms. Using a
detuning of -59.1 MHz and 1.77 saturation intensities we found a detection
error of (8.05%' % and a survival of (96.70+£0.01) %. Figure shows the
bright and the dark state distribution and the fit to the analytic model for
this data set. The fit parameters are given in table 4.3
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Figure 4.11: Measured bright (left) and dark state (right) histogram and the
best fit (red curves)

A | 0.0111
a | 0.0302
Ao 13.7
Pcic 0.144
o 4.47

Table 4.3: Fitted distribution parameters

The theoretical model explains the data quite well. One can see a couple
of minor discrepances between the data and the model. Atoms in the dark
state do not scatter photons. Therefore the dark state state distribution only
depend on the camera model. Since the camera model is well known it is not
surprising that the model is a good fit for the data.

The bright state is effected by instabilities in the imaging conditions. Since
the data was taken over several hours small changes in this conditions are
not unlikely. Since the atoms are located at different positions the Stark
shift is not perfectly equal for all of them. Therefore the atoms have slightly
different transition frequencies due to the slightly different Stark shift. The
model for the photon distribution does not include lost atoms.

The data has a dominant very broad peak centred at around 1200 counts.
The data suggests a slightly broader peak than the fit. The data look some-
how tilted. This could be explained by the combination of two things. The
different transition frequencies and possible minor instabilities in the imag-
ing conditions might cause a broadening while the atoms that emit many
photons are more likely get lost. From those atoms we detect most photons.
This would cause a asymmetry in the dominant peak which might look like
a small tilt of this peak.
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For very small count rates there is an additional very sharp peak. This peak
is included in both, the data and the model. This peak is caused by atoms
where we do not detect any photons.
From those figure 4.11] one can tell that the model developed in chapter
indeed describes the imaging process.

4.7.4 Parameter Scan with Analytic Model

Since the model developed in section does describe the experimentally
found data I have performed a parameter scan. This means that I have
calculated the detection error for a set of distribution parameters using the
analytic distributions defined by those distributions. From this we can ex-
tract the main limitations for the detection error.

The read out noise depends of the camera and we will use maximum gain.
Therefore I chose the width of the read out noise ¢ and the mean number of
counts per photons 1/\ to be constant. I did not change the mean number
of photons in the Poissonian peak A\y. Since the bright state distribution is
dominated by leaked atoms in the threshold region a change in Ay has very
little influence on the detection error. Those three parameters are

A =0.00993, 0_4.624, Ao = 19. (4.17)

Figure [4.13| shows the detection error versus the pcic for various a. The
detection error is lowest when the leakage probability and the number of CIC
is lowest which is not surprising. The slope of the detection error function
is high for low values of pcic and gets smaller the higher pcic gets. The
same is true for . The differences between the graphs get larger for higher
« although the chosen values of a are equidistant.

For realistic parameters this means that a suppression of leakage can change
the detection error more than a reduction of the CIC. One would have to
reduce the CIC very strongly until it enters a regime were the detection error
is significantly lower. Since we put much effort in finding the optimal settings
of the camera I doubt that this is possible. Nevertheless, a further reduction
of a must still be possible.

4.7.5 Optimized Magnetic Fields

In the last section it was shown that a reduction of the leakage rate would
strongly reduce the detection error. We therefore optimized the polarization
of the state detection light. We optimized the magnetic field such that the
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Figure 4.12: Measured probability distribution of the bright state using the
optimized magnetic fields. Each point is measured by the combined occur-
rences of 10 neighbouring counts. The red line is the best fit to this data
while the black dotted line is the best fit to the data from sectiond.7.3l 11385
individual state detection measurements contributed.

quantization axis due to the magnetic field is in parallel to the propagation
direction of the light.

Figure shows the bright state distribution data taken with the optimized
magnetic field including the best fit (red). The black dotted line is the fit
from section [1.7.3] One can clearly see that the leakage is suppressed with
the optimized fields. For this settings the fit parameter are given in table

E4

A | 0.0106
a | 0.0133
Ao 17.7
Pcic 0.138
o 4.41

Table 4.4: Fitted distribution parameters
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Figure 4.13: Calculated detection error versus the mean number of CIC per
pixel for various leakage probabilities.

