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Summary

The present work investigates the state-selective transport of single neutral cesium
atoms in a one-dimensional optical lattice. It demonstrates experimental appli-
cations of this transport, including a single atom interferometer, a quantum walk
and controlled two-atom collisions. The atoms are stored one by one in an optical
lattice formed by a standing wave dipole trap. Their positions are determined with
sub-micrometer precision, while atom pair separations are reliably inferred down
to neighboring lattice sites using real-time numerical processing. Using microwave
pulses in the presence of a magnetic field gradient, the internal qubit states, encoded
in the hyperfine levels of the atoms, can be separately initialized and manipulated.
This allows us to perform arbitrary single-qubit operations and prepare arbitrary
patterns of atoms in the lattice with single-site precision.

Chapter 1 presents the experimental setup for trapping a small number of cesium
atoms in a one-dimensional optical lattice. Chapter 2 is devoted to fluorescence
imaging of atoms, discussing the imaging setup, numeric methods and their per-
formance in detail. Chapter 3 focuses on engineering of internal states of trapped
atoms in the lattice using optical methods and microwave radiation. It provides a
detailed investigation of coherence properties of our experimental system. Finally
manipulation of individual atoms with almost single-site resolution and preparation
of regular strings of atoms with predefined distances are presented.

In Chapter 4, basic concepts, the experimental realization and the performance of
the state-selective transport of neutral atoms over several lattice sites are presented
and discussed in detail. Coherence properties of this transport are investigated in
Chapter 5, using various two-arms single atom interferometer sequences in which
atomic matter waves are split, delocalized, merged and recombined on the initial
lattice site, while the interference contrast and the accumulated phase difference are
measured. By delocalizing a single atom over several lattice sites, possible spatial
inhomogeneities of fields along the lattice axis in the trapping region are probed.

In Chapter 6, experimental realization of a discrete time quantum walk on a line
with single optically trapped atoms is presented as an advanced application of mul-
tiple path quantum interference in the context of quantum information processing.
Using this simple example of a quantum walk, fundamental properties of and dif-
ferences between the quantum and classical regimes are investigated and discussed
in detail. Finally, by combining preparation of atom strings, position-dependent
manipulation of qubit states and state-selective transport, in Chapter 7, two atoms
are deterministically brought together into contact, forming a starting point for in-
vestigating two-atom interactions on the most fundamental level. Future prospects
and suggestions are finally presented in Chapter 8.
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Introduction

In the course of the 20th century, scientific understanding of phenomena in the
microscopic world has revolutionarily changed by the developments in quantum
theory. While in the second half of the century the experimental effort has been
primarily focused on the demonstration and systematic investigation of such phe-
nomena, on the dawn of the new millennium a paradigm change has taken place.
Leaving the role of the passive observer a new direction has been pursued, focus-
ing on controlled isolation and manipulation of elementary quantum mechanical
processes. Stimulated by the technological progress, control over isolated quantum
systems has been increasingly gained, initiating investigations of their possible use
in practical applications. In this context, a new interdisciplinary research field —
quantum information theory — has evolved, picking up and combining concepts
of classical information theory, mathematics, communication science and physics.
The most prominent goal of this field is the realization of a universal quantum com-
puter [1], from which efficient solution of complex problems and a wide range of
possible applications is expected in the future. The interest on a quantum computer
is encouraged by the trend towards miniaturization in the semiconductor technol-
ogy, which sooner or later approach a fundamental limit of atomic dimensions. By
then at the latest, engineering and control of quantum mechanical processes will be
unavoidable.

The basic unit of quantum information is the quantum bit, or in short qubit,
encoded in a quantum two-level system. In contrast to its classical counter part,
which can take just one of two distinct basis states |0) or |1), a qubit can be
prepared in a superposition of these states. Tensor products of qubits are called
quantum registers, in analogy to the classical processor registers. Superpositions
of quantum register states are commonly referred to as entangled states having
no classical equivalent. Analogous to the classical case, in which information is
typically processed using logical gates, quantum information can be processed by
so-called quantum gates — coherent unitary transformations typically operating on
a single qubit (single-qubit gates) or a pair of qubits (two-qubit gates).

