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René Reimann
aus

Bamberg in Oberfranken

Bonn 2014





Angefertigt mit Genehmigung
der Mathematisch-Naturwissenschaftlichen Fakultät
der Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Gutachter: Prof. Dr. Dieter Meschede
2. Gutachter: Prof. Dr. Stephan Schlemmer

Tag der Promotion: 05. November 2014

Erscheinungsjahr: 2014





i

Abstract

In this work the motional state of single cesium atoms strongly coupled to an
optical high-finesse cavity is controlled and manipulated by a novel Raman cooling
scheme. Furthermore, cavity-modified super- and subradiant Rayleigh scattering
of two atoms is observed and explained by collective coupling of the atoms to the
cavity mode.

We start with the description and comparison of different intra-cavity cooling
schemes that allow us to control the motional states of atoms. Cavity cooling
is experimentally and theoretically investigated for the two cases of pumping the
cavity and driving the atom. In contrast to other cooling schemes, such as EIT- or
Raman cooling, our analysis shows that we cannot use cavity cooling for efficient
ground-state preparation, but it serves as a precooling scheme for the sideband-
cooling methods. Comparing the more efficient sideband cooling techniques EIT
and Raman cooling, we find that the experimental efficiency of EIT cooling could
not be determined.

Therefore we choose a novel, easily implemented Raman cooling technique that
features an intrinsic suppression of the carrier transition. This is achieved by trap-
ping the atom at the node of a blue detuned intra-cavity standing wave dipole trap
that simultaneously acts as one field for the two-photon Raman coupling. We apply
this method to perform carrier-free Raman cooling to the two-dimensional vibra-
tional ground state and to coherently manipulate the atomic motion. The motional
state of the atom after Raman cooling is extracted by Raman spectroscopy using
a fast and non-destructive atomic state detection scheme, whereby high repetition
rates and good signal-to-noise ratios of sideband spectra are achieved.

In a last experiment we observe cooperative radiation of exactly two neutral
atoms strongly coupled to our cavity. Driving both atoms with a common laser
beam, we measure super- and subradiant Rayleigh scattering into the cavity mode
depending on the relative distance between the two atoms. Surprisingly, due to cav-
ity backaction onto the atoms, the cavity output power for superradiant scattering
by two atoms is almost equal to the single atom case. We explain these effects
quantitatively by a classical model as well as by a quantum mechanical one based
on Dicke states. Furthermore, information on the relative phases of the light fields
at the atom positions are extracted, and the carrier-free Raman cooling scheme is
applied to reduce the jump rate between super- and subradiant configurations.

Parts of this thesis have been published in the following articles:

� R. Reimann, W. Alt, T. Kampschulte, T. Macha, L. Ratschbacher, N. Thau,
S. Yoon, D. Meschede, Cavity-Modified Super- and Subradiant Rayleigh Scat-
tering of Two Atoms, (2014), arXiv:1408.5874

� R. Reimann, W. Alt, T. Macha, D. Meschede, N. Thau, S. Yoon,
L. Ratschbacher, Carrier-free Raman manipulation of trapped neutral atoms,
(2014), arXiv:1406.2047





Contents

Introduction 1

1 Experimental Setup 3
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 An Improved Conveyor Belt Drive . . . . . . . . . . . . . . . . . . . 6

1.2.1 Characterization . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Heating and Atom Lifetime . . . . . . . . . . . . . . . . . . 10

1.3 A Stable Laser Source: The Interference Filter Laser . . . . . . . . 11
1.4 An Optimized High-Finesse Cavity Lock . . . . . . . . . . . . . . . 15

1.4.1 Influence of Parasitic Amplitude Modulation . . . . . . . . . 16
1.4.2 The Final Cavity-Lock Setup . . . . . . . . . . . . . . . . . 17

1.5 Motional Harmonic Oscillator Quantities . . . . . . . . . . . . . . . 18

2 The Art of Cooling Inside an Optical Cavity 21
2.1 Cavity Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 Pumping the cavity . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.2 Transversally driving the atom . . . . . . . . . . . . . . . . . 22
2.1.3 Experimental Realizations . . . . . . . . . . . . . . . . . . . 23

2.2 Ground-State Cooling of Atoms Inside a Cavity . . . . . . . . . . . 24
2.2.1 Raman Cooling . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.2 EIT cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Comparison of Intra-Cavity Cooling Schemes . . . . . . . . . . . . . 28

3 Non-Destructive Hyperfine State Detection Inside an Optical Cavity 33
3.1 Comparison to Other State-Detection Schemes . . . . . . . . . . . . 33
3.2 Non-Destructive State-Detection Scheme . . . . . . . . . . . . . . . 34
3.3 Variable Threshold Method . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Maximum Likelihood Method . . . . . . . . . . . . . . . . . . . . . 39
3.5 Limits of the Cavity-Enhanced Detection Scheme . . . . . . . . . . 41

4 Carrier-Free Raman Manipulation of Atoms in an Optical Cavity 43
4.1 Raman Laser Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Raman Sideband Transitions and Raman cooling . . . . . . . . . . 44

4.2.1 Geometrical Situation . . . . . . . . . . . . . . . . . . . . . 44
4.2.2 Motional State Coupling and Carrier Suppression . . . . . . 45
4.2.3 2D Temperature Model . . . . . . . . . . . . . . . . . . . . . 47
4.2.4 Sideband Spectroscopy and Cooling . . . . . . . . . . . . . . 49



iv Contents

4.2.5 Intra-Cavity Heating Rate and Rabi Oscillations . . . . . . . 52
4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Cavity-Modified Super- and Subradiant Rayleigh scattering 55
5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Classical Description of Driven Atoms Inside a Cavity . . . . . . . . 57

5.2.1 Driving One Atom Inside a Cavity . . . . . . . . . . . . . . 57
5.2.2 Driving N Atoms Inside a Cavity . . . . . . . . . . . . . . . 61
5.2.3 The Influence of Strong Cavity Backaction . . . . . . . . . . 63

5.3 Super- and Subradiant Two-Atom States . . . . . . . . . . . . . . . 63
5.3.1 Jump Contrast and Relative Driving Phase . . . . . . . . . . 64
5.3.2 Extracting the Atom-Cavity Coupling Strength . . . . . . . 66
5.3.3 Jump Dynamics and Cooling . . . . . . . . . . . . . . . . . 66

5.4 Quantum Theory of Two-Atom Dicke States . . . . . . . . . . . . . 67
5.4.1 Ideal Loss-Free Situation . . . . . . . . . . . . . . . . . . . . 67
5.4.2 Master Equation Approach . . . . . . . . . . . . . . . . . . . 69

5.5 Limits of the Classical Description . . . . . . . . . . . . . . . . . . . 70

6 Conclusion and Outlook 73
6.1 Motional Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2 Cooperative Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Bibliography 75



Introduction

It is commonly believed that the usage of tools takes a central role in the evolu-
tion of mankind. Starting about 2.3 million years ago with the Homo habilis the
development towards us, the Homo sapiens, was accompanied by the invention of
more and more complex and versatile tools. As the Homo habilis tried to control
his macroscopic environment by using stone tools, we have come a long way to be
able to control a world that was invisible to him: the world of single atoms and
single photons [1].

Nowadays, we can enter this world via the route of cavity quantum electrodynam-
ics (CQED) where single atoms interact with a single quantized cavity mode [2,3].
Besides the fascinating experimental realization of the for fundamental research
important toy model “Single atoms and single photons in a box”, the modern per-
spective is to fully control light-matter interaction at the quantum level, e.g. in
applications such as quantum memories [4, 5], single photon sources [6–8] or sin-
gle photon transistors [9]. Atom-cavity systems and their variants are therefore
regarded as promising building blocks for the implementation of quantum informa-
tion protocols [10] or the creation of quantum networks [11,12].

Crucial to many of these experiments is the capability to efficiently control the
motional degree of freedom of the atoms. In order to localize and prepare neutral
atoms with high probability in their motional ground states two different approaches
exist. Evaporative cooling of large atomic ensembles has been the established route
towards ultracold temperatures in free space [13] and also in cavities [14]. The
exact atom number, however, is not controllable in these experiments. .

For a smaller number of atoms various cooling schemes like cavity cooling ap-
proaches [15], EIT [16]- or different Raman [17]-sideband cooling schemes have
emerged. Here, for the first time these schemes are quantitatively compared to
each other in experiments with exactly one single atom coupled to the cavity.

Using a Raman scheme strongly confined neutral atoms can directly be laser
cooled into the vibrational ground state of their respective conservative trapping
potentials, as has recently been shown with single neutral atoms in optical tweez-
ers [18, 19] and cavities [20, 21].

In contrast to this, I describe the realization of a novel enhanced Raman control
scheme for neutral atoms strongly coupled to an optical cavity that features an
intrinsic suppression of the two-photon carrier transition, but retains the sidebands
which couple to the external degrees of freedom of the trapped atoms. This method
is applied to perform Raman cooling to the 2D vibrational ground state and to
coherently manipulate the atomic motion.



2 Introduction

All cooling experiments mentioned so far are performed with a single atom inside
the cavity. We know that a single human being can be described quite well from
a biological point of view. As a second human being is added things change.
The humans start to interact, and a new theory describing the system dynamics
has to be developed: Sociology that is fundamentally different from biology and
enables us to understand the interaction of the two humans. The fact that a system
can significantly change as new parts are added is generally called emergence and
described by a famous paper of Philip W. Anderson titled “More Is Different” [22].

With the step from one to two atoms coupled to a cavity we realize a toy model
of emergence in physical systems: One externally driven atom positioned at an
antinode of the intra-cavity field does not change its light emission into the cavity
mode as it hops from one to the next antinode of the field. The situation drastically
changes as a second atom is added to another antinode of the field: Now the two
atoms “talk” to each other via the cavity field and – dependent on the relative two-
atom distance – constructive or destructive interference between the emitted light
fields leads to super- or subradiant Rayleigh scattering into the cavity, respectively.

For large atomic ensembles similar super- and subradiant phenomena [23, 24] as
well as cooling and self-organization [15,25] have been observed in cavities.

With exactly two neutral atoms strongly coupled to a cavity field our experiment
realizes the most elementary situation where cooperative radiation and additionally
cavity backaction become relevant. The latter explains our observation that the
cavity output power for superradiant scattering by two atoms is almost equal to
the single-atom case.

We adapt an intuitive classical model form [26] to describe the observed effects
and compare this model to a quantum mechanical approach, which – reflecting the
system symmetry – clearly shows the connection of our research to Dicke dynam-
ics [27].

Finally we apply the carrier-free Raman cooling method, which we developed
with a single atom, to two driven atoms inside the cavity and are thereby able to
observe stable relative atom distances for extended periods of time.



1 Experimental Setup

Parts of the experimental setup in our laboratory serve their purpose for more than
a decade. Our research began with controlling single cesium atoms [28–31] and
evolved to the realization of a cavity quantum electrodynamics (CQED) system [32–
35]. Within this chapter I will concentrate on the main working principles of our
experimental apparatus, with an emphasis on the technical improvements I was
directly involved in during my thesis work.

1.1 Overview
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Figure 1.1: Experimental cavity setup (not to scale). (a) 3D drawing (with kind
permission of T. Kampschulte [35]) and (b) 2D schematics of the setup. The
atoms inside the cavity are trapped in the antinodes of the red detuned dipole
trap and in the nodes of the blue detuned dipole trap which is formed by the
intra-cavity lock laser. Note that the coordinate system introduced here will
be used throughout the thesis.

The heart of the experimental apparatus is shown in Fig. 1.1. It consists of a
Fabry-Pérot cavity and gaseous neutral 133Cs atoms, and is situated in an ultra-high
vacuum (UHV, pressure < 10−10 mbar), which is enclosed by a glass cell [29].



4 Experimental Setup

Parameter Symbol Value

Mirror spacing `0 158.5µm
Cavity mode waist w0,c 23.15µm
Free spectral range ωFSR = πc/`0 2π · 946 GHz
Mirror field transmission t 77(6) · 10−5

Mirror field absorption a 141(7) · 10−5

Mirror field reflectivity r =
√

1− t2 − a2 0.9999986(1)
Cavity field decay rate κ = (1− r2)c/(2`0) 2π · 0.40(3) MHz
Cavity line width (intensity) ωFWHM = 2κ 2π · 0.80(4) MHz
Finesse F = πr/(1− r2) 1.2(1) · 106

Birefringent splitting ∆ωbr 2π · 3.9 MHz
Coupling strength g0 2π · 12.7 MHz
Atomic dipole decay rate γ = Γ/2 2π · 2.6 MHz
Wavelength D2-line λ0 852.3 nm
Atomic mass M 132.9 u
Single-atom cooperativity C1 = g2

0/(2κγ) 78
Detection efficiency
(see Eq. 1.36 in [34])

ηdet = ηoptηfiber×
×ηVHGηSPCM

0.25(3)

Trap frequencies inside cavity 2π · {νx, νy, νz} ≈ 2π · {2, 400, 200} kHz
Red detuned dipole trap waist
at the cavity position

wrDT 35(3)µm

Table 1.1: Important system parameters [34–37]. The cavity supports two orthog-
onal linear polarization modes with frequencies ωx and ωy. The polarizations
of these modes are parallel to the x- and y-axis (see Fig. 1.1), respectively.
The birefringent splitting is defined by ∆ωbr = ωy − ωx [32]. Meaning, if an
unpolarized probe beam is coupled into the ωx-mode, it would populate the
ωy-mode after increasing its frequency by ∆ωbr. The coupling strength g0 is
calculated for the |F = 4,mF = 4〉 ↔ |F ′ = 5,mF ′ = 5〉 transition and
1/
√

2(σ+ + σ−)-polarized light.

In our experiments up to ten atoms are captured from background gas by a high-
gradient magneto-optical trap (MOT). The loading of the MOT is repeated until
the fluorescence of a desired atom number N is detected [29]. Subsequently these
N atoms are transferred into the red standing-wave trap at λrDT = 1030 nm [33],
where an intensified CCD (ICCD) camera (Roper Scientific, PI-MAX:1K) is used
to determine their positions by fluorescence imaging [29]. Using the red dipole trap
as a conveyor belt (see section 1.2) the atoms are deterministically transported
into an orthogonal standing wave, which is formed by the blue detuned locking
light (λbDT = 845.5 nm) of an optical high-finesse Fabry-Pérot cavity [32, 33], see
Fig. 1.1(a).

As shown in Fig. 1.1(b) the atoms are trapped along all directions in the intensity
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maxima of the red detuned dipole trap. Along the x-direction the atoms are weakly
confined by the Gaussian profile of the red dipole trap, whereas tight confinement
along the y-direction is guaranteed by the standing wave pattern of the trap. Tight
confinement along the z-direction is created by the repulsive force of the intensity
maxima of the standing wave, which is formed by the blue intra-cavity lock laser.
Typical trap frequencies along all directions are shown in table 1.1.

As sketched in Fig. 1.1(b) the frequencies of the lock and the probe beam are
different, leading to a beating between the two standing waves. The distance be-
tween positions with equal phase of the two standing waves is called beat length
and given with [34]

dbeat =
πc

|ωlock − ωprobe|
. (1.1)

The longer the beat length, the less significant is the change of the position-
dependent atom-cavity coupling g if an atom hops from one to the next lattice site
of the lock potential. Lock and probe laser frequencies are both equal to a cavity
resonance and therefore multiples of the cavity free spectral range ωFSR. Therefore
the beat length in Eq. (1.1) becomes `0/n where n is the difference between lock
and probe frequencies measured in free spectral ranges of the cavity.

To generate light near resonant to the cesium D2-line transitions we utilize diode
lasers. The lasers are used for multiple purposes [33] by splitting the beams and
shifting the initially emitted frequencies with acousto-optic modulators (AOMs).
All experimentally important diode lasers have been upgraded to stable and reliable
interference filter lasers (IFLs, see section 1.3).

As the near-resonant laser light is interacting with the atom-cavity system, pho-
tons eventually leak out of the lower cavity mirror. These photons are separated
from the lock laser light [34] and detected by a single photon counting module
(SPCM, Perkin Elmer SPCM-AQRH-13). The SPCM has a time resolution of 50 ns
and a dark count rate of about 0.5 ms−1. Using the values in table 1.1, intra-cavity
photons are detected with an overall efficiency of

ηoa =
t2

t2 + a2
ηdet ≈ 6%, (1.2)

where the losses due to photon absorption within the lower cavity mirror coating
are included.

Given the parameters summarized in table 1.1, the experimental apparatus al-
lows us to enter the regime of strong coupling which is equivalent to a single-atom
cooperativity C1 � 1. Our coherent atom-cavity energy exchange rate g is signifi-
cantly bigger than both, the atomic loss channel (γ) and the cavity loss channel (κ).
Compared to conventional free space light-matter interaction, the qualitatively new
regime of CQED is entered [10]. In this regime the number of atoms N0 ≈ 1/C1

needed to have a significant effect on the intra-cavity field and the number of pho-
tons n0 ≈ (γ/g)2 that is needed to saturate atoms inside the cavity are both smaller
than unity.
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Furthermore, our system is close to the perfect cavity limit (κ = 0) since κ �
(g0, γ), which leads to significant cavity-backaction effects, described in chapter 5.

1.2 An Improved Conveyor Belt Drive

The afore mentioned optical conveyor belt consists of a standing wave formed by
two counterpropagating laser beams, each of which has a power of about 2 W and a
wavelength λrDT close to 1030 nm. Details on the working principle of the conveyor
belt are described in references [28–30]. In short, atoms, which are trapped in the
antinodes of the standing wave, are moved with velocity v = λrDT∆ν/2 along the
conveyor belt axis, where ∆ν is the frequency detuning between the two counter-
propagating laser beams. Typical velocities of 5 m/s are reached on the millisecond
scale, corresponding to accelerations on the order of 104 m/s2. In our experiment
the atoms are transported with sub-micrometer precision from the MOT position
over a distance of about 4 mm into the center of the cavity mode.

Technically the transport is implemented by changing the frequencies of each
of the two counterpropagating laser beams with a radio frequency driven acousto-
optic modulator (AOM) in the double-pass configuration. Two main requirements
have to be fulfilled: First, in order to achieve sub-micrometer precision, these radio
frequencies and their relative phase have to be well controlled on a microsecond
timescale. Second, the relative phase noise between the two applied frequencies
needs to be minimal to avoid resonant heating the atoms by shaking the standing-
wave lattice [38].

1.2.1 Characterization

The above mentioned requirements can be met by using a dual digital frequency
synthesizer (DDFS) as drive.

Compared to our former conveyor belt drive (APE Berlin, model DFD 100)
the current DDFS is a state-of-the-art device which is more versatile (arbitrary
frequency ramps can be programmed) and has a lower phase noise.

DDFS Hardware

The dual digital frequency synthesizer (DDFS) evaluation board from Analog De-
vices is composed of two AD9954 direct digital synthesizer (DDS) chips. We use
a mbed microcontroller (ARM mbed NXP LPCL768) to communicate with the
DDFS.