With this setting « is reduce by a factor of around 2.5. This means that 2.5
times more photons can be scattered before the atoms is pumped in the dark
state. The camera parameters are very similar to the ones in the parameter
scan. From this we can tell that the camera performance has not change over
a couple of months.

For a survival probability of S = (98.1 +0.1) % we find a detection error of
e = (3.595%1%) %. It might be possible to find slightly better settings by doing
a parameter search like in chapter but we choose to take this settings
and apply the non-destructive state detection instead for decoherence studies.
Those studies can be found in [32].

This method is a huge speed up of measurements. It takes around 3 seconds
to reload the dipole trap. With the traditional push out technique we can
only measure the atom once. For around 5 atoms per loading this is results
in less than two measurements per second. The whole sequence with 100
state detection takes around a second. A survival of 95% means that an
atom can be measured 20 times on average. this makes it 600 measurements
per loading meaning 200 measurement per second.
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Chapter 5

Use Spatial Information to

Improve State Detection
Fidelity

In chapter [4 T completely neglected the fact that the structure of the fluo-
rescence signal is known. Stray light and CIC occur on all pixels in the ROI
with a constant probability while fluorescence photons hit most likely pixels
in the centre of the ROI. Therefore those pixels are more important for the
state detection than the outer ones.

In this chapter I will present a way of combining the information of the
individual pixels using Bayesian analysis to lower the detection error.

5.1 Bayesian Analysis

Bayes’ theorem give a possibility to include the spacial information in a
probability theoretical consistent way.

5.1.1 Bayes’ Theorem

There are only two formulae that together with some logical arguments build
the complete foundation of probability theory. Thus are the sum rule (equa-
tion [5.1a)) and the product rule (equation [5.1b|) [43,44].

P(X)+P(X) = 1 (5.1a)
P(X,Y) = P(X|Y)P(Y)= P(Y|X)P(X) (5.1b)
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Here P(X) is the probability that X is true, P(X,Y") the probability that
X and Y are simultaneously true and P(X|Y) is the probability that X is
true under the condition that Y is true (conditional probability).

From those two formulae Bayes’ theorem (equation and the marginal-
ization (equation [5.2b]) directly follow [43]44].

PIxY) = TR (5.20)
P(X) = Y P(X)Y) (5.2b)

When there are multiple possible events { E'} Bayes’ theorem can be combined
with the marginalization to

 PYIX)PX)
P = PYIE)P(B)

The meaning of this formula becomes clear if one understands Y as a mea-
surement and {F} as a set of possible explanation for this measurement.
Then P(X|Y') gives the probability that explanation X € {E} is true if Y is
measured.

For single atom state detection there are only two possibilities. Therefore
the set { '} only has two elements. The atom is dark D or the atom is bright
B. The measurement is a single pixel count rate ¢. Thus equation [5.3| can
be used to calculate the probability that the atom is bright

(5.3)

P(c|B)P(B)
(c|B)P(B) + P(c|D)P(D)

P(B|c) = Iz (5.4)
This probability now depend on two things. First, the probability to mea-
sure ¢ under the condition that the atom is bright (dark) P(c|B). This is
nothing else but the single pixel bright (dark) state distribution. Second, the
probability that the atom is bright (dark). Note that this is not what we
want to calculate. Formula [5.4] gives the probability that the atom is bright
under the condition that ¢ is measured while P(B) does not depend on this
measurement. In other words, P(B) is the probability before the measure-
ment (a priori P5™) and P(B|c) the probability after the measurement (a
posteriori PR™").

We want to use Bayes’ theorem to calculate the probabilty that the mea-
sured fluorescence pattern arose from a bright atom. Using the single pixel
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distribution of counts we can apply formula iteratively for all pixels in
the region of interest.

The a posteriori probability that was found after the first pixel can deal as
the a priori probability for the analysis of the second pixel and so on. Since
before the first pixel is analysed there is no information about the atomic
state and therefore the a priori probability of the first pixel is 0.5.