Alternatively to the traditional gate-based quantum computing [2], quantum
walks have been recently proposed [3-6]. The quantum walk is a quantum mechan-
ical analogue of the classical random walk with remarkably different properties,
which arise from its particular ability of quantum interference. This characteris-
tic ability is primarily used to design quantum algorithms, which mostly outper-
form their classical counterparts for the same problem [7]. Random walks have
already proven useful in different fields, including computer science [8], physics,
chemistry [9], biology [10], economics [11], and other fields relying on random pro-
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cesses in time [12]. By translating random walks to their quantum mechanical
counterparts, new efficient quantum algorithms are hoped to be found in the fu-
ture.

In recent years, tremendous progress has been made in developing and experi-
mentally realizing concepts of quantum information theory. From the theoretical
side, for instance, an increased efficiency in solving of particular problems has been
reported [13-15] while various approaches for universal quantum computing have
been proposed [16-18]. The experimental realization, however, turns out to be by
far more difficult, due to high requirements on the possible two-level quantum sys-
tem regarding the scalability, manipulation and isolation from its environment [19].
There are currently only few systems, which partially meet these requirements,
including ions in Paul traps [20], nuclei in molecules [21], and cooper-pairs in
Josephson junctions [22]. In some of them notable progress have been achieved.
By coupling ions through their collective motional degrees of freedom, entangled
states have been deterministically generated [23,24] and employed for implemen-
tation of quantum gates and the Deutsch-Jozsa algorithm [25]. Using nuclei in
molecules a simple Grover’s search [13] for a system with four states [26] and Shor’s
algorithm [14,15] on the number 15 has been experimentally demonstrated [27].

Neutral atoms in optical lattices provide a further promising two-level quantum
system [28-30]. Their isolation from the environment and easily accessible long-
living internal states make them ideally suited for use in quantum information
processing. Two-qubit gates can be realized either through exchange of photons in
high-finesse cavities [31-33], Rydberg blockade interactions [34-36] or coherent cold
collisions in state-selective optical lattices [37]. So far, state-selective optical lattices
have been realized for large ensembles of Rubidium atoms in a Mott insulating
state [38,39], impressively demonstrating controlled and coherent delocalizing of
an atomic wave function over a defined number of lattice sites [40] and generating
large-scale entanglement [41]. However, controlling each individual atom of such
ensemble and a quantitative measurement for the size of the entangled many-body
state has been not feasible so far.

For this reason, another approach has been followed in our research group over
the years. Instead of starting from a large ensemble and working towards full
control of its individual parts (“top-down” approach), following Ref. [42] we rather
prefer to investigate small well-controllable systems of few atoms and extending
them atom-by-atom to larger system (“bottom-up” approach).

This thesis continues the tradition of the bottom-up approach, focusing on quan-
tum state engineering with unprecedented resolution and precision and the exper-
imental realization of a state-selective transport of single neutral atoms and its
applications in a one-dimensional optical lattice. For this purpose, an experimental
setup has been designed and constructed from scratch which allows to trap a small
number of cesium atoms in the lattice, determine their position with sub-micrometer
precision and reliably infer atom pair separations down to neighboring lattice sites
using real-time numerical processing of fluorescence images with a markedly im-
proved quality and reduced noise. Previous restrictions imposed by the diffraction



limit [43] are overcome by a precise knowledge of the transfer function of the opti-
cal system. The increased reliability is achieved by taking the signal-noise relation
in the numerical method into account. Both, the transfer function and signal-
noise relation can by directly and precisely deduced from fluorescence images of
atoms alone. Recently, single-site detection and addressability using focused elec-
tron beams from an ultra-high vacuum compatible electron gun [44,45] has been
reported. However, this technique is not easily integrated in many neutral atoms
experiments, in which, in contrast, optical imaging by fluorescence light is widely
established.