The evaluation board has two frequency output channels with a frequency range
from DC to 160 MHz, each. Two individual DDS chips (DDS1: Ch1 and DDS2:
Ch2) enable the user to change the frequencies of these two output channels in
an independent but phase-coherent way. Both chips have an identical hardware
configuration. Fig. 1.2 shows the circuit layout for one DDS chip. The DDS chip
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Figure 1.2: Hardware layout of the AD9954, adapted from [39]. The meaning of
the encircled numbers is given in the text.

requires an external reference clock running at a maximal and optimal frequency
of 400 MHz, which is applied at Pos. 1 in Fig 1.2. A maximum and optimal peak-
to-peak voltage of 0.5 V should be set at Pos. 2 [39], which corresponds to a power
of 4 dBm at Pos. 1. The output power of the DDS within a range from 0 W to
−5 dBm is delivered at Pos. 3. Pos. 4 marks a higher order low-pass filter with its
−3 dBm cutoff frequency at 175 MHz. Up to 165 MHz the filter is completely flat.

Phase Noise Measurement

In order to quantify the experimentally relevant phase noise of the DDFS, the device
is operated at the optimal reference-clock conditions and all external noise sources,
which could be detrimental to the measurement, are eliminated. Measuring the
DDFS output signals at Ch1 and Ch2 one faces the fact that – even though both
channels are set to the exact same frequency and phase, – the signals are slightly
different. This noise is arising from the digitalization and sampling of frequencies
and is called phase noise.

To quantify this relative phase noise between Ch1 and Ch2 it is common prac-
tice [40] to mix the two channels as depicted in Fig. 1.3. Using a sensitive mixer
– phase detector – is advantageous. To match the specifications of the phase de-
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Figure 1.3: Setup for detecting the phase-noise signal. DDS1 and DDS2 give out
high frequency signals (≈ 100 MHz) at Ch1 and Ch2, respectively. The pre-
amplifiers ZFL500HLN+ (Mini-Circuits) amplify the signals to 7 dBm at the
RPD1 phase-detector (Mini-Circuits) inputs. After the phase detector the
signal is filtered by a low-pass filter (3 dB cutoff frequency at 10 MHz) and
measured.

tector, the input impedance of the low-pass filter in the setup is designed to be
500 Ω. Further the output powers of Ch1 and Ch2 are set to −12 dBm by using
on-chip amplitude scaling [39]. The filtered signal is recorded with a digital oscil-
loscope (Agilent DSO-X 2004A, 1 MΩ input resistance, bandwidth = 20 MHz ) or
a spectrum analyzer (HP 3589A, 1 MΩ input resistance).

To calibrate the required parameters for a phase noise measurement, the channels
Ch1 and Ch2 are operated at different but constant frequencies. The resulting signal
oscillates with a frequency1 ∆ν is measured with the oscilloscope and described by

V [t] = V0 · sin[2π∆ν · t+ ∆ϕ]. (1.3)

The value V0 = 879(2) mV depends on the mixer and becomes important for nor-
malization.

After the measurement of V0 the frequency difference between the channels ∆ν
is set to 0. Now the signal at the measurement device is placed close to a zero-
crossing, by adjusting the relative phase ∆ϕ between the Ch1 and Ch2 signals
(e.g. by changing the cable lengths before the mixer). Here and for small noise
signals (Vrms � V0) Eq. (1.3) behaves linear and the phase noise (units: rad) is
proportional to the measured noise signal:

∆φrms = Vrms/V0. (1.4)

The standard deviation of Vrms can be measured with the oscilloscope, or for spectral
resolution, with the spectrum analyzer, as described below.

Quantitative noise measurement

For a quantitative phase noise characterization the spectrum analyzer is used with
the setup shown in Fig. 1.3 to measure the root-mean-square noise voltage V

(m)
rms

(units: V/
√

Hz).

1Typical used values are ν(Ch1) = 100 MHz, ν(Ch2) = 99 MHz, ∆ν = 1 MHz.
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Figure 1.4: Setups for reference measurements. (a) Reference setup to normal-
ize the measurements done with the spectrum analyzer in the configura-
tion of Fig. 1.3). (b) Setup used to quantify the influence of the amplifier
ZFL500HLN+.

To correct for the noise that couples in via ground loops or due to other im-
perfections of the setup (mixer, amplifiers), reference measurements are needed.
Fig. 1.4(a) shows the setup used to quantify the influence of the mixer and the
amplifiers. Fig. 1.4(b) sketches how to check the sole influence of the amplifier.
Compared to Fig. 1.4(a) there was no measurable difference. The influence of the
amplifiers is therefore negligible and both setups can be used for the reference
measurement (V

(r)
rms).

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 1.5: Noise measurement with the spectrum analyzer (details see text).
The well pronounced peak at 1 MHz is an artifact from the DDS frequency-
generation process. Here the output frequency of Ch1 and Ch2 were set to
99 MHz. Depending on this frequency different spurious peaks at different
positions appear in the spectrum.

Figure 1.5 shows the recorded noise data: The phase noise is given by

V (p)
rms =

√(
V

(m)
rms

)2

−
(
V

(r)
rms

)2

. (1.5)
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Eq. (1.5) originates from the fact that powers have to be added linearly due to
energy conservation.

A comparison between our measurements and graphs shown in the AD9954 data
sheet shows that our hardware is well within the claimed specifications.

1.2.2 Heating and Atom Lifetime

0.0 0.2 0.4 0.6 0.8 1.0
trap frequency νy (MHz)

10−8

10−6

10−4

10−2

100

〈Ė
∆
x
〉(

K
/s

)

Figure 1.6: Calculated mean heating rate as function of axial trap frequency νy for
Ch1 and Ch2 at 99 MHz.

The data in Fig. 1.5 allows one to calculate the expected heating rate of atoms
that are trapped within the previously introduced conveyor belt with wavelength
λrDT = 1030 nm.

Phase noise in the frequency band [ν1, ν2] is calculated with Eq. (1.5) and
Eq. (1.4) and reads

∆φrms =

√∫ ν2
ν1

(
V

(p)
rms[ν]

)2

dν

V0

. (1.6)

This relative phase noise is transferred to the atoms inside the dipole trap via
the AOMs and leads to an axial shaking of the dipole trap with a mean-square
amplitude of [29]

〈(∆x)2〉 =

(
∆φrms

2π/λrDT

)2

=

∫ ν2

ν1

S∆x[ν]dν. (1.7)

The power spectrum of position fluctuations S∆x[ν] is directly connected to the
heating rate the atoms experience inside the trap [38]. Combining Eqs. (1.6) and
(1.7) one finds

S∆x[ν] =

(
V

(p)
rms[ν]

V0 · 2π/λrDT

)2

. (1.8)
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In the harmonic trap limit the mean heating rate for small excitations is given
by [38]

〈Ė∆x[ν0]〉 = 4π4m · ν4
0S∆x[ν0]/kB, (1.9)

with M being the mass of a cesium atom (see table 1.1), νy the axial trap frequency,
and kB the Boltzmann constant. Based on the measured phase noise, the calculated
heating rate as a function of the axial trap frequency is shown in Fig. 1.6.

Our axial trap frequency at the MOT position is ν
(MOT)
z ≈ 300 kHz. With a trap

depth of about 1 mK the atomic survival time is estimated to be on the ten second
scale.

To benchmark the DDFS drive, an atom-survival measurement at the MOT
position is performed, see Fig. 1.7. After a certain holding time inside the static
conveyor belt trap, the fraction of atoms still being trapped is measured. For
comparison the first data set is recorded with the DDFS driving the conveyor belt
AOMs (blue circles) while a second set is recorded with a common drive (black
squares). In the later case no relative phase noise is present and the lifetime (half-
life) of about 60 s is limited by collisions with the background gas. In the first
case the lifetime of about 30 s is limited due to the resonant phase-noise heating.
This result is in good agreement with the estimation above, based on Fig. 1.6 and
is an improvement of one order of magnitude compared to the old conveyor belt
drive [29].

1.3 A Stable Laser Source: The Interference Filter
Laser

Diode lasers are the workhorses of quantum optic experiments. In our laboratory
four diode lasers are operated simultaneously. These lasers have to meet two main
requirements. First, it is required to lock the laser on a sub-MHz scale. Second, and
most important for the daily work, the reliability and stability of the system is cru-
cial. To improve the uptime of the experiment we upgraded our experiment from
Littrow lasers to interference-filter-stabilized diode lasers (IFL). A Littrow laser
stabilizes the frequency of the laser by optical feedback from an angle-sensitive
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grating [41], while the frequency selection of the IFL is accomplished by a narrow-
band (. 1 nm) interference filter and a rather angle-insensitive outcoupling mirror.
Fig. 1.8(a) shows the design of our IFLs2, which is based on the original design of
Peter Rosenbusch’s group [42]. The light, emitted by the laser diode, is collimated
by lens 1, passes the interference filter and is focused onto the outcoupling mirror
by lens 2. This cat’s-eye configuration, and the fact that all optical components are
mounted on a solid aluminum block, ensure a good long term mechanical stability
of the laser resonator and a high insensitivity against acoustical noise. Lens 3 col-
limates the output laser beam. The rather long resonator (about 12 cm between
laser diode and outcoupling mirror) leads to a measured linewidth on the ten kHz
scale.

Another important characteristic of the IFL is its response to frequency modula-
tion, applied to the laser diodes driving current. Practically, feeding an additional

2Our IFL design has mainly been developed and optimized by Andrea Alberti, Wolfgang Alt,
Dietmar Haubrich and Carsten Robens.
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Figure 1.8: (a) To scale top view of the interference filter laser (IFL) with the out-
coupling mirror mounted on a piezoelectric tube (not shown). The drawing
is adapted from an image by Ricardo Gómez. (b) Simplified setup for mea-
suring the IFL frequency-modulation transfer function. The two arms of the
Michelson interferometer are adjusted to be power balanced.
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alternating current into the DC powered laser diode is used for fast frequency sta-
bilization (“current locking”) and for modulating sidebands onto the lasers output
(see section 1.4).

Fig. 1.8(b) illustrates the setup for measuring the frequency-modulation transfer
function of the IFL that is powered with a constant current of I0 ≈ 100 mA and
operated at about 852 nm. The laser diode current is modulated by the frequency
sweep of a network analyzer (HP 3589A). A constant power of −50 dBm is applied,
corresponding to a root-mean-square current of Imod = 14µA at the laser diode.
This small modulation amplitude of the frequency sweep assures that the frequency
of the laser light is modulated while the optical output power stays constant to good
approximation.

The laser light is sent through a Michelson interferometer with a fixed arm length
difference ∆L = 26.0(2) cm. The Michelson interferometer converts the frequency
modulation of the light to a power modulation that is detected by a fast photo-
diode (Thorlabs PDA10A-EC, bandwidth = 150 MHz). The photo diode signal is
split in two parts. In order to block direct currents, one part is high pass filtered
(3.2 kHz cutoff frequency) and measured with the network analyzer. The network
analyzer averages over ten full sweeps and transfers the measured spectra via a
GPIB-interface to a computer. The second part is measured with an oscilloscope
and fed into a self-built lock box. To avoid open-end reflections from the cables
ending at the oscilloscope (1 MΩ input impedance) and the lock box (100 kΩ input
impedance) a 1 kΩ resistor is added.

The output signal of the lock box is used to either scan or stabilize (lock) the IFL
output frequency. The lock is realized via a slow feedback (bandwidth . 100 Hz)
to the piezoelectric tube, which is controlling the IFL outcoupling mirror position.
Such the fast frequency modulation of the laser is not affected by the lock.

For measuring the voltage-to-frequency conversion of the interferometer, the
sweep out of the network analyzer is switched off and the lock box is used in
the scanning mode with a scanning frequency of about 100 Hz. At this scan-
ning frequency the photodiode output is connected to an impedance much big-
ger than 50 Ω and recorded with the oscilloscope. The recorded signal is fit with
V [t] = off + V0 sin[2πν/ν0 + φ], where ν is the laser frequency and the offset off
and the phase φ are constants. The Michelson interferometer fringe distance in
frequency space is given by ν0 = c/(2∆L) = 577(4) MHz. Knowing the volt-
age amplitude V0 = 3.65(5) V from the fit, one calculates the root-mean-square
voltage-to-frequency conversion with

νmod[Vrms] =
ν0

2πV0

Vrms. (1.10)

This relation holds for side-of-fringe measurements where the frequency sensitivity
is maximal and sin[2πν/ν0 + φ] ≈ 2πν/ν0.

We proceed with measuring the IFL’s current-frequency response function by
weakly locking the system to the side of a fringe (see cross on oscilloscope screen
in Fig. 1.8(b)). In this measurement we use the network analyzer to sweep the
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Figure 1.9: Measured frequency-modulation transfer function of a IFL. (a) shows
the laser’s frequency amplitude response to current modulation, as the output
frequency f of the network analyzer is swept. (b) shows the phase answer
(blue) of the laser diode, which is calculated from the inset. The original data
(black) is shown in the inset, after a standard phase unwrapping algorithm
has been applied to it. The red line shows the expected influence of additional
path lengths (see text).

frequency of the modulation current and to record power (PdBm) and phase spectra.
Concerning the power spectra and their voltage-to-frequency conversion one has to
note that the photodiode output is now matched by the R0 = 50 Ω input impedance
of the network analyzer for all relevant frequencies. This reduces the output voltage
of the photodiode by a factor of two which enters Eq. (1.10) by V0 → V0/2. With
the conversion of PdBm to Vrms and with Eq. (1.10) we write the frequency-current
dependence of the laser diode as

∆ν

∆I
=
νmod

Imod

=
ν0

πV0Imod

√
R0P010PdBm/10, (1.11)

where P0 = 1 mW. Fig. 1.9(a) shows the frequency change of the laser for a
certain modulation current, as the frequency f of this modulation is varied. For
lower frequencies an AC coupling capacitor inside the IFL casing acts as high-
pass filter. For higher modulation frequencies f & 10 MHz the laser diode cannot
follow the fast modulation current, due to an interplay between counteracting fast
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current and slower current induced temperature effects inside the laser diode [43].
The maximum measured current modulation capability of about 9 GHz/mA around
20 kHz is an order of magnitude larger than recorded values of comparable IFLs
under DC variation. This – for unclear reasons – is in contrast to the expectation
that these values should be comparable.

Fig. 1.9(b) shows the phase answer of the laser diode. The inset shows the
measured data, after unwrapping the phase, in black. To account for additional
path lengths L of coaxial cables and optical fibres their phase delay (red curve) is
calculated. For our setup L is estimated to be 15 m and a group velocity of 0.7
times the speed of light is assumed inside cables and fibers. Subtracting the red
line from the black data leads to a good estimate of the IFL phase response, shown
in blue. As ∆ν/∆I in (a) has its flat maximum, neither the described high-pass
filter for coupling the current to the diode, nor the low-pass like behavior of the
diode itself contribute, which leads to a phase φ = 0 in this region. At φ = 0 the
laser diode is modulated most efficiently. Therefore this point is taken as reference
for finding the maximum bandwidth for a current feedback applied to the laser.

At the maximum current feedback bandwidth of about 8 MHz the phase has
changed to −π. At this frequency also ∆ν/∆I has asympotically reached a value of
less than 1 GHz/mA. The maximum bandwidth of a system shrinks with additional
path lengths such as cables, fibers or free space beam distances, inducing a delay
of the signal. Especially for fast feedback with a high bandwidth the path lengths
should be kept as short as possible. An example for such a fast feedback system is
the optical phase lock loop described in section 4.1.

The results from this section can be used for estimating the performance of an IFL
in a negative feedback loop that acts back on the laser via the current. The specific
laser, which frequency-modulation transfer function has been described within this
section, is now used as lock laser (see following section). All IFLs in our laboratory
show stable long term operation: no relocking of the lasers over several days is
necessary.

1.4 An Optimized High-Finesse Cavity Lock

The technically most advanced piece of our experimental apparatus is the frequency
stabilization (lock) of the high-finesse cavity. Given the cavity parameters shown in
table 1.1, one finds that the needed frequency stabilization of ∼ κ/10 is equivalent
to a length stabilization on the order of ∆`0 ∼ 10 fm [35]. The cavity length `0 ≈
160µm is stabilized with a feedback loop acting on shear-piezoelectric transducers,
glued to the cavity mirror substrates [32]. We use the Pound-Drever-Hall (PDH)
method [44, 45] to lock the cavity to a frequency-stabilized laser (lock laser). Our
specific implementation is described in references [29, 32]. The details of the lock
have continuously been improved, with the last major modification – a cross-lock
of the lock laser back onto the cavity – explained in [35].

The PDH method requires the light of the lock laser to be phase modulated with
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a frequency ωLO � κ. The phase-modulated light is partially reflected back from
the cavity, detected and processed with analog electronics, whereby an error signal
with a steep slope is produced; for details see [29].

We used to imprint the phase modulation (PM) directly onto a laser in Littrow
configuration [41] by modulating the laser diode current. However, to achieve better
long-term stability the laser was exchanged by an IFL, introduced in section 1.3.
The IFL current has to be modulated more strongly at ωLO ≈ 2π ·40 MHz than the
Littrow laser for a comparable signal-to-noise ratio of the PDH error signal. This
can be explained by the higher intrinsic frequency stability of the IFL: The optical
feedback via the long IFL resonator leads to a narrow and stable linewidth. It
therefore tends to counteract the current modulation induced change in frequency.
This is indicated by the measurement shown in Fig.1.9.

1.4.1 Influence of Parasitic Amplitude Modulation

The required strong IFL current modulation leads to an additional amplitude mod-
ulation (AM), which distorts the PDH error signal and produces an offset of the
signal. The offset is detrimental because it varies with the laser power coupled into
the cavity, which again depends on the power and pointing stability of the lock
laser beam in front of the cavity, introducing unnecessary instability.

We describe the effect of parasitic AM on the PDH error signal in a model and
start with pure phase modulation (for a good introduction on PM see [46]) of the
electric field:

EPM = E0 cos[ωct+ p sin[ωLOt+ ϕp]] =

= E0

∞∑
n=−∞

Jn[p] cos[(ωc + nωLO)t+ nϕp],
(1.12)

where E0 is the field amplitude, ωc is the carrier frequency (unmodulated optical
frequency of the lock laser) and ϕp is the phase of the PM. The dimensionless
amplitude p is called PM index and determines the strength of the modulation.
Eq. (1.12) is rewritten using the Jacobi-Anger expansion, which introduces the nth

order Bessel functions of the first kind Jn. In our case the strength of the PM
is moderate (p . 1) and the summation is truncated at n = −3 and 3, since no
higher-order sidebands are generated.

In contrast to pure PM, pure AM only generates first-order sidebands for any
AM index a and is described by

EAM = E0(1 + a sin[ωLOt+ ϕa]) cos[ωct] =

= E0

(
cos[ωct] +

a

2
(sin[(ωc + ωLO)t+ ϕa]− sin[(ωc − ωLO)t− ϕa])

)
,

(1.13)

where standard trigonometric relations are used to show the second equal sign.