5.1.2 Weighting

As explained in chapter the analysis programme computes the LSF. This
LSF is the form of the single atom intensity distribution. Speaking of a
single photon this means that the LSF is the spatial distribution of where
the photon hits the CCD camera. Figure[5.1| shows an experimentally found
LSF. The probability that a photon hits pixel ¢ is given by

d(i)+0.5

M) = /‘dMSHw (5.5)

d(i)—0.5

where d(i) is the distance of the center of pixel i to the centre of the LSF,
the fitted position. Since the pixel is spatially extended one has to integrate
the probability distribution over its area.

5.1.3 Single Pixel Count Distributions

The last thing that is needed to use Bayes’ theorem for state detection are the
single pixel count distributions. I developed them analogous to the overall
count distribution shown in chapter [4.5

The n photoelectron distribution is given by formula[d.6] Note that here I use
the single pixel read out noise. The detection efficiency 7 is the probability
that a emitted photon is detected. The weighting formula gives the
probability that a detected photon is detected in pixel i. Therefore the
detection efficiency of pixel ¢ is given by

n: = nM (i) (5.6)

For the dark state distribution this does not change anything since no pho-
tons are emitted and therefore the photoelectron distribution is the Poisso-
nian CIC distribution with the mean pcic. In the case of bright atoms the
detection efficiency of in formula [4.9| can be substituted by n;. By this the
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position / pixel

Figure 5.1: Experimentally found LSF. In red: fitted eight order polynomial
for analytic treatment

single pixel photon distribution can be given as a function of the weighting
factor M.

efM)\o(1+Oc/M)Mn/\g a/M

nl 0T apnmm ! L MAd(l+a/M))

Dg(n, M) =
(5.7)

Analogous to chapter this bright state photonelectron distribution is the
convolution of the CIC distribution and the photon distribution.

The distribution of counts for the dark state and the bright state distribution
is then given by formula [4.6.1] modified by the weighting factor M.

Dp(c) = ZD n) D (c) (5.8a)

Dg(c, M) = ZDB (n, M)D<™ () (5.8D)
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With this distributions the Bayesian 'update’ formula can be defined as

Pg(c, M) PR

Ppost — i .
B PB(C, M>P§rlor + PD(C)<1 . Pgrlor)

(5.9)

Note that here the fact that Pp = 1— Py is used. This formula can be applied
iteratively for every single pixel count rate in the ROI and by this the overall
probability that the atom is bright is calculated. If this probability is above
0.5 T will consider the atom as bright. The detection again the fraction of
wrongly detected atoms.

5.2 Experimental Results

If the Bayesian method is applied to real data there are several steps to do.
First, one needs to find the ideal distribution parameters. The parameters
o, pcic and A are found by fitting the dark state distribution while A\g and
« are found by fitting the bright state distribution. Additional to this one
needs the LSF to find an optimal weighting. This is a key feature of the
image analysis toolbox can easily be extracted. With formulae and
the single pixel bright and dark state distributions can be calculated. Using
formula the probability that the measured counts arose from a bright
atom is calculated.

Threshold Bayes
3.59%%, % | 2.88 +0.06 %

Table 5.1: Measured detection error with threshold method and with
Bayesian for the measurement with optimized magnetic fields

Table shows the detection error calculated with the Bayesian analysis
and with the threshold method. The Bayesian analysis let the detection
error drop by 20 %.

For using the Bayesian analysis is that one needs to know the distribution
of counts. Therefore one needs a big data set such that one can fit the
model distribution. Therefore the Bayesian analysis is not suited to make a
parameter scan.

To find good parameters one cannot use the Bayesian analysis but for using
the state detection for any measurement the lower detection error of the
Bayesian analysis lead to more accurate measurements. When measuring the
population in the F' = 2 state the contrast is increased by the lower detection
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error. Contrast means the difference between the measured population in the
extreme cases of only bright and only dark atoms. This contrast is 1 — 2e.
If live feedback is given due to the state of an atom it would be even more
important to use the Bayesian analysis because this would lower the fraction
of wrong feedback.

5.3 Monte Carlo Simulation

For the Bayesian analysis there is no obvious analytic treatment for the detec-
tion error. Based on the simulation explained in chapter [1.6]I wrote a Monte
Carlo simulation to test the Bayesian analysis under perfect conditions. This
simulation can be used investigate how much the Bayesian analysis lowers
the detection error under different imaging conditions.