The internal states of individual atoms in the optical lattice are manipulated using
microwave radiation [46-48] and detected by projection measurements [49]. Most of
these methods originate from nuclear magnetic resonance originally developed for
solid-state systems and recently found their way into quantum optics experiments
using cooled trapped atoms [21]. I present the technical implementation of these
methods, analyze their performance and investigate the coherence properties of our
system. Using a magnetic field gradient along the lattice axis, individual atoms are
coherently manipulated with almost single-site resolution. This ability is used to
prepare regular strings of atoms with predefined distances, which form the starting
point for experiment relying on controlled two-atom collisions.

The central topic of this thesis is the state-selective transport of single thermal
atoms in a one-dimensional optical lattice. I present its basic concepts, our ex-
perimental realization and technical limitations, and finally, experimental results,
from which the transport efficiency is inferred. So far, the question whether coher-
ent transport can be adapted to a thermal ensemble of atoms and to which extent
coherence properties are then maintained, remained unanswered. We aim to close
this gap, investigating coherence properties of the transport using a two-arm single
atom interferometer in which atomic matter waves are split, delocalized, merged
and recombined on the initial lattice site, while the interference contrast and the
accumulated phase difference is measured. Delocalizing a single atom over several
lattice sites allows us in principle to probe spatial inhomogeneities of fields along
the lattice axis in the trapping region.

As an advanced application of multiple path quantum interference in the con-
text of quantum information processing, following the proposal of Ref. [50], the
experimental realization of discrete time quantum walk in position space with sin-
gle optically trapped atoms is presented. This basic example of a walk provides
all of the relevant features necessary to understand the fundamental properties of
and differences between the quantum and classical regimes. Simultaneous detection
of internal state and the atomic position in the lattice by our imaging techniques
allows for local quantum state tomography of the wave function. In contrast to
other recent implementations of quantum walks [51,52], it theoretically augurs im-
plementations with up to several hundred steps [50].

Finally, by combining preparation of atom strings, position-dependent manipu-
lation of qubit states and state-selective transport, two atoms are brought together
into contact, forming a starting point for investigating two-atom interactions on
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the most fundamental level. By this, unbiased insights into details of two-atom
interactions are anticipated, which can be used for implementing two-qubit gates
in the future [37,41,53-55].



1. Trapping of single atoms

Quantum engineering on single atom scale requires a fully controllable system of in-
dividual atoms, which are well isolated from their environment. Since the invention
of laser cooling in 1975 [56, 57| and magneto-optical trap in 1987 [58], such sys-
tems are commonly realized by capturing neutral atoms from a dilute gas at room
temperature, cooling them down to sub-millikelvin temperatures and transferring
them into a periodic array of conservative trapping potentials of a so-called optical
lattice. The latter rely on an off-resonant interaction of polarizable particles with
the light field [59-61] formed by interference patterns of laser light.

Neutral atoms in optical lattices have been extensively studied over the past
decades, impressively demonstrating a variety of new experimental possibilities in
quantum optics, quantum information processing, and even in condensed matter
physics. For a general review, see Refs. [28-30] and references therein. Extensive
studies performed in our research group, which are closely related to this thesis,
can be found in Refs. [47,62-67].

In this chapter, the basic concepts of the magneto-optical trap and the standing
wave dipole trap are shortly summarized, introducing the terminology and defining
relevant parameters, which will be frequently used throughout this thesis. Both
traps are routinely employed to prepare initial configurations of well-localized in-
dividual atoms, which form the starting point of each experiment presented. The
main purpose of this chapter is rather to give a brief overview over the experi-
mental setup, which has been designed and constructed from scratch during this
thesis. Parts of this setup are discussed in detail in subsequent chapters or a parallel
thesis [68].