Using Eqs. (1.12) and (1.13), PM and AM present at the same time is written
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Figure 1.10: Calculated PDH er-
ror signals (blue) and corre-
sponding cavity transmissions
(black) as functions of the de-
tuning of the carrier frequency
ωc from a cavity resonance.
(a) Pure PM with p = 0.8,
a = 0. (b) Additional AM
with a = 0.1, ϕa = ϕp+0.46π.
The settings in (b) are chosen
to produce the features, which
were observed as the IFL cur-
rent was modulated with ωLO.

down as

EPM,AM = E0(1 + a sin[ωLOt+ ϕa])
3∑

n=−3

Jn[p] cos[(ωc + nωLO)t+ nϕp]. (1.14)

Applying the same trigonometric relations as above, one finds that additional AM
adds out-of-phase components to all bands n of the PM. An intuitive understanding
of parasitic AM effects on the cavity lock is therefore not easily developed.

Therefore we choose Eq. (1.14) as the input field for the cavity response functions
and calculate – as described in detail in [47] – the expected PDH error signal and
the transmitted lock laser intensity after the cavity. Fig. 1.10 illustrates these
calculations with (a) no AM, and (b) for a moderate AM (a = 1

8
p). The parameters

in (b) are chosen to match the observed phenomena for the current modulated IFL:
a distortion as well as a DC offset of the PDH error signal and an asymmetry in
the signal transmitted through the cavity.

1.4.2 The Final Cavity-Lock Setup

The described parasitic AM of the IFL reduces the stability advantages of the laser,
when using it for locking the cavity. The problem is solved by phase modulating
the lock laser light with a self-built resonant electro-optic modulator (EOM). The
resonant circuit is composed of a small air-core coil and the electro-optic crystal as
capacitor. By changing the inductance of the coil the resonance frequency of the
circuit is adjusted. Another small coil is used to inductively couple a few Watts of
radio-frequency (RF) power at ωLO into the resonant circuit. With this technique
nearly pure PM with a modulation index p . 1 is realized, leading to signals similar
to those in Fig. 1.10(a).

Furthermore, a constant trap depth and trap frequency νz need to be guaranteed
for the Raman sideband measurements in chapter 4 where motional sideband tran-
sitions along the z-axis are investigated. We meet this requirement by stabilizing
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the intra-cavity lock laser power with an additional slow negative feedback loop.
The loop with a bandwidth below 1 kHz is based on a self-built lock box. The
lock box feeds back the lock laser power after the locked cavity onto the RF power
driving an AOM that controls the optical lock laser power before the cavity.

In conclusion, the usage of the IFL leads to better long- and short-term stabil-
ity of the cavity lock. Together with the actively stabilized intra-cavity lock laser
power the machine is capable of efficiently performing Raman sideband measure-
ments: Gaining data with a high signal-to-noise ratio under stable conditions is
now possible.

1.5 Motional Harmonic Oscillator Quantities

For the Raman sideband measurements in chapter 4 and also for the cooperative
coupling of two atoms to the cavity in chapter 5 it is essential that the atoms are
trapped and cooled in standing wave potentials. These potentials are described by a
sinus or a Gaussian for the axial or radial direction, respectively. Here characteristic
motional quantities like the spatial extension of the trapped particles, the mean
motional state number m or the mean energy E, which are of use throughout this
thesis, are calculated and summarized.

If the atoms are cooled close to the bottom of the trap, a harmonic approximation
of the potential is possible. Quantum mechanically, the spatial Eigenfunctions
ψm[x] of a particle in a harmonic potential U [x] = 1/2 ·M(2π ·ν)2x2 can be written
in terms of the Hermite polynomials Hm[ξ] as

ψm[x] =
1√

2mm! ∆x0 ·
√

2π
exp

[
− x2

4∆x2
0

]
·Hm

[
x√

2 ∆x0

]
, (1.15)

with n being the atomic vibrational quantum number, M being the mass of the
trapped particle and ν being the trap frequency [48].

∆x0[ν] =
√

~/(2M · 2π · ν) (1.16)

is the natural length scale of the harmonic oscillator. For the limiting case T = 0
the atom is in its motional ground state (n = 0), which has a Gaussian probability
distribution |ψ0[x]|2 with a 1σ half width of ∆x0. The probability density of a
Gaussian distributed variable x is

ρσ[x] =
1

σ
√

2π
· exp

[
−1

2

x2

σ2

]
, (1.17)

where the probability of being within the spatial dimensions of σ is given by∫ σ
−σ ρσ[x] dx ≈ 68%.
A particle’s probability density is calculated by a Boltzmann-weighted sum over

the wave function probabilities 1/Z ·∑∞m=0 exp[−mhν/(kBT )] · |ψm[x]|2 with Z as a
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Figure 1.11: Gaussian 1σ half
width of a harmonically
trapped particle as a function
of the temperature. Tem-
perature and half width are
plotted in their natural units.
The classical half width is
a very good approximation
to the quantum mechanical
solution for kBT > hν (T in
natural units > 1).

normalization constant. This infinite sum can be evaluated by using operator rela-
tions of the annihilation and creation operators of the quantum harmonic oscillator
(see [49]). The result is a Gaussian probability density given by Eq. (1.17) with

σqm =

√
~

2M2π · ν coth

[
hν

2kBT

]
= ∆x0 ·

√
coth

[
hν

2kBT

]
. (1.18)

For the limiting case of high temperatures (kBT � hν) the problem can be
solved classically yielding a Boltzmann probability density ∝ exp[−U [x]/(kBT )]
[29,49]. Normalization leads to the probability density that is Gaussian again and
is described by Eq. (1.17) with

σcl =

√
kBT

M(2π · ν)2
. (1.19)

Fig. 1.11 shows the width of the wave packet as a function of the temperature.
For T → 0 the classical width – not knowing about the uncertainty principle –
underestimates the real width.

Practically we start all experiments described here with atoms in a dipole trap
molasses-cooled to about 30µK [35]. Our trap frequencies in table 1.1 lead to
kBT � hν. Therefore the classical approximation can be used.

Within the Raman cooling experiments described in chapter 4 ground state cool-
ing is achieved. Here the quantum mechanical description should be applied. Fur-
ther, the mean motional state number m and the mean vibrational energy E be-
come important. Using again Boltzmann-weighted sums one finds their connection
to temperature [49]:

m =
1

exp
[
hν
kBT

]
− 1

kBT�hν−−−−−→ kBT

hν

E = (m+ 1/2) · hν kBT�hν−−−−−→ kBT .

(1.20)
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For high temperatures these quantities converge to the classical cases, as expected.
For very cold temperatures the probability p0 of being in the motional ground state
is often chosen as a figure of merit [20, 21, 50]. In thermal equilibrium it is given
with

p0 = 1− exp

[
− hν

kBT

]
Eq. (1.20)

=
1

1 +m

p0≈1−→ 1−m. (1.21)



2 The Art of Cooling Inside an
Optical Cavity

The control over internal and external degrees of freedom is the key to many modern
experiments in quantum optics. The internal states of neutral atoms and ions are
manipulated by standard techniques as optical pumping for state initialization [51]
and microwave radiation or Raman beams for coherent state transfer [1]. Cooling
to the 3D motional ground state is achieved in ion experiments by various tech-
niques [52]. Ground-state cooling of trapped ions and of neutral atoms in optical
potentials has been shown two decades ago [50,53]. However, neutral atom systems
strongly coupled to an optical cavity have only very recently been cooled to the 3D
motional ground state [21]. The main difficulty in cooling atom-cavity systems lies
in the fact that the cavity blocks most of the solid angle around the atoms. This
leads to very limited optical access. Therefore the experimental implementation of
cooling schemes can be a challenging task.

In this chapter I will focus on theoretical results of different cooling approaches
for atoms coupled to an optical cavity that have been realized within this thesis.
All three realizations have in common that the atoms were tightly trapped along
the dimensions where cooling has been shown. Cavity cooling can be used for
pre-cooling the atoms before Raman and EIT cooling are applied. The latter two
are also realized in other laboratories without a cavity enclosing the atoms. Their
principles can therefore be explained by describing the cooling of tightly trapped
atoms, where the cavity adds modifications but does not change the line of thought.

2.1 Cavity Cooling

Atoms (not necessarily trapped) that are coupled to a cavity mode can be addressed
by a single near-resonant laser. For certain laser-atom (∆ = ωL − ω0) and laser-
cavity (δ = ωL−ωc) detunings cooling of the atomic motional state is observed and
referred to as cavity cooling [15].

Many theoretical proposals explain the fundamentals without considering traps
that are often confining the atoms in experiments [54–56]. Ideas from these propos-
als working in the cavity Doppler cooling regime with free atoms, however, often
remain valid for trapped atoms [57], where cooling happens in the regime of cavity
sideband cooling.

Here the two possible cases of cavity cooling are discussed. Either the near-
resonant laser drives the atom or it pumps the cavity.
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2.1.1 Pumping the cavity

In our group cavity cooling by pumping the cavity has been applied as a starting
point for various experiments [33–35] and is treated extensively in [34] with many
references therein.

In [58] an intuitive explanation for this scenario is given by drawing an analogy
to Sisyphus cooling [59]. The energies of the singly-excited two atom-cavity dressed
states depend on the atom-cavity coupling strength g and therefore on the position
of the atom in the intra-cavity standing wave that is formed by the pump light.
For properly chosen detunings one of the two dressed states is more likely to get
excited at low energies, which happens at certain positions in the standing wave
along the cavity axis. As the atom moves along the cavity axis the energy of the
excited dressed state increases. If the dressed state now decays and emits a photon,
the motional energy of the atom is reduced. Many excitation processes in an energy
valley and corresponding emission processes at higher energies lead to Sisyphus-like
cooling of the atom.

Within this thesis this mechanism is used to cool the atoms in chapter 4 in the
context of non-destructive hyperfine state detection and for initiating the system.
There we operate the probe (= pump laser) on resonance with the cavity (δ = 0) and
blue detuned from the atomic resonance (∆ ≈ 2π · 20 MHz). In this configuration
the state that is used for cooling is the cavity-like dressed state with an excitation
width of about the cavity linewidth κ. In analogy to Doppler limited cooling [59]
where the atomic linewidth γ0 limits the final temperature to T ≈ ~γ0/kB the
steady-state cooling limit in our case is given by [58]

Tz ≈ ~κ/kB. (2.1)

This equation only holds for non-trapped or weakly confined atoms.
A more rigorous model taking the presence of a deep lattice along the z-axis into

account is described in [60]. There for a good cavity (Γ� 2κ) the mean vibrational
state number in the steady state under cavity cooling is derived as

mz ≈
(

κ

2π · νz

)2

, (2.2)

implying that ground-state cooling can only be reached for κ � 2π · νz, which is
not the case for our system (cf. table 1.1).

2.1.2 Transversally driving the atom

In the experiments described in chapter 5 transversally driven trapped atoms are
strongly coupled to our cavity. The cavity cooling effects which are expected in
this situation are published by Stefano Zippilli et al. in [61, 62].

The two main results which are relevant to us are: First, the steady-state phonon
number after cavity cooling in the good cavity limit is similar to the result for
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pumping the cavity and reads

mz ≈
(

2κ

2π · νz

)2

. (2.3)

The second important result from [61] is the laser-atom detuning ∆ leading to
optimal cooling conditions as a function of the laser-cavity detuning δ and the
atom-cavity coupling g

∆opt[δ, g] =
g2 + Γκ/2

δ + 2π · νz
− 2π · νz. (2.4)

This implies that optimal cooling close to the laser-cavity resonance (δ ≈ 0) and
for a typical atom-cavity coupling g . g0 is realized for ∆opt ∼ few hundred MHz.

2.1.3 Experimental Realizations

In 1999, the Kimble group – pioneering atom-cavity experiments – realized cavity
cooling in the strong coupling regime for the first time. With driven single atoms an
atomic lifetime of a few ten ms was reported [63]. In another experiment the group
extended the lifetime to the second range utilizing a state-insensitive intra-cavity
dipole trap and both atom driving and cavity pumping [64].

Other single-atom experiments in the Rempe group followed [65], reaching a
parametric heating limited lifetime on the ten ms scale by pumping the cavity.
They were able to extend the lifetime to the 10 s scale by driving the atom inside
the cavity, leading to 3D-cooling that was possible due to an additional optical
lattice perpendicular to the cavity axis [66]. Also our team was recently able to
extend the lifetime to the 10 s scale using cavity cooling with a pumped cavity.
Fig. 2.1 shows a gallery shot with a single-atom lifetime of more than one minute.
As described in section 1.4 this progress was possible by improving the cavity lock,
thereby reducing the parametric heating rate (see section 2.3).

Recently, cavity cooling has also been applied to single trapped ions. In [67, 68]
cooling and heating rates as well as temperatures are extracted after driving an ion
inside the cavity.

Atomic ensembles in cavities are cooled collectively because the atoms interact
via intra-cavity photons. Thereby collective atomic motional modes are addressed,
which differs significantly from single-atom cooling. In this context the Vuletić
group [69] reports on very strong decelerations and cooling below the Doppler
limit. Entering the optomechanical domain in [70] the group cools a collective
atomic mode to a mean phonon occupation number m = 2. Another interesting
experiment with a Bose-Einstein condensate (BEC) inside a cavity is published
in [71]. A pumped cavity with a very small linewidth of κ = 2π · 4.5 kHz is used to
heat and cool the BEC below the atomic recoil limit.

The versatile power of cavity cooling is shown in a review on cavity optome-
chanics where cavity coupling and cooling of mesoscopic objects like cantilevers,
nanoparticles and membranes are discussed [72].
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Figure 2.1: Cavity cooling by pumping the cavity. The background colors of the
plot indicate the intra-cavity atom number. White corresponds to two, light
gray to one and dark gray to zero atoms inside the cavity, respectively. Between
50 ms and 69.1 s the measured cavity transmission is strongly suppressed since
first two atoms and then one atom couple to the cavity. The laser is pumping
the cavity on resonance (δ = 0) and is blue detuned from the F = 4 to F ′ = 5
transiton on the D2-line of cesium (∆ ≈ 2π · 20 MHz). During cooling a 1 G
magnetic field along the y-direction is applied and a repumping laser assures
that the atom is held in the F = 4 ground state manifold.

A recent review on cavity cooling, covering many of the above cited topics and
more can be found in [15].

2.2 Ground-State Cooling of Atoms Inside a Cavity

In contrast to cavity cooling, EIT (= electromagnetically induced transparency)
and Raman sideband cooling require the atom to be tightly trapped along the
cooling directions. This requirement is connected to the fact that a cooling cycle in
these two cases starts with coherently lowering the motional state number mi but
needs to be completed by an incoherent scattering event. The incoherent scattering
event should not change |mi〉 (see subsection 2.2.1 on Raman cooling). Assuming
a harmonic trapping potential (see subsection 1.5), this condition is fulfilled if the
recoil frequency ωrec = ~k2

0/(2M) is much smaller than the trap frequency 2π ·νi. In
other words: the recoil from a scattered photon with wavelength λ0 = 2π/k0 is very
unlikely to change the atomic motional state number along the cooling direction i.
This condition can also be stated by introducing the Lamb-Dicke parameter ηi

ηi =
√
ωrec/(2π · νi)

Eq. (1.16)
= k0∆x0[νi]

!� 1, (2.5)

which needs to be much smaller than unity. For our system parameters in table 1.1
the Lamb-Dicke parameters along the trap axes (see Fig. 1.1) are calculated to be
{ηx, ηy, ηz} ≈ {1, 0.07, 0.1}. Therefore EIT and Raman cooling could work along
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the cavity- and along the red dipole trap-axis but not along the weakly confined
x-axis.

Lowering the momentum of a trapped atom by a coherent two-photon process is
only possible if the momentum taken from the particle can be transferred to one of
the two laser beams. For counterpropagating laser beams with wave vectors ~k1 and
~k2 this momentum transfer becomes maximal while it vanishes for copropagating
beams. The figure of merit is the two-photon Lamb-Dicke parameter [35,73,74]

η
(tp)
i = ~ei · (~k1 − ~k2)∆x0[νi], (2.6)

where ~ei is the unit vector along the cooling direction i. For η
(tp)
i = 0 the cooling

sideband cannot be addressed and cooling is suppressed.
Finally one last condition concerning the onset of cooling has to be met. If the

atom is well-localized (better than 1/k0) along the cooling axis it is said to be in
the Lamb-Dicke regime. Within this regime higher order transitions during the
repumping process (see following subsection) are suppressed and sideband cooling
is efficient. Entering the Lamb-Dicke regime means fulfilling [75]

ηi
√

2mi + 1� 1. (2.7)

Reports on experiments with relatively hot atoms at the beginning of the sideband
cooling process stress the difficulty to reach the motional ground state [18]. In
chapter 4 we solve this problem by applying cavity cooling in a precooling stage.

All the above criteria have to be met for efficiently cooling atoms by EIT or
Raman sideband cooling with and without coupling the atoms to an optical cavity.

2.2.1 Raman Cooling

Raman sideband cooling1 is one of the most prominent cooling schemes for trapped
ions and atoms. The general scheme is reviewed in [75]. In contrast to EIT cooling,
here the cavity does not modify the cooling dynamics [17]. Therefore we can neglect
the cavity for an introduction to the scheme. Fig. 2.2 illustrates the general Raman
cooling scheme. Two lasers with frequencies ωL and ωR and Rabi frequencies ΩL

and ΩR couple the two ground states |↑〉 and |↓〉 to a common excited state |e〉. The
detunings ∆L and ∆R of the lasers are huge compared to the often power-broadened
width of the excited state (∆L,R � Γ,ΩL,R) and nearly equivalent ∆L ≈ ∆R. The
dynamics depend on the two-photon detuning δtp = ∆R − ∆L. Setting δtp to
−2πνi, 0 and 2πνi the transitions |↑,mi〉 ↔ |↓,mi + 1〉, |↑,mi〉 ↔ |↓,mi〉 and
|↑,mi〉 ↔ |↓,mi − 1〉 are addressed. These transitions are named heating sideband,
carrier and cooling sideband transition, respectively.

Fig. 2.2 shows the case of sideband cooling where the two-photon detuning
matches the trap frequency along the cooling direction i: δtp = 2π · νi. A cooling

1Within this thesis we do only discuss the case of trapped particles with motional sidebands that
can be resolved by the Raman beams. The terms “Raman cooling” and “Raman sideband
cooling” are used as synonyms.
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Figure 2.2: Illustration of Ra-
man sideband cooling. An
atom with two stable elec-
tronic ground states |↑〉 and
|↓〉 is cooled by driving the
transitions |↑,mi〉 → |↓,mi〉
on the cooling sideband, fol-
lowed by a repumping pro-
cess. For optimal cooling the
two-photon detuning is ad-
justed to δtp = 2π · νi.

cycle is started with the Raman beams coherently transferring the atomic popula-
tion from |↑,mi〉 to |↓,mi − 1〉, driving the cooling sideband. The cooling cycle is
completed by scattering repumper photons with frequency ωrep. In the Lamb-Dicke
regime (cf. Eq. (2.7)), this mainly leads to incoherent pumping from |↓,mi − 1〉 to
|↑,mi − 1〉, not changing the motional state. During the Raman cooling all three
lasers can be permanently on. The scattering rate of the repumping laser Γrep should
be on the same order of magnitude as the Raman Rabi frequency ΩLΩR/∆L [20];
pulsed Raman cooling schemes, which drive π-pulses on the cooling sideband, are
more efficient [74, 75].