Here, I describe how effective the Bayesian is for the imaging conditions of
section [5.2] If the experimental found reduction of the detection error is as
effective as the simulation suggest this means that we understand the imaging
process and know the positions of the atoms well enough to use the Bayesian
analysis as effective as possible.

5.3.1 Principle of the Simulation

The simulation works in the same way as the simulation explained in sec-
tion and this is that the detected photons have to be split on the pixels
according to the LSF and the atoms’ position. For this the experimentally
found LSF is used.

The position is randomly chosen as a real number between j:%. This is the
difference between the fitted position and the central pixels’ center. If the
position would be any number outside this interval the central pixel would
be different. I use a random number for this because in a real experiment
the atoms’ position will also be randomly distributed. Every photon will in-
dependent of the other randomly hit one of the pixels in the ROI where the
probability that a given pixel is determined with the weighting factor defined
in formula [5.5 The counts are calculated for every pixel individually.
Afterwards the detection error is calculated with Bayesian analysis and the
error of the detection error is calculated with boots trapping and 100 sub-
samples.
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5.3.2 Results of the Simulation

I simulated the detection error with the parameters found in chapter [p.2| with
100’000 atoms. Table shows the detection error for both the experimental
and modelled detection error.

Threshold Bayes
experimental | 3.59%%, % | 2.88 £ 0.06 %
simulation 4.06 % 3.23+0.04 %

Table 5.2: Measured and simulated detection error with threshold method
and with Bayesian for the measurement with optimized magnetic fields

The simulated and the real data both give a drop in the detection error of
20%. In other words, the Bayesian analysis is as efficient using real data as
the simulation suggests.

From this we can extract that our knowledge about the atoms’ positions ans
their fluorescence characteristics is known well enough to use the Bayesian
analysis in an optimally efficient way:.
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Chapter 6

State Detection with Multiple
Atoms

When we load the dipole trap we cannot control where the atoms are. It is
therefore possible that two or more atoms are trapped so near to each other
that their fluorescence signal overlap on the CCD. This is the case when they
have a distance of 3 or less lattice sites. It is also possible to have more than
two atoms very near to each other.

Since we do not load the dipole trap densely it is unlikely that there are
three or more atoms very near to each other. Furthermore, it is very hard
to estimate the number of atoms for a high number of atoms. Especially
when the atoms are only imaged 5ms. Because of the sparse loading our
experimental data was limited to single atoms and much less two atom cases.
Nevertheless systems like Mott-insulators cannot resolve single atoms and
state detection is restricted to the push out technique. Those experiment
would very much profit from a non-destructive state detection state detection
method.

6.1 Two Atom Case

The two atom case is the only one we realized in the experiment. We do
not load the dipole trap very densely. Because of this most atoms are single
atoms. Nevertheless, two atoms are loaded very near too each other happens
in few per cent of loadings. In chapter |4/ and |5 those cases we neglected those
until one of the two atoms get lost and a single atom remains.

The distance between the atoms is not constant but can be any integer num-
ber of lattice sides. Therefore it is hard to define a ROI for the atoms. Using
the Bayesian analysis it is not necessary to define a ROI for the individual
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atoms. It is sufficient to define a combined ROI for the two atoms. The size
of the ROI is similar two the single atom ROI two additional pixel to the
right of the right atom and two additional pixels to the left of the left atom.

6.1.1 Bayesian Analysis

The main difference in the analysis of two atoms which are close to each other
is that there are four possible combination of atoms. Either both atoms are
bright (BB), both atoms are dark (DD), the left atom is bright and the left
atom dark (BD) or the other way around (DB). For all those combinations
the probability can be calculated with Bayes’ theorem. From formula|5.3|one
gets

Pt - PP

> p P(c|E)P(E)
We need to know the different distributions. Instead of one weighting param-
eter every pixel have two parameters M, ; and M, with respect to the first
and second atom respectively. Since we do not expect any photons from dark
atoms three of the four distributions are straightforward to define. With the
single atom bright and dark state distributions defined in formulae and
5.8h)

(6.1)

P(¢|DD) = Dpl(c) (6.2a)
P<C|BD) = DB(C,MZ‘J) (62b)
P(c|DB) = Dgl(c, Mi,) (6.2¢)

In the case of two bright atoms photons of two independent sources can hit
the pixel. Therefore the photon distribution is the convolution of the two
single pixel photon distributions

DyP(n, Mi1, Mi2) = Dpy(n, Miq) = D3y (n, M) (6.3a)
= ZD (i, M; 1) D5, (n — i, M;2) (6.3b)

From this photon distributlon the distribution of counts P(c|BB) can be
calculated in the very same manner as showed in section [5.1.3] With formula
the probability of all can be calculated iteratively in the same manner
as explained for the single atom case. After all pixels have been analysed
I choose the combination with the highest probability to be the measured
atomic state.
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6.1.2 Experimental realisation

Since we cannot address individual atoms in the dipole trap we cannot pre-
pare the BD and DB combination nut only the BB and DD state. We
therefore do not have an experimental sequence especially built up for the
two atom state detection but use the data of the single atom sequence where
two atoms by change are loaded near to each other.

We assume that the pumping works so well that all atoms are in the state we
prepared them. The detection error is defined as the the fraction of wrongly
detected atoms. This is equivalent to the definition of the detction error in
chapter it an equal number of bright and dark atoms are investigated.
In the analysis we only take those data into account where both atoms sur-
vived.

In the set of data that is analysed in the sections and there were
553 analysed two atom ROIs. A detection error of 4.4702%. The detection
error is the fraction of wrongly detected atoms. Note, that since we cannot
prepare the BD and DB state this error is not averaged over all combinations.
The detection error is not much worse than the single atom detection error.
This is because the detection error is averaged over the distance. As we will
see in the following chapter the Bayesian analysis is very powerful when the
atomic distance is larger than the standard deviation of the LSF. This is the
case for a distance of two or more lattice sites. Therefore the detection error
is still near the single atom detection error.

6.2 Simulated Many Atom State Detection

The method presented in can in principle be extended to an arbitrarily
large number of atoms. The number of possible combinations is given by 2V
where N is the number of atoms which leads to a computationally extremely
intense problem.

A simulation gives the possibility to investigate the many atom case in a
controlled situation. Here I simulated a string of equally spaced atoms which
is something we cannot prepare in the experiment.

6.2.1 Different Analysis Methods

To analyse how well suited the Bayesian analysis is for perform state detection
for these strings I compared the detection error calculated with the Bayesian
method with two other methods.

In all methods I calculated the detection error for a ROI containing a different
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number of pixels and chose the number of pixels with the lowest detection
error to represent the detection error of the given method.

Threshold Method

The counts in the ROI are summed together. Afterwards the distribution of
counts for a bright central atom and a dark central atom are determined and
the optimal threshold is calculated analogous to chapter 3.

Maximum Likelihood Method

The Maximum Likelihood (ML) method is used for the analysis of ion chains
[36]. In this method the likelihood that the atom is bright is calculated under
consideration of the next neighbours and compared with the likelihood that
the atom is dark.

The likelihood that the atom is bright p(B) or dark p(D) can be given as [36]

p(‘B) = H P(Ci|B7:u7 V) (64&)
1€ROI

o0) = T[] PelD.v) (6.4b)
1€ROI

where P(¢;| B, i1, v) is the probability that the count ¢; is measured under the
condition that the atom is bright and its neighbouring atoms are in the state
1 and v respectively. Similar to the Bayesian analysis one has to include
the model for the analysis to get the probability functions. There are four
possible sources for photons. Those are the background and the three atoms.
Therefore

P(ci|B,t,v) = Ppois(ci, TBa) ® Ppois(ciy M; j—17ph)
®PPois<Cia Mz‘,jT’ph) X PPois(Cz‘, Mi7j+lrph) (6.5&)
= Prois(ci,Ba + (Mi,j—l + M; ; + Mz’,j+1)7"ph) (6.5b)

The biggest conceptual difference of this method to all others I present is
that one needs an initial guess (e.g. all atoms are dark). In a first step of
the analysis process the likelihood to be bright or dark is calculated for all
atoms. The states of its neighbours is given by the initial guess. This is done
with all atoms. The atoms of which the likelihood to be bright is higher than
the one to be dark are considered bright afterwards. This 'updated’ states of
individual atoms functions as an initial guess for the second iteration. This
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Figure 6.1: 5 atoms (red dots) imaged on a array of array of pixels. In a:
ROI of the central atom. In b: ROI of the two atoms next to the central one

sequence is repeated until one iteration does not change the state of any
atom.