The limit imposed on the minimal steady-state average phonon number af-
ter Raman cooling comes from off-resonant stimulated Raman transitions (= off-
resonantly driving transitions which are not on the cooling sideband) [74] and an
imperfect suppression of mi-changing transitions during the repumping process due
to a non-zero Lamb-Dicke factor ηi [17]. Reference [75] estimates the cooling limit
for an optimized system with

mi ≈
5

4

(
Γrep

2 · 2πνi

)2

. (2.8)

In 1995 the Wineland group first showed Raman ground-state cooling of a single
9Be+ ion in a Paul trap. In more than 90% of the cooling attempts the 3D motional
ground state was reached (p0 = 90%, see Eq. (1.21)) [74].

Shortly thereafter, the Jessen group achieved to cool neutral atoms in an optical
lattice to the 2D ground state with p0 > 95% [50]. In the Chu group ensembles of
cesium atoms were trapped in optical lattices and Raman cooled to high phase-space
densities. A modified Raman sideband cooling method was used. Instead of using
different hyperfine levels as ground states, degenerate Zeeman levels with different
motional state numbers but the same stable hyperfine level were addressed [76,77].

Recently, Raman ground-state cooling of a single atom in a tightly-focused optical
tweezer has been performed by different groups [18,19].

Neutral atoms strongly coupled to an optical cavity were first Raman cooled by
the Kimble group. A single atom in an optical cavity reached the 1D motional
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ground state along the cavity axis with a probability of p0 = 95% [20]. Refer-
ence [17] gives a detailed description of Raman transitions and Raman cooling in
the context of CQED. Finally in 2013, about 20 years after the first realization of
Raman sideband cooling, the Rempe group was able to apply the technique to cool
an atom strongly coupled to an optical cavity for the first time to its 3D motional
ground state with p0 = 89% [21].

2.2.2 EIT cooling

EIT (= electromagnetically induced transparency) [78] is an effect where two near-
resonant laser beams alter the dispersive and absorptive response of an effective
three-level atom. The system of two beams, coupling two ground states to the same
excited state, is characterized by the beams’ relative detuning with respect to the
excited state. If this relative detuning δtp vanishes, the atom becomes transparent
for both beams. The transparency is based on destructive interference between the
two excitation paths addressed by the two lasers.

Fig. 2.3 shows a cartoon of the situation. Part (a) shows the atomic level scheme
with the driving lasers. The atoms are tightly trapped along the cooling direction
with trap frequency νi but no cavity coupling is present. The situation is well
described by assuming a positive but near-resonant one-photon detuning ∆con & Γ
and a strong control laser (Ωcon > Ωp). Fig. 2.3(b) shows the narrow EIT absorption
peak which can be used for cooling. The figure is drawn for 2π · νi = δabs where
the optimal cooling conditions are realized. For δtp = 2π · νi the carrier transitions
|mi〉 → |mi〉 are completely suppressed while cooling transitions |mi〉 → |mi − 1〉,
sitting on the absorptive peak, are enhanced [73]. A cooling cycle is closed by an
incoherent repumping process due to off-resonant Raman-scattering of the near-
resonant laser beams.

One of the main parts in Tobias Kampschulte’s thesis [35] is the description
of EIT cooling for our system. Here I want to quote two equations written and
referenced in his thesis. These two facts become important for the experimental
considerations in section 2.3. First the distance in frequency space between the
two-photon resonance (δtp = 0) and the narrow EIT absorption peak is

δabs ≈ Ω2
con/(4∆con). (2.9)

Second, the full width at half maximum of the absorption peak is well approximated
by

∆δabs ≈ ΓΩ2
con/(4∆2

con). (2.10)

The theory of EIT cooling is described in [79] without and in [16] with a cavity.
EIT cooling within a cavity is richer and more complicated than standard EIT cool-
ing. For our parameters, however, the limiting cooling temperature is independent
of cavity parameters and for low saturation given by [73]

mi ≈ Γ∆δabs/Ω
2
con. (2.11)
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Figure 2.3: Illustration of EIT cooling adapted from [35, 79]. (a) EIT Λ-
configuration of the two ground states |↑〉 and |↓〉 being coupled by the control
and the probe laser with Rabi frequencies Ωcon, Ωp, respectively. (b) Calculated
narrow EIT resonance. The two-photon detuning δtp is plotted in multiples of
the EIT absorption shift δabs. The resonance has a width of ∆δabs.

Theoretically this implies that colder temperatures can be reached for larger single
photon detunings ∆con since the width of the EIT resonance becomes smaller.
Standard EIT ground-state cooling has been first realized with ions in the Blatt
group [80]. Our group was the first one to show standard EIT cooling of atoms [81]
and cavity-EIT cooling [82].

2.3 Comparison of Intra-Cavity Cooling Schemes

It is important to note that atom-cavity experiments often suffer from parametric
heating [38, 83] along the cavity axis which originates from intensity fluctuations
of the lock laser trap (see Fig 1.1(b)). These arise from a non-perfect stabilization
of the cavity frequency to the lock laser and, in our case, heat the atoms out of
the intra-cavity traps on a timescale of a few hundred ms, if no cooling is applied.
Practically this means that the cooling rate, which has not been considered so
far, has to be higher than the parametric heating rate in order to achieve any
cooling effect. Furthermore, the achievable steady-state mean photon number m
and ground-state population p0 (related to each other by Eq. (1.21)) will be higher
than the above given theoretical limits and will depend on the net cooling and
net heating rate A− and A+, respectively. The expected dependency is given by
m = A+/(A− + A+) [84].

Experimentally the parametric heating rate depends on the fluctuating daily
performance of the rather advanced cavity lock system, cf. section 1.4. Therefore
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Method p
(exp)
0 /% p

(theo)
0 /% Eq. Comments

(i) Pumping cavity 18(8) 91 (2.2)

δ = 2π · 0 MHz,
∆ = 2π · 20 MHz,

n
(opt)
p = 0.15

(ii) Driving atom 9(8) 71 (2.3)

δ = 2π · 0 MHz,
∆ = 2π · 20 MHz,

I
(opt)
L = 1 mW/cm2

(iii) Standard Raman — 91 (2.8)
Two counterpropagating

running waves
as Raman beams

(iv) Carrier-free Raman 90.9(8) 98 (4.12)
One standing wave
one ⊥ running wave

as Raman beams

(v) EIT — 98 (2.11)
Theoretical limit

based on experimental
values given in [82]

Table 2.1: Ground state occupation p0 for different cooling methods applied to a
cesium atom strongly coupled to our cavity. The theoretical values are calcu-
lated with the given equations and Eq. (1.21) for νz = 2π · 200 kHz. All ex-
perimental values are measured by taking motional sideband spectra (cf. sub-
section 4.2.4) directly after the atoms are cooled to their steady state with the
respective cooling method. Errors are fit errors. (i, ii) The optimal intra-cavity

photon number n
(opt)
p and the optimal intensity I

(opt)
L of the cooling beams are

found by experimentally maximizing the lifetime of the atoms inside the cavity.
(iii, iv) The theoretical values are calculated for Γrep = 2π ·0.7 MHz that corre-
sponds to the expected state-changing scattering rate calculated from the ex-
perimental parameters of the repumping laser (Irep = Isat, ∆rep = ωrep−ω0 = 0,
see section 4.2 and Fig. 4.2 therein).
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we cannot easily apply the theoretical limits to our experiment.
However, table 2.3 compares the theoretical limits without parametric heating

taken into account to experimental values measured during this thesis work.
As expected, the theoretical limits show higher ground-state populations than

their measured complements.
Furthermore, comparing the experimental results to each other, one finds that

method (i) is more efficient than method (ii), as predicted by the theory. More
importantly, method (iv) cools the atomic population close to the ground state,
which is in good agreement with the theoretical expectation. In the experiments in
chapter 4 we utilize method (i) to precool the atoms into the Lamb-Dicke regime
(see Eq. (2.7)) where method (iv) is applied to reach the 2D motional ground state.

For method (iii) and (v) no quantitative experimental results are obtained here.
Method (iii) is not favorable over method (iv) since it requires more resources and
is harder to implement due to the limited optical access (see chapter 4).

Method (v) is a special case and illustrates a “negative” research result. EIT
cooling of atoms inside the cavity has been studied extensively in our group [35,
81, 82]. In contrast to the Raman-cooling methods EIT cooling is based on near-
resonant transitions. Therefore off-resonant Raman scattering hinders coherent
population transfer, which is essential to sideband spectroscopy revealing p0, see
subsection 4.2.4. During my thesis work significant but unsuccessful effort has been
taken to quantify the efficiency of this scheme beyond survival measurements, which
do not offer a clear connection to p0.

Concretely, we tried to apply heterodyne spectroscopy in order to extract the
atomic temperature after EIT cooling via steady-state thermometry [85]. Experi-
mentally, this method works only if the atom is driven close to the F = 4→ F ′ = 5-
transition of the cesium D2-line. Therefore Ωp in Fig. 2.3 needs to drive this tran-
sition, which necessarily implies that ∆con ≈ 50Γ, see Fig. 2.3(a). This leads to a
rapid decrease of the cooling peak width ∆δabs (see Eq.(2.10)), that cannot be com-
pensated by an arbitrarily large increase of Ωcon (power broadening), because the
EIT-cooling condition 2π ·νz = δabs needs to be fulfilled. Considering δabs ∝ 1/∆con

(cf. Eq.(2.9)) but ∆δabs ∝ 1/∆2
con (cf. Eq.(2.10)) it becomes evident that the cool-

ing peak width ∆abs shrinks with an increase of the detuning ∆con. This effect is
detrimental to EIT-cooling of atoms that are trapped in a standing-wave lattice.
Here with increasing motional state number mz the sideband transition frequencies
decrease, due to the anharmonicity of the trapping potential, by about one lat-
tice recoil frequency ωrec ≈ 2π · 2 kHz as mz → mz+1: The resolved EIT-sideband
cooling fails because only atoms in specific neighboring motional states fulfill the
cooling condition that gets stricter with a narrower cooling peak width ∆δabs. For
our parameters one finds ∆δabs ≈ 2π ·4 kHz meaning that maximally two neighbor-
ing motional states can be efficiently cooled. This leads to a failure of the scheme
since thermally excited population not being in one of these two states cannot be
addressed.

In conclusion EIT cooling of cavity-coupled atoms only works for small laser-
atom detunings and its quantitative performance is hard to measure without an
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additional Raman setup for sideband spectroscopy. In contrast to this the carrier-
free Raman method is versatile and its performance is easily quantified by its in-
trinsically available sideband spectroscopy. The cavity cooling schemes can serve
for precooling but cannot reach a significant ground-state population within our
current apparatus.





3 Non-Destructive Hyperfine State
Detection Inside an Optical Cavity

Extraction of quantitative information from the system of interest is one of the main
experimental challenges. In the proceeding section 2.3 it became clear that the main
disadvantage of the EIT-cooling scheme was not connected to the scheme’s perfor-
mance, but to the fact that it was not possible to gain quantitative information
about the temperature of an EIT-cooled atom.

Here a fast, reliable and non-destructive internal state-detection method is intro-
duced and will be used in chapter 4 to extract the temperature of the atoms after
Raman cooling inside the cavity.

The non-destructive state-detection scheme delivers binary information about
the electronic ground states F = 3, 4 of cesium atoms coupled to the cavity. This
information is of importance not only to the work presented within this thesis, but
also to planned experiments like a two-atom entanglement scheme inside the cavity
or the realization of a quantum-dot atom-cavity hybrid system.

3.1 Comparison to Other State-Detection Schemes

In many experiments the atomic hyperfine state is detected by the push-out tech-
nique [86]: Using a running-wave laser, atoms in F = 4 are pushed out of the trap
by resonant radiation pressure, whereas atoms in F = 3 remain trapped. While
this technique is useful in free space cold atom experiments with many atoms, it
has several disadvantages in our case. First, the experiments described below are
based on hyperfine state detection of a single atom. If the push-out technique is
applied, the atom has to be reloaded (cf. chapter 1) after each single measurement
leading to a MOT-loading limited repetition rate below 1 Hz and poor statistics.
The push-out induced loss of the atom from its trap makes the technique a “de-
structive” scheme. Second, the atomic motional state has to be inferred from the
detected hyperfine state inside the cavity. The given limited optical access would
complicate the task to implement the needed push-out beam.

Another well known state detection method – developed in the ion commu-
nity [75] – is based on electron shelving and detection of resonance fluorescence,
and can be extended to neutral atom state detection [87,88]. The working principle
of this scheme is to shine a laser on the atom that resonantly couples one of the two
internal ground states to some short-lived excited state, but not the other one. If
the measurement projects the atom into the resonantly coupled ground state (often
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called bright state) atomic fluorescence is detected. If the atom is projected to the
other ground state (dark state), ideally no light is measured at the detector. The
possibility to use one and the same atom for many subsequent measurements is the
advantage of this non-destructive scheme.

3.2 Non-Destructive State-Detection Scheme

(a) dark state (b) bright state

SPCM

cavity
mirror

atom

SPCM

Figure 3.1: Internal state detection: Schematic Cs-level schemes and simplified
detection setups are shown. (a) The atom in F = 4 couples via the excited
F ′ = 5 state to the cavity. This coupling leads to a shift of the cavity resonance.
Ideally nearly no light enters the cavity. The single photon counting module
(SPCM) measures a low photon click rate. (b) The atom is in F = 3. Atomic
resonances are far detuned from the cavity resonance. Atom-cavity coupling
is negligible. The cavity resonance is not changed, probe light is coupled into
the cavity and detected with the SPCM.

It is elegant and efficient to utilize the strong atom-photon interaction intrinsic to
the atom-cavity system for a detection scheme based on the concept of a bright and
a dark state [20,89–92]. The rate of photons leaking out of the cavity contains the
information on the internal atomic state. In our case the cavity-enhanced detection
scheme is based on a dressed state shift: We tune the cavity to the blue side of
the F = 4 → F ′ = 5 D2-line transition but on resonance with the probe laser
(δ = ωp−ωc = 0, ∆ = ωp−ω0 ≈ 2π ·20 MHz). In this regime cavity cooling assures
good coupling during F = 4 state detection. An atom in F = 4 inside the cavity
shifts the cavity-like dressed state out of resonance with the probe laser. The cavity
transmission is significantly reduced. An atom in F = 3 inside the cavity leads to a
transmission not different to the empty cavity case, since the cavity is far detuned
(≈ 9.2 GHz) from the atomic resonance (see Fig. 3.1). Experimentally all state-
detection based experiments described in this thesis follow the same procedure.
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Fig. 3.2 shows the time line of a single experimental run. Typically – to gain
statistics – about 100 runs are measured. The measurement sequence fulfills our two
criteria of measuring the state inside the cavity and accumulating the data rapidly.
The typical repetition number N can be > 100, leading to a data accumulation
rate above 10 Hz. N is only limited by atom losses from the cavity. The cooling
step (1) leads to intra-cavity lifetimes on the order of seconds. Here we use cavity
cooling (see section 2.1) or Raman sideband cooling (see subsection 4.2.4). The
manipulation step (3) defines the actual experiment. Raman laser or microwave
manipulation are possible as well as intra-cavity cooling or heating measurements.
State detection in (4) happens with the probe light as the only near resonant laser.
In step (5) we apply the probe laser (see Fig. 3.1) together with a strong repumping
laser (repumper) resonant the to F = 3 → F ′ = 4 transition. If the atom is still
well confined within the cavity mode, the count rate on the SPCM will be below
some threshold level and we use the detection data for analysis. If the counts are
above the threshold level the detection data of this repetition is discarded.

load & prepare
1 atom

transport
to cavity

cool
atom

initiate 
internal state

manipulate 
sytem

detect 
internal state

check atom-
cavity coupling

Figure 3.2: Time line of experi-
ments with state detection.

The principles of our cavity-enhanced detec-
tion scheme are also discussed in [33,34].

3.3 Variable
Threshold Method

The detection of the internal state in Fig. 3.2
could be considered a quantum non-demolition
measurement [93, 94], if the probe laser would
not change the internal spin state by off-
resonant Raman scattering during the measure-
ment process. In this case it is beneficial to
measure as many photons as possible. To il-
lustrate this, Fig. 3.3 shows typical measured
cavity-transmission signals. (a) and (b) are the
time traces of one strongly coupled atom (equal
to one atom in F = 4, dark state) and of empty
cavity transmission (equal to one atom in F = 3,
bright state), respectively. The detected pho-
ton number in (a) significantly fluctuates on a
timescale of tens of ms. These fluctuations arise
from atom hopping along the lock-laser lattice
(see also subsection 5.3.3), leading to a fluctu-
ation of the atom-cavity coupling strength g,
which becomes visible in the cavity transmis-
sion. In case of (b) the observed fluctuations
happen on a longer timescale and cannot be at-



36 Non-Destructive Hyperfine State Detection Inside an Optical Cavity

(a) dark state (c) tbin = 0.1 ms
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Figure 3.3: Measured cavity transmission for atoms in F = 4, 3. (a) and (b) show
typical time traces of a strongly coupled atom in F = 4 (strong repumper on)
and of the empty cavity (equal to F = 3) with a bin size of 1 ms. (c) and
(d) show probability density functions (PDFs) with a bin size of 0.1 ms and
1 ms, respectively. The absolute measurement errors of the PDF data points
are smaller than the data points. The PDFs are build from tens of traces like
those shown in (a) and (b).

tributed to g-fluctuations since the cavity is empty. The fluctuations in (b) are
explained by length variations of unwanted Fabry-Pérot interferometers in the op-
tical setup in front of the cavity. The interferometers form between optical surfaces
such as fiber ends, the science cell containing the cavity, the input cavity mirror,
et cetera. The lengths of the interferometer arms change due to vibrations and
thermal drifts, which leads to changes in the empty cavity transmission signal.
Another effect leading to short time fluctuations of the empty cavity transmission
signal is connected to the non-perfect cavity lock (the lock is described in sec-
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Figure 3.4: State detection raw
data (bin size = 0.1 ms). Be-
fore the measurement the in-
ternal atomic state F = 4, 3
is prepared. Each of the two
data sets is the average of
more than 400 single measure-
ments, reflecting the internal
quantum jumps in an expo-
nential change of the signal.
Simultaneous exponential fits
to the data are shown (see
Eq. (3.1)).

tion 1.4). Due to lock fluctuations (close to 50 kHz) the cavity resonance changes
and the probe laser transmission is decreased (short drops). For state detection
this effect does not matter since it is much faster than our typical ms detection
time. The fluctuations governing (b) do also exist in (a), but are superimposed by
the more significant atomic motion effect. This can be seen in the bright and dark
histograms B[n, tbin] and D[n, tbin] in (c) and (d) where more than 100 s of F = 3
and F = 4 time data are binned with different bin sizes tbin. Further best fits of
Poisson distributions to the data are shown. If the data was only shot noise limited
without any of the above described fluctuations, it could be described by Poisson
distributions on any time scale. Using a bin time of 0.1 ms in (c) the bright state
data seems Poissonian, whereas the dark state data is broader than its best fit and
therefore Super-Poissonian. For a bin size of 1 ms in (d) both histograms are clearly
Super-Poissonian.