Another conceptual difference to the other methods is that it is not possible
to detect the state of a single atom. One always has to detect the state of
the complete atomic ensemble.

Bayesian Analysis

As already mentioned a Bayesian analysis which contains all atoms is not de-
sirable since the effort of performing the state detection scales exponentially
with the number of atoms. In this 5 atom scenario there would only be 32
possibilities which would be realizable but we are interested in a method for
arbitrarily large atomic numbers. Therefore I will do the same approxima-
tion as for the ML method. Only the next neighbours influence the counts
inside the ROI of an atom.

In a ROI of an atom one can calculate the probability for all eight possible
combinations. One can show that Bayes’ theorem gives the same
probability functions as the maximum likelihood method uses. With this
functions one can calculate the probability for all eight possible combina-
tions in a ROI. The probability that an atom is bright is then given as the
sum of the probabilities of all those combinations that assume the atom to
be bright.

As one can see in figure [6.1] an atom does not only contribute to the counts
inside its own ROI but also in the ones of its neighbours. Therefore the prob-
ability that the atom is bright can also be calculated in the neighbouring ROI.
Bayes’” theorem enables us to combine this probabilities in an update scheme
similar to the one presented in chapter Again the starting probability
that the atom is bright is 0.5 since we have no background information. With
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the probabilities one finds in all three ROI one can update the probability
according to

post _ . PB(Z')P]IBJriOr |

S BOPE (1= Pa(D)(1 - B
where Pg(i) denotes the probability that the atom is bright which can be
found in ROI i. The proof that one can combine the information in this
manner can be found in appendix[A.2.2] After this is done for all ROI all

atom where the final Pp is greater than 0.5 are considered bright.

(6.6)

6.2.2 The Simulation

In a toy model I simulated the state dependent imaging of a chain of 5 equally
spaced atoms. I calculated the detection error with the three different meth-
ods. In the case of the maximum likelihood method I additionally compared
the extreme cases of initial guess. I assumed the atoms would be either all
bright or all dark.

In each trial every atom was randomly set to be either dark or bright in-
dependently. To lower the computational effort for the state detection the
count statistics were simplified. There is a dark count rate which forms a
background. I modelled this by assigning a random number that follows a
Poisson statistics with the mean of the dark count rgg = 0.2. This is about
the number of photoelectrons I found by fitting the dark state distribution
to actual data in section 4.7.5, For the same reason I assumed the bright
atoms to emit in mean 7, = 20 photons onto the detector. The number of
detected photons is also Poissonian distributed

Analogous to section [£.6] I divided those photons onto the individual pixels
according to the LSF. The LSF I assumed to be Gaussian with a standard
deviation of o gr. Since the photons of all atoms have to get divided one gets
a set of weighting parameters M; ; where 7 denotes the pixel and j the atom.
The number of photons a bright atom at position j causes on the pixel ¢ is a
Poissonian distributed with a mean of M; ;r,,. Dark atoms do not emit any
photons. Therefore M; ; = 0 if the atom j is dark.

For a fixed atomic distance a the I varied the standard deviation of the LSF
and calculated the detection error as a function of the resolution R.

OLSF
a

R:

(6.7)

Note that I only calculated the detection error of the central atom since this
is the atom where the cross-talk effects are most severe.
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6.2.3 Simulation Results

I analysed two different sets of measurements. In the first one I choose an
atomic spacing between a = 10 pixels and in the second one I choose it to be
a = 20 pixels. Figure [6.2 shows the detection error versus the resolution R.
The lower the resolution the better individual atoms can be detected.

The better the resolution the better is the detection error with all methods.
This is not surprising since for good resolution the two fluorescence signals
are well separated and therefore crosstalk is less severe. Cross-talk is the
main detection limitation.

For resolutions higher than 1 the threshold method outperforms the other
methods. This is because the assumption that there is only cross talk be-
tween next neighbours fails for very bad resolutions. Therefore we put a
wrong models into the calculation of the likelihood functions. The threshold
method does not need any model input.

The Bayesian method outperforms the Maximum Likelihood method. This
can also be explained by wrong assumptions. In the Maximum Likelihood
method one assumes that the state of the neighbouring atoms are known. If
the detection error is high it is quite probable that the states which are as-
sumed for the neighbouring atoms is wrong. The Bayesian method does not
assume that the neighbouring states are known. Therefore wrongly detected
neighbouring atoms cannot have any effect.

One can additionally see that the Maximum Likelihood method gives better
results for bad resolutions if the atoms are assumed to be dark in the be-
ginning. It seems like it is worse assuming crosstalk of a neighbouring atom
when there is no than assuming no crosstalk when there is.

For bad resolution there is no difference between the detection error for the
data sets with an atomic spacing of 10 pixels and those with a spacing of 20
pixels. The noise is increased by using more pixels but the cross talk is the
dominant error source and therefore the detection error does not change sig-
nificantly. Surprisingly, this is not true for the Maximum Likelihood method
with the starting condition that all atoms are bright and R = 1.

For good resolutions the detection error is lower for an atomic distance of 10
pixels. The limit of good resolution in this context depend on the method.
Using the threshold method and the Bayesian analysis this limit seems to be
at around R = 1. For the Maximum Likelihood method this limit is lower.
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Figure 6.2: Simulated multi atom detection error versus the resolution for
an atomic spacing of 10 and 20 for all four analysis methods. Top: The
comparison of all analysis methods for a a = 10 pixels (left) and a = 20 pixels
(right). Underneath: The comparison of the of the atomic distances for the
threshold method (middle left), the Bayesian analysis (middle right) as well
as the Maximum Likelihood method with starting condition all atoms bright
(bottom left) ans dark (bottom right). In all plots the statistical error are
given but are too small to be seen.



Chapter 7

Conclusion and Outlook

This thesis can be divided in two different parts. In the first part the I de-
scribed a scheme how to compress an atomic ensemble in a standing wave
dipole trap. For our experimental parameters we find that around 40 % of
the loaded atoms could be positioned within 10 lattice sites of the centre of
the trap. The measurements agrees with a simulation and a calculation in
harmonic approximation.

For Raman cooled atoms the theory overestimates the experimentally achiev-
able compression which could be explained by a breakdown of the classical
calculation close to the motional ground state.

In the future further improvements could be achieved by implementing quan-
tum optimal control ramps for the compression sequence. Experimentally the
recently upgraded the laser power for the dipole trap could also be used to
further enhance the compression sequence. Furthermore, additional optical
potentials could be applied for a better compression efficiency.

The second part of my thesis is concerned with the realization of simulta-
neous non-destructive state detection of neutral atoms in the optical dipole
trap. A detailed theoretical model of the imaging process, including the im-
perfections of an emCCD camera, is developed and applied to optimize the
state detection.

At an atom survival of 98 % we achieve a state detection error of 3.6 % for
individually resolved atoms. By using Bayesian strategies to for the optimal
usage of the spatial information the state detection error was further lowered
to 2.9%.

Bayesian analysis was further applied for the state detection of groups of
atoms that cannot be faithfully resolved. Finally, possible strategies for the
treatment of arbitrarily large atomic samples with significantly overlapping
fluorescence signals have been explored.

Future work could investigate the computational performance of the various
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algorithms implemented in this work. Timing performance will be crucial in
order to apply the state detection in realtime for feedback purposes.

In the future we want to use Raman cooling to also improve the state de-
tection. The main reason for losses is that the atoms are heated out of the
trap due to a momentum kick by the repulsive dipole trap for an excited
atom. We think that this momentum kick is smaller the colder the atoms
are. Therefore Raman cooling should lead to less heating which lead to more
scattered photons.