Aiming at measuring the internal atomic state, it seems to be beneficial to mea-
sure as long as possible since Fig. 3.3 illustrates that the measured normalized
histograms (= probability distribution functions = PFDs) overlap less and less
for longer detection times tdet = tbin. This means discriminating the two states
should be easier for longer detection times. In a histogram-based detection anal-
ysis, a measured number n of photons per bin would be evaluated with the mea-
sured PDFs. Here the detection time tdet is fixed and equals the bin time tbin. If
D(n, tdet) > B(n, tdet) the atom would be detected as dark, else it would be de-
tected as bright. However, during the measurement two unwanted state-changing
processes can happen which destroy a quantum nondemolition measurement. If the
atom is projected into the dark state F = 4 at the beginning of the measurement,
off-resonant Raman scattering via F ′ = 4, 3 can lead to a mainly probe-induced
quantum jump to the bright state F = 3. On the other hand an initial projec-
tion of the atom into the bright state can also be changed to the dark state by
off-resonant Raman scattering, involving the probe and the trapping lasers (dipole
trap and lock laser). Both processes are detected during the state measurement and
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τ4→3 T̄4 τ3→4 T̄3

(88.3± 7.6) ms (0.203± 0.014) ms−1 (207± 42) ms (2.867± 0.014) ms−1

Table 3.1: Decay constants and mean cavity transmissions of the dark and the
bright state, deduced from data in Fig. 3.4. The errors are fit errors.

illustrated in Fig. 3.4. The figure shows the detection data that will be used within
this chapter to compare and benchmark different analysis techniques. The atom has
been prepared in a well defined internal state while a constant B-field of 0.1 G is
applied along the y-direction, see Fig. 1.1. Starting a state detection in F = 4 or
F = 3, a quantum jump from 4 → 3 or 3 → 4 can happen, respectively. Averag-
ing over many individual realizations of these experiments, exponential changes of
the cavity transmission signals are observed. The exponential cavity transmission
traces are described by

T [t] = p3[t] · T̄3 + p4[t] · T̄4, (3.1)

where T̄3, T̄4 are the mean cavity transmissions for an atom in F = 3, 4 and p3, p4

are the probabilities of the atom to be in F = 3, 4, respectively. The probabilities
obey the two coupled rate equations

d

dt
p4,3[t] = ∓ 1

τ4→3

p4[t]± 1

τ3→4

p3[t], (3.2)

and p4[t] = 1−p3[t]. The rate equations are solved for p4[t] and p3[t] with the initial
condition p4,3[t] = 1 for the red, blue curve in Fig. 3.4, respectively. The solutions
depend on four parameters, are exponential functions of time, and are used in
Eq. (3.1) for a common fit to the data. The resulting four optimal parameters are
shown in table 3.1. We are mainly interested in the two decay constants τ4→3 and
τ3→4, describing the decay from the dark to the bright state and vice versa.

If an atom was initially projected to one state, but then jumped to the other state,
remaining there for the rest of the detection time1, a histogram-based detection
analysis would lead to a higher measurement error for longer detection times. The
measurement error ε4,3 is defined as the probability to measure F = 3, 4 even though
F = 4, 3 has been prepared in step (3) of Fig. 3.2. The fidelity of a measurement
is commonly defined with the average readout error ε = (ε4 + ε3)/2 [95,96].

Using a histogram-based detection analysis would lead to a bad fidelity, since ε
increases unnecessarily fast for long detection times due to the described quantum
jumps. Therefore we choose a two dimensional optimization strategy [97]. The two
parameters that are varied are the maximum time tdet taken into account for state
detection and the threshold photon number nth. If the photon number n detected
within tdet fulfills n < nth the atom is detected to be in the dark state, else it is
detected to be in the bright state. Fig. 3.5 shows the mean detection error ε as a

1Higher order processes, meaning many jumps between the two states, can be neglected from
now on since 1/tdet � jump rates.



Maximum Likelihood Method 39

(a) (b)

2 4 6 8
detection time tdet (ms)

50

100

150

200

250

de
te

ct
io

n
th

re
sh

ol
d
n

th

0.02

0.05

0.10

0.200.20

0.50

0 2 4 6 8 10
detection time tdet (ms)

10−2

10−1

100

op
t.

av
er

ag
e

er
ro

r
ε(

op
t)

0

50

100

150

200

250

op
t.

th
re

sh
ol

d
n

(o
p

t)
th

ε(opt)

n
(opt)
th

Figure 3.5: Variable threshold method (tbin = 0.1 ms). (a) shows a logarithmic
color plot of the mean detection error ε as a function of the maximum detection
time tdet and the detection threshold nth. In (b) the minimum error ε(opt) for
each tdet in (a) is calculated. Further the corresponding optimal threshold

n
(opt)
th is shown.

function of the detection time and the detection threshold. The underlying data
is the same as in Fig. 3.4. The color plot in Fig. 3.5 (a) shows that choosing nth

too high (low) results in always detecting the dark (bright) state. These scenarios
lead to a mean detection error of 50% (red areas in the plot). The part (b) of
the figure shows the minimum mean error ε(opt) which can be achieved by choosing
the optimal threshold n

(opt)
th for a given maximum detection time tdet. The relative

statistical uncertainty of ε(opt) is smaller than 50% for all tdet, leading to a minimum

error ε(opt) = (2.4+1.0
−0.8)% for tdet ∈ [1, 2] ms. The optimal threshold n

(opt)
th increases

with the detection time, as expected from the time dependence of the PDFs (see
Fig. 3.3 (c, d)). Detection times exceeding 2 ms lead to a decrease of the detection
fidelity due to the described quantum jumps, while detecting for less than ≈ 0.5 ms
reduces the fidelity due to the increasing overlap of the PDFs.

3.4 Maximum Likelihood Method

The state detection data is recorded as a time resolved sequence of photon clicks (cf.
chapter 1). State detection based on the variable threshold approach implies choos-
ing a reasonable detection time tdet (in our case 1 to 2 ms) and evaluating a single,
time-independent variable, which is the photon number in a bin of size tbin = tdet.
Using the variable threshold method, a quantum jump within the detection time
tdet can lead to a detection error. The photon arrival time information, however,
can be used to reduce such errors. A time-resolved approach could avoid some of
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ε4/(%) ε3/(%) ε/(%)

max. likelihood 1.37± 0.00 2.95± 0.00 2.16± 0.00
var. th. method 1.70± 0.12 3.02± 0.11 2.36± 0.03

Table 3.2: Comparison between maximum likelihood and variable threshold detec-
tion methods. The errors are the time averages of the data shown in Fig. 3.6
for tdet ∈ [1.0, 2.0] ms. The variance of the data in this time interval gives rise
to the errors. Here statistical errors as in Fig. 3.6 are not taken into account,
since the focus is on the state detection method.

the errors by taking into account the possibility of a quantum jump within tdet.
Having detected a time-resolved sequence of photon clicks, we ask the question:
What is the probability that this sequence has been generated under the condition
of a dark (bright) atom at the beginning of the measurement? The answer is given
by a maximum likelihood method, meaning Bayesian conditional probability cal-
culus with uniform priors (p4(t = 0) = p3(t = 0) = 0.5). These probabilities are
calculated to be [95,98]:

p4 = p[{ni}|Dt=0] =

(
1− tdet

τ4→3

) N∏
i=1

D(ni, tbin)

+
tbin

τ4→3

N∑
j=1

j−1∏
i=1

D(ni, tbin)
N∏
i=j

B(ni, tbin)

p3 = p[{ni}|Bt=0] =

(
1− tdet

τ3→4

) N∏
i=1

B(ni, tbin)

+
tbin

τ3→4

N∑
j=1

j−1∏
i=1

B(ni, tbin)
N∏
i=j

D(ni, tbin).

(3.3)

Tthe click data is binned with a bin size tbin � tdet, τ with N = tdet/tbin bins {ni},
containing the number of detected photons. In both equations in Eq. (3.3) the first
summands describe the probability that the initially detected state at t = 0 is still
there after tdet. The second summands describe quantum jumps within t ∈ [0, tdet],
quantized by multiples of tbin. The weighting factors in front of the PDFs arise
from exponential probability functions in the limit tbin, tdet � τ [97].

We implement Eq. (3.3) recursively (see [95]) using the decay constants that
were fitted to the data (see table 3.1). Fig. 3.6(a) shows the result of the maximum
likelihood approach. Between 1 and 2 ms of detection time the errors converge to
their minimum values. These values are maintained which is in contrast to the
variable threshold approach in (b) where the minimum values are not maintained
for tdet > 2 ms.
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Figure 3.6: Comparison of state detection schemes with tbin = 0.1 ms. The state
detection errors for atoms prepared in F = 4 (ε4), F = 3 (ε3) and the mean
errors ε are plotted as functions of tdet. The maximum likelihood method is
shown in (a); the variable cutoff results in (b) are the same as in Fig. 3.5. The
statistical errors are smaller than 50% for all tdet.

Table 3.2 shows a comparison of the minimum time averaged errors the two
methods produce. Atoms that have been prepared in F = 4 (ε4) are significantly
better detected with the maximum likelihood approach. Comparing the errors for
atoms that have been prepared in F = 3 (ε3), the methods are equivalent within
the considered region. The reason for this is that our analysis cannot discriminate
between preparation and detection errors. The preparation error for F = 3 is
significantly higher than for F = 4 (see also Fig. 3.6), because here, for technical
reasons, a σ−-polarized optical pumping beam resonant with F = 4→ F ′ = 4 (level
scheme: see Fig. 3.1) has been used. Under this configuration |F = 4,mF = −4〉 is
a dark state leading to inefficient F = 3-pumping. Therefore the shown detection
data is limited by state preparation in the case of ε3.

In conclusion we will use the maximum likelihood method for evaluating the data
in the following section 4.2, because – compared to the variable threshold method –
it is largely independent of the detection time and results in lower detection errors.
Doing so, for each data set we measure the histograms as shown in Fig. 3.3 and
extract the decay constants τ as in Fig. 3.4.

3.5 Limits of the Cavity-Enhanced Detection Scheme

The fidelity of state detection inside the cavity is limited by the overlap of the dark
and bright histograms D[n, tbin] and B[n, tbin]. The main factors leading to this
overlap are:
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� The low overall photon collection efficiency of t2/(t2 + a2)ηdet ≈ 5% (see
table 1.1).

� The SPCM dark count rate of ≈ 0.5 kHz contributing ≈ 25% to the dark
histogram.

� Radial oscillations (along the x-direction) and hopping along the cavity axis
(z-direction) see Fig.3.3 (a) are increasing the mean value and the width of
the dark histogram.

An optimization of these points would lead to an improvement of the detection
fidelity within a detection time on the ms scale. For the current parameters this
timescale is limited by the decay constants given in table 3.1. Using the maximum
likelihood method (Eq. (3.3)) it is remarkable that the resulting absolute errors in
table 3.2 change by less than 1% if the decay constants τ are varied by a factor
of 5. Changes in the decay constants due to changes in the experimental settings
(laser powers, B-fields, etc.) will therefore only slightly affect the state detection
procedure. This robustness of Bayesian analysis techniques is also observed in [99].
Changes of the histograms, however, are significant. These changes happen on a
daily basis, mainly due to changes in the cavity lock performance, which are leading
to more or less intra-cavity atomic heating. This leads to significant changes of the
dark histogram (see bullet point 3 above) and is reflected in a variation of the mean
detection error ε on the few percent level.



4 Carrier-Free Raman Manipulation
of Atoms in an Optical Cavity

For neutral atoms the conditions for robust Raman cooling, i.e. the presence of
resolved motional sidebands of appropriate coupling strength, can be challenging
to fulfill. This is particularly true for setups with restricted optical access and
unconventional optical potentials, such as cavity QED systems [17, 20] or micro-
array traps [100].

Here, I describe a scheme for the Raman manipulation of trapped neutral atoms
that exhibits a strong suppression of the carrier transition in the driven two-photon
transfer and show how it can benefit the Raman cooling limit. Furthermore, the
technique is applied to perform two-dimensional ground-state cooling of atoms
strongly coupled to the cavity and to investigate their heating rate.

4.1 Raman Laser Setup
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Figure 4.1: Simplified Raman setup. AOM I acousto-optic modulator, PD I
photodiode, PLDRO I phase-locked dielectric resonator oscillator, EOM I
electro-optic modulator. Note that the Raman beam is running single tone,
since the phase frequency detector (PFD) cannot follow the fast phase modu-
lation of the lock beam, which is needed for locking the cavity (cf. section1.4).
The two-photon detuning is given with δtp = 2π · (νR − νbDT) = ωR − ωbDT.
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For the coherent transfer between the two cesium hyperfine ground states two
laser sources with a frequency difference of about the hyperfine splitting (≈ 9.2 GHz)
but stable with respect to each other on the scale of the effective ground-state width
(/ kHz) are needed. This is achieved with a fast and technically advanced optical
phase-locked loop, described in [101–103]. The electronic and optical setup used
for EIT measurements (see chapter 2) is described in [35], but two modifications
have to be noted.

First, the former Raman laser (= slave laser) which was build in Littrow con-
figuration is now exchanged by an interference filter laser (IFL) as described in
section 1.3. This resulted in a better lock performance (more power in the carrier,
higher lock bandwidth) and most importantly in a very high day-to-day stability.

Second, the laser is not locked to the MOT cooling laser as done for the EIT
measurements, but stabilized to the lock laser (see section 1.4), since the intra-
cavity standing-wave trap will be used as the second Raman arm. The Raman
setup used for this work is shown in Fig. 4.1. Taking Raman spectra, the two-
photon detuning δtp is adjusted by changing νLO.

4.2 Raman Sideband Transitions and Raman cooling

In this section we utilize the Raman laser setup from section 4.1 and the Bayesian
method from chapter 3 to realize the manipulation of motional ground-state pop-
ulation and its non-destructive detection, respectively.

4.2.1 Geometrical Situation

In the experiments described here a single neutral cesium atoms is trapped inside
the cavity using the techniques described in chapter 1. Fig. 4.2 shows the geom-
etry of the optical potential, the orientation of the applied magnetic bias field of
1.0 Gauss and the position of additional laser fields.

In order to achieve coherent two-photon coupling between the F = 3 and F = 4
manifold (in the following: |↓〉 = |F = 3,mF = −3〉, |↑〉 = |F = 4,mF = −4〉) of
the 6 2S1/2 electronic ground state, we address the atom by a single Raman laser
beam that propagates along the y-axis. This weak Raman light is phase-locked
to the blue detuned strong dipole-trap light (845.5 nm) with a tunable frequency
offset around the hyperfine splitting ωR − ωbDT ≈ 2π · 9.2 GHz. For details on the
technical realization of the phase lock see section 4.1.

The second field in the two-photon Raman coupling in our experiment is hence
provided by the always present blue dipole-trap light [17], in contrast to the more
common implementation via a second Raman beam [18–21]. The choice of blue
detuned light, where atoms are confined around the intensity zeros of the trapping
light, allows us to operate the optical trap at a detuning of ∆bDT ≈ 2π ·3 THz from
the atomic resonance with minimal light shifts of atomic levels and low spontaneous
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Figure 4.2: Experimental setup. (a) A single cesium atom is trapped in the op-
tical lattice potential of the blue detuned and the red detuned standing-wave
dipole trap (DT). (b) The atom is positioned inside an optical high-finesse
Fabry-Pérot cavity. The resonantly enhanced cavity lock laser field acts as the
blue detuned standing wave trap for the atoms. (c) Illustration of a Raman
cooling cycle driven by the blue detuned dipole trap (ωbDT) and the Raman
laser (ωR). (d) Details of the levels and transitions in 133Cs involved in Ra-
man manipulation and cooling. We define the two-photon detuning δ as the
difference between the one-photon detunings: δ = ∆R −∆bDT.

photon-scattering rates1.
More importantly, however, the blue detuning provides the mechanism for the

intrinsic suppression of the Raman carrier coupling that is central to the presented
Raman scheme.

4.2.2 Motional State Coupling and Carrier Suppression

Intuitively the suppression of the carrier can be understood by considering the
local Rabi frequency for a two-photon transition, (ΩbDTΩR)/∆, where ΩbDT, ΩR,
and ∆ ≈ ∆bDT ≈ ∆R denote the local single-photon Rabi frequencies and detunings
from resonance (cf. Fig. 4.2(d)). For atoms fixed at the intensity zero of the blue
detuned trap light the single-photon Rabi frequency ΩbDT and hence the local two-
photon Rabi frequency will vanish.

Motional State Coupling

More formally, we take into account the external degree of freedom of the trapped
atoms. The resonant couplings between the spin-motional states are described by

Ω↑mymz ,↓m′
ym

′
z

= Ω0|〈↑m′ym′z| sin[kz ẑ] eiky ŷ σ̂† |↓mymz〉| (4.1)

1This detuning also leads to a large beat length dbeat = `0/3 (see Eq. (1.1)) between the intra-
cavity optical trap light and the probe light, which is beneficial for constant atom-cavity
coupling and therefore leads to robust and high-fidelity state detection (see section 3.2).
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where my,mz,m
′
y,m

′
z denote the motional quantum numbers of the initial and

the final state, ŷ, ẑ are the position operators along the y- and z-axis and ky =
2π/λrDT, kz = 2π/λbDT are the wave vectors of the red and blue detuned dipole trap
fields. σ̂† = |↑〉〈↓| represents the spin raising operator, and the bare two-photon
Rabi frequency with an approximate experimental value of Ω0 ≈ 2π · 0.3 MHz
summarizes the dependency on laser powers, detuning and internal states.

In the Lamb-Dicke regime (see section 2.2) we can approximate the expression
describing the geometry of the light fields in Eq. (4.1) and rewrite it in terms of
harmonic oscillator raising b̂†z, b̂

†
y and lowering operators b̂z, b̂y as

sin[kz ẑ] eiky ŷ ≈ (kz ẑ) (1̂y + i kyŷ)

= ηz(b̂
†
z + b̂z) + i ηyηz(b̂

†
z b̂
†
y + b̂z b̂

†
y + b̂†z b̂y + b̂z b̂y).

(4.2)

Here, ηy and ηz denote the Lamb-Dicke factors along the y- and z-direction with
experimental values of about 0.1. Eq. (4.2) prescribes the selection rule ∆mz =
±1 for the standing wave Raman field configuration2, i.e. carrier transitions with
∆mz = 0 are suppressed. The first order sidebands of the motion along the z-axis
scale with Ω0ηz and the sidebands coupling the motion along the y- and z-axis scale
with Ω0ηyηz.

Limits to Carrier Suppression

Theoretically and according to Eq. (4.2) full carrier suppression for atoms sitting
in the perfect zero-crossing of the electric field amplitude of one of the Raman
lasers is expected. Since this blue detuned Raman laser light is also a source of
atomic confinement, atoms will localize close to the minimum of the light intensity.
However, offset Raman light intensity at the trap minimum, for example due to
the imperfect intensity balance of the two interfering beams forming an optical
standing wave, will give rise to a residual carrier Raman coupling. In addition,
external forces displacing the trap center from the intensity minimum can lead to
a further increase of the carrier contribution.