Furthermore, in the near future the fibre based cavity will be implemented
in the setup leading to a whole new set of application for this experiment.



Appendix A

A.1 Formulae and Calculations

A.1.1 Formulae
Distribution of counts for n photons

The complete n photoelectron count distribution is given by

2(n=4)/2 c? n n 1 (c—A\o?)?

Doy = 2 (2 [y () an (2L 220

w(e) (n+1)!ﬁanp( 20) {f 2)1 1(2 2 202 )
1

+ g(c—Aaz)F(”;l)lFl (”; ’27(6—)\02)2)} (A1)

where I'(z) is the gamma function and | F} (a,b, z) is Kummer’s function of
the first kind.
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A.1.2 Calculations

Taylor expansion of the running wave potential
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A.2 Proofs

A.2.1 Proof that Bayes’ theorem lead to likelihood
functions

The likelihood that an atom is in state X under the condition that its neigh-
bours are in state u, v respectively is given by:

p(X) =[] PlalX ) (A4)
i€ROI
I will proof that Bayes’ theorem gives this besides of a normalization param-
eter with no initial knowledge using induction. The set of states (u,z,v) I
will call x for simplicity

Proof. Let €2 be the set of all possible combinations of bright and dark atoms
Base step: The first update gives

PP = Pl = s G (A5e)
P(ci|x)

> vea PlalY)

In the last step I used that no knowledge means that all combinations are
equally probable before the Bayesian analysis starts. Since the denominator
is the same for all possible combinations this is the normalisation parame-
ter. This is exactly what formula[A.4] gives for a ROI containing a single pixel.

(A.5b)

Inductive hypothesis: Suppose this statement is true for all number of pixels
in a ROI up to some k£ > 1.

Induction step: The update number k+1 then gives

P(cr|x)P(x)

PR —  P(yler, ..., rpr) = a A.6a

' Oder ) = = b V) POY) (A.60)
P(Ck+1’X)P<X’017"'7ck)
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(A.6D)
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which is besides of denominator that, again is the normalisation parameter
formula [A4]

[]

A.2.2 Proof that the update rule holds

I will proof that the update rule presented in chapter holds. Let €
be the set of all possible combinations of dark and bright atoms and 2} =
{Y" € Ys|atom i is bright} the combination in the first ROi that treat the i-th
atom to be bright. Anologoues €2y and )}, are defined in the second ROI. Let
additionally be o = (o, ..., ay) the counts in all N pixels of the first ROI
and § = (B, ..., Bn) the counts in the second ROI.

Proof. The probability for a combination X € Y is given by:

Ilijf})Qyﬂ)()

Px(a) = P(X|a) = 1
) P = T Play)

(A7)

Since there are as many combination that consider the atom bright as there
are combinations that consider it dark there is no initial bias to be either
dark or bright and we can write:

Pg(a) = > Py(a) (A.8)

Ye@

In the second ROI we do not need to begin with no initial knowledge since
we have already analysed the first ROI. Instead of equal initial probabilities
for all I set the initial probability to Pg(«)/4 for all combinations in €2, and
Pp(a)/4 for all combinations which are not in €. The factor of 4 combina-
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tion that treat the i-th atom as a bright one. Therefore the probability that
the atom is bright can be calculated via

_ PBIY)PY)
Pg(a,B) = YEZQ S PP (A.92)

ZYeQ’Q P(BY)Pp(a)

= er% P(B|X)Pg(a) + ng% P(BIX)Pp(a) (A.9D)
— Pa(a) ZY&Q’Q P(BlY) (A.90)
- Pa() Ps(8)

~ Pe(e)Ps(B) + Po(a) Po(B) (A.9d)
- PAniti D (A.9¢)

Pe(a)Ps(B) + (1 — Pa(a))(1 — Ps(B))

which can be rewritten in terms of a priori and a posteriori probabilities as

post PB (i)P]grior

P R PE (1 Pa(i)(1 - PR

(A.10)

which is exactly formula [6.6) in the case of ¢ = 2. That this formula holds
for higher values of ¢ can be shown by induction. This is trivial since only
Pg(a) has to be substituted with any initial Pp.
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