In order to quantify these effects for our system we define the suppression factor

S =
Ω↑mymz=0,↓mym′

z=1

Ω↑mymz ,↓mymz

1

ηz
(4.3)

as the ratio of the ground-state heating-sideband Rabi frequency to the carrier Rabi
frequency along the z-axis, which we normalize by the Lamb-Dicke factor. Thus,
in the Lamb-Dicke regime Eq. (4.3) yields S = 1 for an atom addressed by two
running wave Raman lasers and S → ∞ for perfect carrier suppression.

2In the Lamb-Dicke regime (see Eq. (2.7)) the approximation in Eq. (4.2) is valid and higher
order sidebands do not need to be considered. Without this approximation the symmetry of
the standing wave Raman field imposes the selection rule ∆mz = ±1,±3,±5, ....
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If we assume that the Raman standing wave is formed by counter-propagating
beams with an intensity ratio R ≤ 1, we obtain at the position of the atom the
expression

eikz ẑ −
√
R e−ikz ẑ = (1−

√
R) eikz ẑ + 2i

√
R sin[kz ẑ]

≈ (1−
√
R)1̂z + i(1 +

√
R) ηz(b̂

†
z + b̂z)

(4.4)

for the motional coupling along the z-axis in analogy to Eq. (4.2). The suppression

factor is then given by S = 1+
√
R

1−
√
R . Our cavity with high reflectivity mirrors (r2 =

R ≈ 1, cf. table 1.1) has a finesse of F = π
√
R

1−R ≈ 106 and we therefore expect

the carrier suppression to be limited at the S ≈ 4
1−R ≈ 4F

π
≈ 106 level due to the

“running wave” component of the cavity mode.

A more stringent limit, however, is caused by gravitational acceleration g in the
vertically orientated optical lattice with trap frequency νz. At a vertical position
shift of zs = g/(2πνz)

2 ≈ 6 pm the atom experiences a field proportional to sin[kzz],
which can be Taylor expanded around the point z = zs and leads to a motional
state coupling of

sin[kz ẑ] ≈ sin[kzzs]1̂z̃ + cos[kzzs] kz ˆ̃z

= sin[kzzs]1̂z̃ + cos[kzzs] ηz(b̂
†
z̃ + b̂z̃),

(4.5)

where z̃ = z − zs. The gravitational sag therefore limits the suppression to S =
cos[kzzs]/ sin[kzzs] ≈ 1/(kzzs) ≈ 2× 104.

4.2.3 2D Temperature Model

The expected relative height of the heating and cooling motional sidebands, which
is a robust measure of atomic temperatures for 1D motional dynamics [75], also
stays a robust measure for sidebands coupling motion in two dimensions.

Figure 4.3: The relative
heights of motional
sidebands in the two-
photon spectrum as a
function of the atomic
temperatures along
both trap axes. For
fitting the measured
data the heights hz and
hy will be assumed to
be free parameters. See
text for details.
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To show this, two independent Boltzmann-distributions are assumed for the level
populations of motional states mi along the y- and z-axis

pmi
=

1

mi + 1

(
mi

mi + 1

)mi

, i = y, z. (4.6)

The transfer probability of an atom initially prepared in |↑〉 to the opposite spin
state |↓〉 after applying a Raman pulse of duration t is given by

p[t] =
∞∑

my=0

∞∑
mz=0

pmypmz sin2[Ω↑mymz ,↓m′
ym

′
z
t/2]. (4.7)

We determine the ratio Rz of the transition probabilities on the z-axis cooling (b̂z)
and heating (b̂†z) motional sideband according to [75]

Rz =

∞∑
my=0

∞∑
mz=1

pmypmz sin2[Ω↑mymz ,↓mymz−1 t/2]

∞∑
my=0

∞∑
mz=0

pmypmz sin2[Ω↑mymz ,↓mymz+1 t/2]

=

∞∑
my=0

∞∑
mz=0

pmypmz+1 sin2[Ω↑mymz+1,↓mymz t/2]

∞∑
my=0

∞∑
mz=0

pmypmz sin2[Ω↑mymz ,↓mymz+1 t/2]

=
mz

mz + 1
,

(4.8)

where we have used Ω↑mymz ,↓m′
ym

′
z

= Ω↑m′
ym

′
z ,↓mymz and pmi+1 = mi

mi+1
pmi

in the
last step.

Analog calculations yield the ratio of transitions involving the decrease and tran-
sitions involving the increase of one motional quantum along the y-axis

Ry =
my

my + 1
, (4.9)

and they result in the relative scaling of all sidebands summarized in Fig. 4.3. The
height factors hy, hz depend on the experimental details of the chosen Rabi spec-
troscopy pulse and do not play a role in the determination of the mean excitation
numbers

my =
Ry

1−Ry

and mz =
Rz

1−Rz

, (4.10)

which are connected to the temperature by Eq. (1.21).
This analysis rigorously only applies to resolved sidebands. For the temperature

estimation with degenerate sidebands we will estimate an upper limit for the indi-
vidual mean excitation numbers m(max)

y and m(max)
z by attributing the height of the

cooling sideband in its entirety to each motional axis.
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4.2.4 Sideband Spectroscopy and Cooling

We start our experimental investigation by mapping out the two-photon spectrum
of an atom trapped in the crossed standing-wave potentials to localize and identify
accessible Raman transitions. After a successful single atom loading event, the
measurement sequence initializes the atom with high fidelity in the state |↑〉 by a
5 ms long optical pumping pulse of repump (ωrep) and optical pump (ωopt) light.
These two beams are σ−-polarized and resonant with the F = 3 → F ′ = 4 and
the F = 4→ F ′ = 4 of the D2-line, respectively (see Fig. 4.2(d)). A single Raman

Figure 4.4: Raman spectra with carrier suppression. (a) Illustration of the tran-
sitions allowed by the Raman field geometry (cf. Eq. (4.2)). (b) Complete
Raman spectrum after cavity cooling. Error bars indicate one standard devia-
tion uncertainty intervals resulting from a total of about 60 state detections per
data point. (c) Motional sideband spectra of single atoms after cavity-cooling
with mz = 4.5 ± 2.4 and (d) after Raman sideband cooling on the (cavity)
z-axis cooling sideband with mz = 0.10± 0.01 strongly reducing the sidebands
corresponding to b̂z transitions. The significant presence of the b̂†z b̂y sideband
shows that the cooling into the motional ground state along the z-axis does
not effectively cool the motion along the y-axis.
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laser pulse of 1 ms duration and about 1 mW power (waist radius 60µm) is applied
to the atom and followed by cavity-assisted readout of the hyperfine state of the
atom, see chapter 3. The fast and non-destructive state detection also provides
cavity-cooling and allows us to repeat the 70 ms long interrogation sequence up to
100 times (see Fig. 3.2) with the same atom, after which a new atom is loaded.

The results of our measurement, shown in Fig. 4.4(b), clearly reveal a strong sup-
pression of the carrier transition in the two-photon spectrum. Within the signal-
to-noise limits of our data we do not find a discernible carrier contribution, in
agreement with the theoretically estimated suppression of the carrier Rabi fre-
quency by a factor > 104 limited by gravitation sag, cf. subsection 4.2.2. A fit of
six Lorentzian curves to the motional sidebands spectrum provides an estimate for
the trapping frequencies along the y- and z-axis. By comparing the relative heights
of the heating and cooling motional sidebands we furthermore extract the temper-
atures of the atoms (see subsection 4.2.3). The spectral data shown in Fig. 4.4(c)
for cavity-cooled atoms (see subsection 2.1.1) yield a mean excitation number of
mz = 4.5± 2.4 quanta along the z-direction.

Next, we implement one-dimensional Raman cooling along the cavity direction.
During a 20 ms long cooling interval we simultaneously drive the resolved b̂z cooling
sideband (see Fig. 4.4(a)) and apply the optical pumping and repumping light (see
Fig. 4.2(c) and(d)). The cooling stage is followed by the recording of a Raman
spectrum for temperature determination (Fig. 4.4(d)). We extract steady-state
motional excitations my = 3.2± 0.2 and mz = 0.10± 0.01 after Raman cooling.

In order to characterize how the cooling process of atoms is influenced by the
suppression of the Raman carrier transition, we estimate its fundamental cooling
limit [75,104]. For simplicity we only consider one spatial dimension in the following
analysis. During a resolved sideband cooling cycle the atom is driven on the cool-
ing sideband (δ = 2π · ν) from the state |↑,m〉 to |↓,m′ = m− 1〉. Resonant single
photon excitation by the repumping light and spontaneous decay predominantly
return the atom to the state |↑,m− 1〉 in the Lamb-Dicke regime (see Fig 4.2(c)).
This pumping of the atom into the “dark” motional ground state |↑, 0〉 is counter-
acted by heating due to off-resonant Raman excitation in the Lorentzian wing of
the carrier and the blue sideband transition. For large ground-state occupations
the cooling dynamics can be restricted to the ground and the first excited motional
state and can be described by the rate equations [75]

ṗ0 = p1
(ηΩ0)2

Γrep

− p0

[
��������
(

Ω0

4πν

)2

η2Γrep +

(
ηΩ0

8πν

)2

Γrep

]
(4.11)

and ṗ1 = −ṗ0, for the probabilities p0, p1 of the atom to be in the ground and
the first excited state. The first term on the right hand side of Eq. (4.11) states
the rate of the cooling cycle. Resonant Raman excitation on the red sideband is
followed by repumping and decay on the carrier at a rate of Γrep. The second term,
which contains the heating due to off-resonant excitation on the carrier followed by
decay on the heating sideband, vanishes in our case due to the carrier suppression.
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The leading heating mechanism is therefore given by off-resonant excitation on the
heating sideband and repumping and decay on the carrier described in the third
term. This results in a fundamental steady-state mean occupation number

m ≈ p1 ≈
(

Γrep

2 · 2πν

)2

(��1 + 1/4), (4.12)

which is a factor of 5 smaller than for conventional Raman cooling (see Eq. (2.8)).
However, we do not expect our measurements to explore this fundamental limit, due
to the effects of technical heating during the cooling and spectroscopy sequence, as
well as due to imperfections in the optical pumping. In addition to improving the
cooling limit the carrier suppression should also somewhat relax the initial starting-
temperature requirements for the onset of robust Raman cooling [18]. Due to the
significant contribution from higher order motional sidebands at the border of the
Lamb-Dicke regime this effect of carrier suppression will be very small.

Figure 4.5: Continuous two-dimensional Raman cooling. (a) By adjusting the laser
powers in the red and the blue dipole trap, the atomic trap frequencies along
the y- and z-axis are matched such that νy = 2νz. By addressing the degenerate
sidebands atoms are continuously cooled into the two-dimensional motional
ground state. (b) The reduced heights of the degenerate b̂z and b̂†z b̂y sidebands
in the Raman spectrum demonstrate successful ground-state cooling along both
dimensions. (c) Schematic of an exemplary cooling trajectory. Dashed lines
link points of equal motional energy of the atom.

In order to extend the Raman cooling from the cavity z-axis to the dipole trap y-
axis one of the motional sidebands (b̂†z b̂y or b̂z b̂y), which couple both directions, needs
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to be addressed. Simultaneous cooling to the two-dimensional motional ground
state is achieved in the experiment by adjusting the trapping frequencies to satisfy
νy = 2νz. The two degenerate b̂†z b̂y and b̂z sidebands are addressed with a 20 ms long
Raman, repump and optical pumping pulse and continuously cooled into the two-
dimensional ground state (see Fig 4.5). From the height of the Raman sidebands
after cooling we estimate upper limits for the mean excitation numbers of m(max)

y =

0.3± 0.2 and m(max)
z = 0.11± 0.05, respectively.

4.2.5 Intra-Cavity Heating Rate and Rabi Oscillations

Heating and position jumping of atoms in optical lattices formed by optical cavi-
ties have been noted in the past [65, 105]. Compared to standing wave potentials
generated by counter-propagating running wave laser beams the resonantly en-
hanced dipole field inside Fabry-Pérot cavities is additionally affected by the noise
of the cavity lock. Considering trap intensity fluctuations as the primary contribu-
tion (see also section 2.3), parametric heating in the approximately harmonic trap
should lead to a linear increase of the heating rate with motional energy [38].

Figure 4.6: (a) Measurement of the heating rate along the z-axis (cavity) direction.
The mean motional quantum number is recorded as a function of the hold
time in the optical potential. The solid line fits the data with an exponential
heating model (see text for details). (b) Coherent Rabi-oscillations on the
z-axis motional sideband.

We directly measure the mean motional quantum number of single atomsm(max)
z [t]

as a function of the hold time in the optical potential (see Fig. 4.6(a)). To ac-
count for the expected exponential increase in motional energy we fit the data with
m(max)
z [t] = (m(max)

z [t = 0] + 1/2) · exp[ΓHt]− 1/2, which results in an initial max-
imum phonon number along the z-direction of m(max)

z [t = 0] = 0.08 ± 0.06 and
a heating-rate constant for low excitations of ΓH = (12 ± 3) Hz. For these cold
starting temperatures the low heating rate of less than one motional quantum in
50 ms allows atoms to remain well-localized during the timescales of most quantum
optics experiments. Indeed, our experiment is in fact limited by spin relaxation
due to spontaneous Raman scattering processes at the 100 ms timescale.
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Finally we study coherent dynamics on the motional sideband. For this purpose
an initial Raman cooling interval prepares the atom with high probability in the
state |↑,mz = 0,my = 0〉. The excitation probability as a function of Raman pulse

length on the b̂†z heating sideband shows Rabi oscillation with a Rabi frequency
of 2π · (38.2 ± 0.4) kHz and a decay constant of (55 ± 7)µs (see Fig. 4.6). Earlier
measurements of carrier Rabi oscillations under similar experimental conditions
but driven by microwave pulses have shown coherence times in excess of 100µs.
We attribute the reduced coherence time to effects associated with the oscillation
of the atom along the weakly confined x-direction. Since νz directly depends on
the position along the x-direction, this motion strongly influences the sideband
transitions.

4.3 Conclusion

With only one additional laser compared to a standard CQED-setup (see sec-
tion 1.1) the Raman scheme is resource-efficient and – as demonstrated – can be
applied to experiments with challenging optical access. The novel cooling method
efficiently transfers atomic population into the 2D ground state on the few mil-
lisecond timescale, which enables high experimental repetition rates. In contrast to
most cavity cooling schemes, where collective coupling to the cavity mode changes
the cooling conditions (see subsection 2.1.3), it has the advantage of being readily
applicable to more than one particle. Compared to other cooling experiments with
additional Raman beams along the cavity direction, the presented scheme provides
constant Raman coupling conditions for atoms at different axial positions inside
the cavity.





5 Cavity-Modified Super- and
Subradiant Rayleigh scattering

When more than one atom is placed into a cavity, the atomic dipoles radiate coop-
eratively into the cavity field. Simultaneously, this field acts back onto the atoms,
providing a collective nonlinear interaction.

For large atomic ensembles super- and subradiant phenomena [23, 24] as well as
cooling and self-organization [15, 25] have been observed in cavities. For instance,
atoms can spatially order in such a way that cooperative emission maintains a
strong cavity field: At some threshold the joint state of strong cavity field and
ordered atom ensemble is energetically favorable compared to a non-ordered system
in conjunction with a weak cavity field, and a phase transition occurs [106, 107],
which was predicted by the famous Dicke model [27, 108].

With exactly two neutral atoms strongly coupled to a cavity field the experi-
ments presented in this chapter realize the most elementary situation where both
cooperative radiation and cavity backaction become relevant.

5.1 Experimental Setup

In the experiments described here exactly two neutral cesium atoms are trapped
inside the cavity using the techniques presented in chapter 1. A sketch of the
situation is provided by Fig. 5.1(a). The distances ∆y and ∆z are multiples of
the respective lattice periodicities λrDT/2 and λbDT/2; for the trap geometry see
Fig. 1.1. The relative phases of the driving laser field and the cavity-mode field at
the atom positions are given by φy,z = 2π∆y,z/λL = kL∆y,z, where λL = 852.3 nm
is the driving laser wavelength and kL = 2π/λL the corresponding wave vector.

Due to a large beat length (see Eq. (1.1)) of dbeat = `0/3, the combined trapping
potential confines the atoms close to the antinodes of the intra-cavity field. There-
fore the atoms can only realize two patterns along the z-axis, which are described
in table 5.1.

During the measurement three lasers are continuously turned on (see Fig. 5.1(b)):
A strong repumping laser and a weak optical pumping laser (frequencies ωrep and
ωopt) are shone in along the y-axis to keep most of the atomic population in the state
|F = 4,mF = −4〉. The co-propagating driving laser has a frequency ωL = 2πc/λL,
an intensity IL ≈ 2 mW/cm2, a detuning from the atoms ∆ = ωL − ω0 ≈ 2π ·
100 MHz, and it is resonant with the cavity (δ = ωL − ωc = 0). The detuning
∆ ≈ 2π · 100 MHz is chosen to guarantee for good cavity cooling conditions, see
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atom

cavity 
mirror

driving
laser

SPCM

Figure 5.1: (a) Simplified experimental setup. A laser drives two trapped atoms
(traps not shown) inside the cavity. The sine curve depicts the atom-cavity cou-
pling strength along the z-axis. The single photon counting module (SPCM)
detects the photons leaking through the lower cavity mirror. For two atoms
inside the cavity, the measured count rate depends on the relative spacings
∆y and ∆z. (b) Atomic level scheme with the relevant lasers, their fre-
quencies and the 133Cs D2-line transitions with |g〉 ≡ |F = 4,mF = −4〉 and
|e〉 ≡ |F ′ = 5,mF = −5〉. All shown lasers are σ−-polarized. The cavity mode
is (σ+ + σ−)/

√
2-polarized (see table 1.1).

subsection 2.1.2. Due to its large detuning, the laser light scatters off the atoms
into the cavity mode predominately by Rayleigh scattering. The cavity output is
detected by the SPCM.

relative distance ∆z relative phase φz

λ-pattern n · λL 0
λ/2-pattern (n+ 1/2) · λL π

Table 5.1: Possible atomic patterns [109] along the cavity axis. These patterns are
the only two configurations two atoms can realize along the cavity axis for our
measurement setup. The factor n in an integer.

Fig. 5.2 shows an instructive measurement trace, selected to demonstrate the
difference between two, one and zero atoms. In region (i), where two driven atoms
couple to the cavity, the photon count rate jumps between a high (≈ 12 ms−1) and
a low (≈ 2 ms−1) value. The high (low) photon count rates are interpreted as the
atoms arranging in a pattern along the z-axis in which the scattered photons inter-
fere constructively (destructively), leading to superradiant (subradiant) emission
into the cavity mode. Around 1.7 s one of the two atoms is lost from the combined
trapping potential, and a photon count rate with little variance and a mean of
about 9 ms−1 in region (ii) is detected. Naively one would expect that two atoms,
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Figure 5.2: SPCM signal (single measurement trace) of driven atoms coupled to
the cavity. In region (i), (ii), (iii) two, one and zero atoms are inside the
cavity. The bin time is 5 ms.

which interfere constructively, emit four times as much photons as a single atom.
This is clearly not the case and explained below in subsection 5.2.3 by the cavity
backaction. From 3.9 s on (region (iii)), the cavity is empty and only background
counts are measured.

5.2 Classical Description of Driven Atoms Inside a
Cavity

Driven atoms coupled to a cavity are well described by the Jaynes-Cummings model,
one of the toy models of quantum mechanics [1]. However, describing a system in
classical terms, even though it is elegantly described by quantum theory, can offer
benefits. Often classical pictures are more intuitively understood than quantum
mechanical ones and help to develop new ideas which might not be easily developed
using an abstract theory.

Here we describe a fully classical theory of radiating dipoles (= classical atoms)
inside a classical cavity (= non-quantized cavity field). We recapitulate the main
results of an instructive paper by the Vuletić group [26] and adapt them to our
situation.

5.2.1 Driving One Atom Inside a Cavity

A classical atom is a polarizable particle with a complex polarizability [110]

α = 6πε0c
3 Γ/ω2

0

ω2
0 − ω2

L − i(ω3
L/ω

3
0)Γ

RWA≈ 6πε0c
3

ω3
L

L[∆], (5.1)

with Γ as the dipole damping constant (see table 1.1). Using the rotating wave
approximation (RWA) with ∆ = ωL−ω0 � ω0, implying ω2

0 −ω2
L ≈ 2ωL(ω0−ωL),
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Parameter Formula Value

Cavity mode waist w0,M = w0,c 23µm

Round-trip time τ = 2`0/c 1.0 ps

Cavity mode volume V = πw2
0,M`0/4 64× 103 µm3

Max. coupling strength gmax =
√

3πΓc/(2k2
LV ) =

√
2g0 2π · 18 MHz

Cooperativity C = g2/(κΓ) 30 to 50

Table 5.2: Relations that allow the development of intuitive classical formulas de-
scribing driven atoms inside a cavity. The definitions of our system parameters
(`0, Γ, ω0,c, g0) are found in table 1.1. The cooperativity is calculated for typ-
ical experimental values of the atom-cavity coupling strength g as determined
below in subsection 5.3.2.

leads to the atomic line fucntion L[∆] = (−2∆Γ + iΓ2)/(Γ2 + 4∆2).

We drive the atom with a laser beam of Gaussian peak intensity IL and waist
wL. The atomic dipole scatters an electric field EM into a specific spatial Gaussian
mode M [26]:

EM = i
g

gmax

6L[∆]

k2
Lw

2
0,M

EL = i
g

gmax

βEL, (5.2)

where a phase factor i accounts for the emission phase of the dipole into M. The
electric fields E are connected to the Gaussian peak intensities by I = 1/2 · ε0c|E|2
and to the respective powers by P = 1/2 · πIw2. It is assumed that the Gaussian
mode M with waist w0,M is not too tightly focused w0,M � λL, which is fulfilled
for our experiments. The scaling factor g/gmax with g ≤ gmax takes into account
that the dipole does not need to be situated in the center of M. Note that the
classical model describes pure Rayleigh scattering, because the dipole emits at its
driving frequency ωL.

With the knowledge of Eq. (5.2) we can address the problem of one driven atom
which scatters into the mode M of a cavity and is trapped at an antinode of the
intra-cavity field (see Fig. 5.1 but with only one atom). The only, but significant
difference to the free space problem is the enclosure ofM by two mirrors. In steady
state, the field inside the cavity Ec has to reproduce itself after one round trip [26]:

Ec = 2EM + r2 exp[2ikL`0]Ec. (5.3)

Within a round trip the atom scatters bidirectionally into the cavity modeM with
field amplitude EM, while the cavity field accumulates a phase of 2kL`0 and is
reflected from the two mirrors with field reflectivity r. The values of all relevant
parameters for our system are listed in table 1.1.

The atom is simultaneously driven by the driving laser field EL and the intra-
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Quantity Formula Unit

intra-cavity photon number np = 2ε0|Ec|2V/(~ωL) —

output power after one cavity mirror Pout = 1
4
πε0cw

2
0,Mt

2|Ec|2 W

count rate on SPCM RD = ηoaκnp = ηdetPout/(~ωL) 1/ s

Table 5.3: Formulas relating typical measurement quantities to the classical equa-
tions established above. All quantities are directly proportional to each other.
The values of our system parameters are found in tables 1.1 and 5.2. The
overall detection efficiency ηoa is defined by Eq. (1.2)

cavity standing wave 2Ec. With Eq. (5.2) one finds

EM = i
g

gmax

β

(
EL +

g

gmax

2Ec

)
. (5.4)

The prefactor g/gmax is scaling the intra-cavity field twice: If for example the dipole
is not centered in the cavity mode it first gets less excited by the intra-cavity field
and than also scatters less light intoM with the same argument as for the driving
field EL. Experimentally, the coupling g to the cavity can additionally be reduced
due to the cavity mode polarization. The maximum possible coupling gmax for our
system is given in table 5.2.

For a more intuitive understanding we use table 5.2 and rewrite Eq. (5.4) as

EM = i
L[∆]

2
·
(gmax

Γ
· EL +

g

Γ
· 2Ec

)
· gτ, (5.5)

Now an interpretation of the involved factors is possible: The spatially homogeneous
driving laser field polarizes the atoms addressing the strongest dipole transition and
is therefore weighted with the maximal coupling rate gmax. The polarization of the
atoms induced by the cavity field scales with the reduced coupling rate g. Both
terms are divided by the atomic damping rate Γ. The last factor in Eq. (5.5)
is interpreted as the polarized atoms acting back onto the cavity field with the
coupling rate g within one round-trip time τ .

We insert Eq. (5.5) into Eq. (5.3) and solve for the cavity field

Ec = −EL
2

gmax

g

1
i

2CL[∆]
+ δ

2κCL[∆]
+ 1

, (5.6)

where we introduce the cooperativity C = g2/(κΓ), as one of the figures of merit
in coupled atom-cavity systems, and approximate r2 exp[2ikL`0] = r2 exp[2πi(δ +
ωc)/ωFSR] = r2 exp[2πiδ/ωFSR] ≈ r2 +2iδr2`0/c, using δ = ωL−ωc � ωFSR = πc/`0,
and further as r2 + iδ(1− r2)/κ, using that κ = (1− r2)/τ for r ≈ 1.

Table 5.3 relates Eq. (5.6) to typical measurement quantities, such as the SPCM
count rate RD.
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Variation of g

Pumping the cavity on resonance, an increase of the atom-cavity coupling g leads
to a decrease in the cavity-output power [34]. This effect is intuitively explained
by the increasing distance between the normal modes of the system as g increases:
Staying resonant with the cavity the singly excited dressed states are less and less
populated and the intra-cavity photon number np and the count rate RD decrease.

Driving the atom from the side one might expect that the situation is reversed and
more light is scattered into the cavity mode due to a Purcell-like enhancement [111,
112].

Therefore, aiming at a high singal-to-noise ratio, it seems reasonable to maximize
RD by increasing g. Fig. 5.3 shows that this strategy does not lead to a higher count
rate for our system parameters.

The power emitted into the cavity vanishes for the two limiting cases g → 0 and
g →∞. This behavior is studied and explained quantum mechanically in [113] and
is also shown to hold in the strong driving limit, where the classical description
would become invalid, since atomic saturation effects are not included1.

Staying well in the weak atomic saturation limit, it is instructive to study the
classical amplitude of the driven dipole. The amplitude of the electric field emitted
by the dipole is imprinted in EM in Eq. (5.5). The normalized amplitude of the
driven dipole in steady state is defined as

adipole =

∣∣∣∣EMEL · 1
1
2
· gmax

Γ
· gτ

∣∣∣∣ . (5.7)

It is normalized to the driving field strength EL and therefore equals 1 for a reso-
nantly driven dipole in free space. Within the Lorentz model this amplitude can
be viewed as proportional to the displacement of the electron from its equilibrium
position [114].

Fig. 5.3 shows that the dipole amplitude strongly depends on g. For g → 0 the
free space situation (g � κ, Γ) is recovered. The dipole oscillates with maximum
amplitude but no light is emitted into the cavity modeM since the effective atom-
cavity coupling is 0. As g and thereby C increase two effects set in.

On the one hand the increasing Purcell factor 2C directs the scattered light
more and more into M. For g → ∞ all the scattered light is directed into the
cavity. More quantitatively the count rate and the dipole amplitude are connected
by RD ∝ a2

dipole · 2C · κ2/(δ2 + κ2).

On the other hand – since the dipole sits in an antinode of the intra-cavity field –
the light that is scattered into the cavity and reflected from the cavity mirrors is
exactly π out of phase with the driving field. Thus driving field and intra-cavity
field more and more destructively interfere as g grows, leading to a smaller effective
dipole drive, due to cavity backaction.

1Section 5.5 explains the limits of the classical theory.
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Combination both effects an increase in g leads to an absolute increase of RD

due to the Purcell-like enhancement, until adipole gets so small that RD starts to
decrease again.

The blue region in Fig. 5.3 marks typical values of C that are experimentally
realized within this chapter and correspond to atom-cavity coupling magnitudes g
in an interval between 8 and 10 MHz. For our system the expected SPCM count
rate RD therefore becomes smaller as the coupling strength increases within this
interval.

Figure 5.3: Transversal driving of
a single dipole inside the cav-
ity. The variation of C =
g2/(κΓ) by scanning g and its
impact on the SPCM count
rate RD (black) and the dipole
amplitude adipole (gray) are
shown. Our typical experi-
mental C values are marked
in blue. Plot parameters from
section 5.1.

5.2.2 Driving N Atoms Inside a Cavity

The classical approach for one driven atom inside the cavity can be generalized to
N driven atoms that sit at arbitrary positions along the cavity (z-axis) and along
the driving beam (y-axis) [26].

The position zn of atom n effects its coupling to the standing wave cavity field.
This is subsumed in the effective coupling strength per atom for the cavity

H =
1

N

N∑
n=1

cos2[kLzn]. (5.8)

Furthermore the atoms scatter photons from the driving field into the cavity
mode. To describe this process the relative phases along the driving laser and
along the cavity axis matter and are included in the collective coupling strength
per atom for the driving beam:

G =
1

N

N∑
j=n

exp[ikLyn] cos[kLzn]. (5.9)

Here we have assumed that the atoms are still close to the maximum of the Gaussian
cavity mode, even though they can be at different y-positions. The parameter G
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explains the role of the two atomic patterns, which were already mentioned in
section 5.1. Along both axis (y, z), the two most interesting cases are realized for,
first, an inter-atomic spacing that is an integer multiple of λL, and second a spacing
of odd integer multiples of λL/2.

Exciting the atoms with the transversal driving laser, both the magnitude and
the phase of the atom-cavity coupling matter: In the first case (G = H = 1)
superradiant emission into the cavity mode M is measured [23, 106, 107], while in
the second case (G = 0, H = 1) a subradiant state with no emission into M is
formed. In contrast to this, for the excitation of atoms by the cavity field, only
the magnitude of the atom-cavity coupling is important and super- and subradiant
emission is not expected.

For an intuitive explanation we assume – as it is the case in our experiments –
that two atoms sit at maximum coupling in an antinode of the intra-cavity field.
The phase ϕ

(n)
z at each of the two atom positions can be either 0 or π, both leading

to H = 1.

Therefore the relative phase φz = |ϕ(1)
z − ϕ

(2)
z | along the cavity axis does not

matter if the cavity is pumped. In a test experiment we coupled two atoms strongly
to the cavity and pumped the cavity instead of the atoms. In contrast to the
strong photon-count fluctuations observed in Fig. 5.2(i), here a signal showing
little variance was measured.

If, however, the atoms are driven from the side and emit into the cavity, the col-
lective coupling parameter for the driving beam G additionally enters the dynamics.
Assuming ϕy = 0 for both atoms we get G = 1/2(1 · cos[ϕ

(1)
z ] + 1 · cos[ϕ

(2)
z ]), leading

to a net coupling of G = 0 for ϕ
(1)
z = −ϕ(2)

z , and of |G| = 1 for ϕ
(1)
z = ϕ

(2)
z , respec-

tively. Therefore, driving the atoms a change in the relative phase φz changes the
collective coupling to the cavity: Atom hopping from field antinode to field antin-
ode along the cavity axis leads to an interchange between sub- and superradiant
emission into the cavity.

With the two collective coupling parameters at hand Eq. (5.5) is rewritten as for

N atoms as EM = iN L[∆]
2
·
(
G gmax

Γ
· EL +H g

Γ
· 2Ec

)
· gτ and – as for a single atom

– inserted into Eq. (5.3):

Ec = −EL
2

gmax

g

NG
i

2CL[∆]
+ δ

2κCL[∆]
+NH . (5.10)

Theoretically both directions, y and z are of equal importance. Experimentally,
however, we do only observe clear dynamics (= atom hopping, cf. subsection 5.3.1)
along the cavity axis, but not along the driving laser axis. This is why we describe
the two directions separately. As a consequence we reserve the names λ- and λ/2-
pattern for the z-axis only.



Super- and Subradiant Two-Atom States 63

count rate (ms−1) measurement model free space
one atom 9(1) 9.5 9
two atoms 12(2) 12.1 36

Table 5.4: Measured and calculated count rates for one and two atoms. We com-
pare the data from Fig. 5.2 to the classical model for two constructively in-
terfering atoms with g = 8 MHz. The free space scenario predicts a fourfold
two-atom signal for the same single atom count rate.

5.2.3 The Influence of Strong Cavity Backaction

In our experiments the driving laser is resonant with the cavity and Eq. (5.10)
becomes

Ec = −EL
2

gmax

g

N
i

2CL[∆]
+N

, (5.11)

where we consider the situation of N atoms ordered in a superradiant pattern
(G = H = 1). In the bad cavity limit (κ � g and C small) RD ∝ |Ec|2 (see
table 5.3) scales with N2, as it was reported for superradiant scattering from a
Bose-Einstein condensate in free space [115]. Other experiments performed with
ions in free space [116] or ions interacting with their mirror images [117] also show
a strong N -dependence of the detected signal.

However, in the perfect cavity limit (κ→ 0 and C large) this dependency becomes
negligible due to cavity backaction: The intra-cavity field builds up until it (almost)
completely cancels the driving field at the positions of the N atoms. As shown in
Fig. 5.2 and table 5.4 our system is close to the perfect cavity limit, thereby showing
only a small difference in detected photon counts between the one- and the two-
atom case.

5.3 Super- and Subradiant Two-Atom States

For N = 2 atoms, with the first atom fixed at an antinode of the cavity field, the
coupling parameters in Eqs. (5.8) and (5.9) take the simple form

H =
1

2
(1 + cos2[φz])

G =
1

2
(1 + exp[iφy] cos[φz]),

(5.12)

where there relative phases read φy,z = |ϕ(1)
y,z − ϕ(2)

y,z|. With Eqs. (5.10), (5.12) and
table 5.3 the intra-cavity photon number np is computed and displayed in Fig. 5.4.
Fig 5.4(a) shows the theoretical dependence of np from φz for two atoms with φy = 0
(thick curve). For φz = 0 the atoms realize the λ-pattern and superradiant Rayleigh
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Figure 5.4: Classical (lines) and quantum mechanical (circles, see section 5.4) cal-
culations for two driven atoms coupled to a cavity. (a) For φy = 0 we show
the intra-cavity photon number np for our system parameters (see section 5.1,
g = 8 MHz, thick line) and, as a comparison, for a perfect cavity (κ = 0, thin
line). The right axis shows the SPCM photon count rate RD for our detection
efficiency. (b) Expected np and RD as a function of the relative driving laser
phase φy for λ and λ/2-patterns. The blue double arrow illustrates the jump-
ing between the two atomic patterns observed in Fig. 5.2(i). For this data φy
is close to an integer multiple of π.

scattering into the cavity mode is expected. For φz = π (λ/2-pattern) the atoms
are in a subradiant state, where no scattering into the cavity mode is predicted.
Note that for φz = π/2 the second atom sits at a zero-crossing of the intra-cavity
field and therefore is decoupled from the cavity: the situation is equivalent to the
one-atom case.

In order to compare our situation to the perfect cavity limtit, the thin curve is
plotted with the same parameters as the thick one, but for κ = 0. In the perfect
cavity limit no difference between the two superradiant atoms (φz = 0) and a single
emitter (φz = π/2) is visible.

5.3.1 Jump Contrast and Relative Driving Phase

For each measurement trace two atoms are loaded randomly into our conveyor
belt, realizing an arbitrary but fixed relative distance ∆y and phase φy along the
y-direction. Our data show that the upper and lower count rate levels of the two-
atom traces are constant (cf. Fig. 5.5). This is interpreted with the atoms jumping
back and forth between the λ- and the λ/2-pattern while ∆y and φy remain fixed
and corresponds to vertical jumps between the patterns in Fig. 5.4(b).

In addition, Fig. 5.4(b) illustrates the φy-dependence of the jump contrast. Be-
sides traces such as Fig. 5.2(i) or Fig 5.5(c) where φy is close to 0 or π (maximum
jump contrast), we do also observe traces with lower (see Fig 5.5(b)) or even van-
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Figure 5.5: Three data traces of two driven atoms inside the cavity. The bimodal
structure of the SPCM data arising from atom hopping between the λ- and
λ/2-pattern is clearly visible in the time traces and in the corresponding count
histograms. From the data we gain information about the phase φy and the
atom-cavity coupling strength g (see text).
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ishing jump contrast. The latter correspond to φy near π
2

or 3π
2

.

5.3.2 Extracting the Atom-Cavity Coupling Strength

We analyze the different mean values R
(mean)
D of the high and low count rate levels

in our data. Example traces are shown in Fig. 5.5, where (a) shows a higher

mean count rate R
(mean)
D ≈ 7 ms−1, while (b) and (c) show lower mean values

R
(mean)
D ≈ 5 ms−1.
The expected mean count rate as a function of the atom-cavity coupling strength

g is found by first evaluating Eq. (5.10) together with Eq. (5.12) at φy = π/2, where
both atomic patterns show the mean count rate as depicted Fig. 5.4(b).

For all recorded data traces R
(mean)
D is quantitatively evaluated by first subtract-

ing the background from the data and then fitting the count histograms with two
Gaussian functions. The mean value of the centers of the Gaussians is calculated
and compared to the model. We find – in good agreement with former exper-
iments [118] – that the atoms couple with an effective g between 8 and 10 MHz,
depending on the radial atom positions within the cavity mode in each experimental
repetition. Again, in analogy to the single-atom case depicted in Fig. 5.3, R

(mean)
D

decreases as g increases.

5.3.3 Jump Dynamics and Cooling

The observation of hopping along the z- but not along the y-direction is explained
by the fact that the dominating heating mechanism, parametric heating due to
fluctuations of the intra-cavity lock laser intensity, is strong along the z-axis but
negligible along the y-axis (see subsection 4.2.5). This claim is supported by the
fact that 1D Raman cooling along the z-axis significantly reduces the hopping rate,
see Fig. 5.6. To extract the jump rates from our noisy signals, we apply to our
data the hidden Markov-model (HMM) approach presented in reference [119] with
a time resolution of 50µs, which is much faster than the inverse jump rates. The
algorithm is based on two hidden states and calculates the probabilities of being in
the super- and subradiant emission pattern. While Fig. 5.6(c) is measured under
standard cavity cooling conditions [61], Fig. 5.6(d) shows data where an additional
Raman sideband cooling beam is continuously irradiating the atoms. By only
cooling on the νz-sideband frequency, we counteract the parametric heating, as
shown in chapter 4, and reduce the jump rate, which is also extracted using the
HMM model [119], from (39±15) to (8±4) Hz, corresponding to a factor2 & 5. For
both cooling scenarios the jump rates from the super- to the subradiant state and
vice versa are equal within the experimental uncertainty. This indicates that the

2In case of the Raman cooling data we only used data traces where clear count rate levels were
visible. Traces with very little variance were excluded from the analysis since here it is not
clear if two or only one atom couple to the cavity. Taking these excluded traces into account
would reduce the jump rate for Raman cooling further.
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Figure 5.6: Motional dynamics between super- and subradiant states of two atoms.
(a) HMM probabilities (see text) corresponding to the data in (b). The prob-
abilities for the super- and subradiant two atom states are yellow and green,
respectively. (c) and (d) compare data and HMM probabilities (background)
with cavity cooling only, and with additional continuous Raman sideband cool-
ing, respectively. The data bin time is 5 ms.

dynamics are governed by thermal excitations and not by collective forces which
can lead to self-ordering [106].

5.4 Quantum Theory of Two-Atom Dicke States

Even though the classical theory can fully explain the observed effects of super-
and subradiant Rayleigh scattering of two atoms, the examination of a quantum
mechanical approach is advantageous for two reasons. First, new pictures and
thoughts are developed as the problem is viewed from a different angle. Second,
there are limits to the classical theory, which become evident as it is compared to
a more general quantum theory.

5.4.1 Ideal Loss-Free Situation

Aiming at an intuitive picture, we start with a loss-free situation: The atomic
excited state decay (Γ) and the cavity loss channel (2κ) are excluded from the dy-
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|gg〉 |+〉 |−〉 |ee〉
Ŝ+ 0 |gg〉 0 |+〉
Ŝ†+ |+〉 |ee〉 0 0

Ŝ− 0 0 |gg〉 −|−〉
Ŝ†− |−〉 0 −|ee〉 0

Table 5.5: Action of the Dicke operators on relevant two-atom states. It is notable
that the symmetric operators Ŝ

(†)
+ cannot create the antisymmetric Dicke state

|−〉, whereas the antisymmetric operators Ŝ
(†)
− cannot create the symmetric

Dicke state |+〉. This means the operators do not mix the symmetric and the
antisymmetric states in the low excitation limit.

namics. The coherent internal dynamics of two atoms in a cavity under transversal
driving is described by the Hamiltonian [120]

Ĥ = Ĥat + Ĥcav + Ĥat-cav + ĤL with

Ĥat = −~∆
∑
n=1,2

σ̂†nσ̂n

Ĥcav = −~δ â†â
Ĥat-cav = ~

∑
n=1,2

gn(â†σ̂n + âσ̂†n)

ĤL = ~/2
(

(Ω∗1σ̂
†
1 + Ω1σ̂1) + (Ω∗2σ̂

†
2 + Ω2σ̂2)

)
.

(5.13)

The atomic Hamiltonian Ĥat depends on the atomic rising and lowering operators
σ̂†n = |e〉n〈g| and σ̂n = |g〉n〈e|, which change the internal state of atom n. The
cavity field operators â† and â enter the cavity field Hamiltonian Ĥcav and create
or annihilate photons, respectively.

The interaction between atom and cavity field is governed by Ĥat-cav. The atom-
cavity coupling strength of atom n is given with gn = g cos[ϕ

(n)
z ]. If both atoms

are at the antinodes of the intra-cavity standing wave, a λ-pattern for φz = |ϕ(1)
z −

ϕ
(2)
z | = 0 with g1 = g2, and a λ/2-pattern for φz = π with g1 = −g2 is realized.
The operator ĤL describes the interaction between atoms and the non-quantized

transversal driving-laser field. The Rabor frequencies are given by Ω1 = ΩLe
iφy/2

and Ω2 = ΩLe
−iφy/2 with ΩL = Γ

√
IL/(2Isat) and Isat ≈ 1.1 mW/cm2 [37].

The relative phase φy and the detunings δ and ∆ are defined in sections 5.1 and
5.3, respectively.

If one wants to understand the dynamics of the atom-cavity system it is instruc-
tive to transfer its inherent symmetry to the form of the Hamiltonian. We use the
abbreviation |ij〉 = |i〉1 ⊗ |j〉2 for the two-atom state. If necessary the cavity state
is included by |ij, kc〉 = |i〉1 ⊗ |j〉2 ⊗ |k〉c.



Quantum Theory of Two-Atom Dicke States 69

Following [109] the symmetric and antisymmetric Dicke states |±〉 = (|eg〉 ±
|ge〉)/

√
2 are introduced. The Dicke states are created from the atomic ground

state with the help of the Dicke operators

Ŝ± =
1√
2

(σ̂1 ± σ̂2), (5.14)

by Ŝ†±|gg〉 = |±〉. The action of the Dicke operators on their natural basis vectors
is shown in table 5.5.

Within the further discussion in this section the state |ee〉 will be neglected. This
is allowed in the low excitation limit, where the population in |ee〉 is small.

Using Eq. (5.14) the atom-cavity interaction in Eq. (5.13) is written as

Ĥat-cav = Ĥ+ + Ĥ− with

Ĥ± = ~g±(âŜ†± + â†Ŝ±) and

g± =
1√
2

(g1 ± g2) =
g√
2

(1± cos[φz]),

(5.15)

where – analog to the classical calculus – for the second equal sign of the last
equation one atom is fixed at an antinode of the intra-cavity standing wave, while
the other atom is free to move along the z-axis.

The laser-atom interaction is rewritten as

ĤL = ~/2 ·
√

2ΩL

(
cos[φy/2]Ŝ+ + i sin[φy/2]Ŝ− + H.c.

)
. (5.16)

Fig. 5.7 pictures the dynamics governed by ĤL (a) and Ĥat-cav (b) in the low
excitation limit.

For a relative driving phase φy = 0 (e.g. both atoms at the same y-position)

only the atomic state |+〉 is populated. If a λ-pattern is realized, Ĥ+ couples the
atoms to the cavity mode and maximum cavity output can be detected, whereas a
λ/2-pattern, coupled to the cavity by Ĥ−, leads to no cavity output.

For φy = π the situation is reversed and a λ/2-pattern leads to maximum cavity
output.

Realizing any phase in between, emission of photons into the cavity mode is
expected for both atomic patterns. A special case is φy = π/2. Here no difference
in the cavity output is predicted for either pattern, as already discussed for the
classical calculations in section 5.3.

It is notable that the collective coupling rates are increased by
√

2 compared
to the single atom rates, compare Eqs. (5.15), (5.16) to Eq. (5.13). This

√
N -

enhancement is typical for Dicke dynamics [27,108].

5.4.2 Master Equation Approach

For a quantitative comparison to the measured data and to the classical theory
the master equation of the system is solved. Following [120], the dynamics of the
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(a) (b)
transversal pumping -pattern -pattern

Figure 5.7: Quantum-mechanical picture of super- and subradiant scattering of
two atoms in a cavity. (a) Driving laser pumping the Dicke states. As a
function of the relative driving phase φy the symmetric |+〉 or antisymmetric
|−〉 Dicke state is weakly excited. (b) Coupling to the cavity for λ-pattern,
φz = 0 and λ/2-pattern, φz = π. Depending on the atomic pattern, only |+〉
or only |−〉 couples to the cavity. If the cavity-coupled Dicke state is pumped
by the driving laser, the cavity mode is populated with photons (|0c〉 → |1c〉),
which leave the system via the cavity loss channel 2κ and can be detected by
the SPCM (see Fig. 5.1(a)).

system are described by the Lindblad master equation for the density matrix ρ of
atoms and cavity mode:

∂

∂t
ρ̂ =

1

i~
[Ĥ, ρ̂] +

Γ

2

∑
n=1,2

(2σ̂nρ̂σ̂
†
n − σ̂†nσ̂nρ̂− ρ̂σ̂†nσ̂n)

+ κ(2âρ̂â† − â†âρ̂− ρ̂â†â).

(5.17)

The Hamiltonian is given in Eq. (5.13) and the incoherent dynamics are governed
by the atomic decay via Γ and the cavity decay via 2κ.

The master equation is numerically solved [121] for the steady-state density ma-
trix ρ̂ss and the intra-cavity photon number is calculated according to np =

〈
â†â
〉

=
Tr
[
â†âρ̂ss

]
, where Tr denotes the trace operation. With table 5.3 the SPCM count

rate RD is calculated. For our parameters the results fully agree with the classical
calculus (see Fig. 5.4).

5.5 Limits of the Classical Description

The master equation approach also holds if the atoms are driven into saturation
and the excited state populations ρ

(n)
ee = Tr [|e〉n〈e|ρ̂ss] are not negligible. For our

measurements ρ
(n)
ee < 10−3.



Limits of the Classical Description 71

The classical analog to ρee is the squared amplitude a2
dipole of the driven dipole

(see Eq. (5.7)), which does not saturate as the intensity is increased. Therefore, for
strong driving, which – without any notable difference in the theoretical results –
is realized by decreasing ∆ or increasing IL, the classical theory is expected to
fail in describing real world atoms. Specifically incoherent scattering, which is not

Figure 5.8: Comparison between
quantum mechanical (black)
and classical (gray) calculus for
strong driving of two atoms in-
side a cavity. All parameters are
chosen equally to Fig. 5.4, except
for the laser-atom detuning that
is reduced form ∆ = 100 MHz
to 0. This leads to atomic
saturation with ρ

(n)
ee > 0.25 for

the λ/2-pattern (φz = π), which
is not taken into account in the
classical approach.
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included in the classical theory, becomes dominant for significant atomic popula-
tions ρ

(n)
ee . In this limit the behavior of the system changes significantly. Fig. 5.8

illustrates the quantum mechanical (black line) and the wrong classical (gray line)
solution for strong driving. Here a higher detection rate in case of the λ/2-pattern
(φz = π) than in case of the λ-pattern (φz = 0) is expected. In the λ/2-configuration

ρ
(n)
ee becomes large and incoherent scattering dominates compared to Rayleigh scat-

tering: Interference effects become negligible and the Dicke-state picture, shown
in Fig 5.7, is invalid. Reference [120] describes the strong driving limit is in more
detail.

A last remark on the approximations that have been made as the classical theory
was developed in subsection 5.2.1: The waist of the cavity mode w0,M, which scales
inversely with g, was assumed to be much bigger than λL and the approximation
for the cavity field decay rate κ = (1 − r2)/τ only holds for r ≈ 1. Therefore the
fast cavity limit, also called Purcell limit [111,122], (C ∼ 1, κ > g,Γ) is not covered
by the classical theory since this limit is realized for large κ and g while at the same
time Γ needs to be small.





6 Conclusion and Outlook

Within this thesis advanced motional control and cooperative effects of atoms
strongly coupled to a high-finesse cavity have been shown.

6.1 Motional Control

On the one hand the investigated carrier-free Raman cooling scheme turned out
to be the approach of choice for reaching the 2D motional ground state of atoms
coupled to our cavity. On the other hand the presented measurements implement
and characterize a method that should be valuable to a range of atomic physics
experiments. It provides a robust experimental solution for ever more integrated
and miniaturized setups, which make the fast and lossless preparation of cold atoms
a significant challenge. We highlight that the absence of the carrier is a generic
feature of any scheme that traps atoms in the zero-crossing of the electric field
of one of the two Raman beams. Carrier-free Raman manipulation is therefore
suitable for many blue detuned optical dipole potentials, including optical lattices,
microtrap arrays and higher order paraxial (e.g. “doughnut”) beams [123].

The 2D ground state cooling can further be extended to all three dimensions
by implementing strong confinement along the x-direction, for example by a third
standing wave dipole trap. Additionally the propagation direction of the Raman
laser needs to be changed in this case to include a projection along the x-direction.

Finally due to its straightforward and established method for temperature ex-
traction [75] the scheme can be applied to benchmark other less established and
more complicated thermometrical measurement schemes. Indeed measurements
comparing Raman-spectroscopy to heterodyne-spectroscopy [85] data have already
been taken and we plan on publishing the material soon.

6.2 Cooperative Coupling

During the analysis of the cavity-modified super- and subradiant Rayleigh scat-
tering of two atoms it became clear that the systems behavior is governed by the
relative phases of the light fields at the atom positions. We demonstrated the ex-
traction of information on these relative phases and employed carrier-free Raman
cooling to reduce the jump rate between super- and subradiant configurations.
Thereby we improved the control over the system to a level where the realization
of two-atom entanglement schemes, which involve optical cavities and rely on the
measured relative phase information, become feasible [124–126].
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The classical analysis intuitively explained that the cavity output power for su-
perradiant scattering of two atoms is almost equal to the single emitter case: the
effect is based on cavity backaction which becomes strong in the good cavity limit.
The quantum mechanical explanation reveals that our system and its inherent sym-
metry are well described by the language of cooperative Dicke states [108].

Recently the general interest in many-atom Dicke-physics proposals involving
cavities [27, 106] is increasing [127]. In reference [107] self-ordering and a Dicke
phase transition of 105 driven atoms inside a cavity have been observed. Extending
our carrier-free Raman cooling scheme to reach 3D motional control (see above), we
could be able to perform experiments in a regime where self-ordering can be studied
with as few as 10 to 100 atoms [106]. Our ability to precisely control the intra-
cavity atom number N would enable us to investigate the onset of self-ordering as
one atom after another is added to the system.

Such experiments aiming at a bottom-up approach also start to emerge in the
ion community, where collective coupling involving super- and subradiant states of
two ions in a cavity has been reported [128].
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[77] A. Kerman, V. Vuletić, C. Chin, and S. Chu, Beyond optical molasses: 3D
Raman sideband cooling of atomic cesium to high phase-space density, Phys.
Rev. Lett. 84, 439 (2000)

[78] M. Fleischhauer and J. P. Marangos, Electromagnetically induced trans-
parency : Optics in coherent media 77, 633 (2005)

[79] G. Morigi, J. Eschner, and C. Keitel, Ground state laser cooling using elec-
tromagnetically induced transparency, Phys. Rev. Lett. 85, 4458 (2000)

[80] C. F. Roos, D. Leibfried, A. Mundt, F. Schmidt-Kaler, J. Eschner, and
R. Blatt, Experimental demonstration of ground state laser cooling with elec-
tromagnetically induced transparency, Phys. Rev. Lett. 85, 5547 (2000)

[81] T. Kampschulte, W. Alt, S. Manz, M. Martinez-Dorantes, R. Reimann,
S. Yoon, D. Meschede, M. Bienert, and G. Morigi, Electromagnetically-
induced-transparency control of single-atom motion in an optical cavity, Phys.
Rev. A 033404, 1 (2014)

[82] T. Kampschulte, W. Alt, S. Brakhane, M. Eckstein, R. Reimann, A. Widera,
and D. Meschede, Optical Control of the Refractive Index of a Single Atom,
Phys. Rev. Lett. 105, 153603 (2010)

[83] T. Savard, K. O’Hara, and J. Thomas, Laser-noise-induced heating in far-off
resonance optical traps, Phys. Rev. A 56, R1095 (1997)

[84] S. Stenholm, The semiclassical theory of laser cooling, Rev. Mod. Phys. 58,
699 (1986)

[85] S. Manz, Heterodyne spectroscopy with single atoms in a high-finesse optical
cavity, master thesis, Bonn (2012)

[86] S. Kuhr, W. Alt, D. Schrader, I. Dotsenko, Y. Miroshnychenko, W. Rosenfeld,
M. Khudaverdyan, V. Gomer, A. Rauschenbeutel, and D. Meschede, Coher-
ence Properties and Quantum State Transportation in an Optical Conveyor
Belt, Phys. Rev. Lett. 91, 213002 (2003)



Bibliography 81

[87] A. Fuhrmanek, R. Bourgain, Y. R. P. Sortais, and A. Browaeys, Free-Space
Lossless State Detection of a Single Trapped Atom, Phys. Rev. Lett. 106,
133003 (2011)

[88] M. J. Gibbons, C. D. Hamley, C.-Y. Shih, and M. S. Chapman, Nondestruc-
tive Fluorescent State Detection of Single Neutral Atom Qubits, Phys. Rev.
Lett. 106, 133002 (2011)

[89] M. Khudaverdyan, W. Alt, T. Kampschulte, S. Reick, a. Thobe, a. Widera,
and D. Meschede, Quantum Jumps and Spin Dynamics of Interacting Atoms
in a Strongly Coupled Atom-Cavity System, Phys. Rev. Lett. 103, 123006
(2009)
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wieder häufiger das

”
Lied vom Birnbaam“ für euch singen.

Anna Hambi, Du Python-Maus, vielen vielen Dank für Geist und Tat, besonders
in der heißen Schlussphase meiner Arbeit!


	Introduction
	Experimental Setup
	Overview
	An Improved Conveyor Belt Drive
	Characterization
	Heating and Atom Lifetime

	A Stable Laser Source: The Interference Filter Laser
	An Optimized High-Finesse Cavity Lock
	Influence of Parasitic Amplitude Modulation
	The Final Cavity-Lock Setup

	Motional Harmonic Oscillator Quantities

	The Art of Cooling Inside an Optical Cavity
	Cavity Cooling
	Pumping the cavity
	Transversally driving the atom
	Experimental Realizations

	Ground-State Cooling of Atoms Inside a Cavity
	Raman Cooling
	EIT cooling

	Comparison of Intra-Cavity Cooling Schemes

	Non-Destructive Hyperfine State Detection Inside an Optical Cavity
	Comparison to Other State-Detection Schemes
	Non-Destructive State-Detection Scheme
	Variable Threshold Method
	Maximum Likelihood Method
	Limits of the Cavity-Enhanced Detection Scheme

	Carrier-Free Raman Manipulation of Atoms in an Optical Cavity
	Raman Laser Setup
	Raman Sideband Transitions and Raman cooling
	Geometrical Situation
	Motional State Coupling and Carrier Suppression
	2D Temperature Model
	Sideband Spectroscopy and Cooling
	Intra-Cavity Heating Rate and Rabi Oscillations

	Conclusion

	Cavity-Modified Super- and Subradiant Rayleigh scattering
	Experimental Setup
	Classical Description of Driven Atoms Inside a Cavity
	Driving One Atom Inside a Cavity
	Driving N Atoms Inside a Cavity
	The Influence of Strong Cavity Backaction

	Super- and Subradiant Two-Atom States
	Jump Contrast and Relative Driving Phase
	Extracting the Atom-Cavity Coupling Strength
	Jump Dynamics and Cooling

	Quantum Theory of Two-Atom Dicke States
	Ideal Loss-Free Situation
	Master Equation Approach

	Limits of the Classical Description

	Conclusion and Outlook
	Motional Control
	Cooperative Coupling

	Bibliography