1.1. A magneto-optical trap

A magneto-optical trap (MOT) is a widely used tool to capture neutral atoms from
a dilute gas at room temperature, cool these atoms to sub-millikelvin temperatures
while keeping them confined for long times. It relies on the three-dimensional
Doppler cooling [56,57], extending this concept by an inhomogeneous magnetic field,
or more precisely a magnetic field gradient which provides a position-dependent
radiation pressure [58]. In our experiment, we use the MOT as a source of precooled
cesium atoms, the average number of which can be adjusted by the strength of the
field gradient.
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Figure 1.1.: Principle of operation of a magneto-optical trap (MOT). (a) Simplified one-
dimensional model to illustrate the origin of the position-dependent restoring force. A lin-
ear magnetic field gradient lifts the degeneracy of the sublevels of the excited state J' = 1.
For an atom displaced to the left from the trap center, the mjy =0 — mjy = 1 transition
is shifted into resonance. Being only excited by the o+ -polarized light field from the left,
the atom is pushed back to the center. (b) Schematics of a three-dimensional MOT.
Three mutually orthogonal pairs of counterpropagating circularly polarized laser beams
form the optical molasses. In presence of a quadrupole magnetic field B generated by a
pair of anti-Helmholtz coils, these beams exert cooling and position-dependent restoring
forces which confine the atoms in the center of the trap.

1.1.1. Principle of operation

The operation of a MOT relies on a velocity-dependent cooling force and a position-
dependent restoring force to provide spatial confinement of the atoms. The former
is realized by three mutually orthogonal pairs of counterpropagating laser beams
which are slightly red-detuned with respect to the atomic resonance. An atom
moving within the intersection region of the laser beams preferentially absorbs pho-
tons coming from the opposite direction of its motion, because their frequency is
Doppler-shifted closer to the atomic resonance. Since the subsequent spontaneous
reemission of photons is anisotropic, the net force resulting from the momentum
transfer slows the atom down, cooling it to a finite equilibrium temperature, the
so-called Doppler limit or Doppler temperature [69,70] given by

h
Ty = — 1.1
b= o (1.1)

Here I' denotes the natural line width of the atom and kg the Boltzmann constant.
The Doppler limit is imposed by the momentum kicks of absorbed and sponta-
neously reemitted photons which result in heating of the atom. For the commonly
employed Dy transition of a cesium atom at A = 852.3nm, it is I' = 27 x 5.2 MHz
and thus Tp = 125 uK. Note that the multi-level structure of the atom and prop-
erly set polarization of the light fields can permit sub-Doppler cooling mechanisms
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which may lead to temperatures below the Doppler limit [71]. Because of the
analogy to a viscous friction force for atoms moving in arbitrary directions, the
three-dimensional Doppler cooling is also referred to as optical molasses.

A position-dependent restoring force for spatial confinement of atoms is obtained
by circularly polarizing the light of the optical molasses and adding a quadrupole
magnetic field which is usually generated by a pair of anti-Helmholtz coils centered
with the intersecting cooling beams, see Fig. 1.1(b). The quadrupole field vanishes
at the center of the optical molasses and increases linearly in all directions, lifting
the degeneracy of the excited states due to the Zeeman effect and providing a level
splitting proportional to the distance from the center. This principle is illustrated
in Fig. 1.1(a) for a simplified one-dimensional model in which the relevant atomic
states are characterized by the angular momentum quantum numbers J and mj:
For red-detuned, orthogonally circularly polarized counterpropagating laser beams,
an atom displaced from the center of the quadrupole field is shifted closer into
resonance with that laser beam which pushes it back to the center. This principle
is easily extendible to three-dimensions, see Fig. 1.1(b).

Standard MOTs usually trap 102 —10'! atoms. Smaller numbers down to a single
atom can be captured using high magnetic field gradients which reduce the trap
radius and the capturing rate of atoms from a thermal background gas [62, 72].

1.1.2. Vacuum system

Experiments with optically trapped atoms have to be performed under ultra-high
vacuum (UHV) conditions to minimize the probability of collisions between these
atoms and particles from the thermal background gas. Such collisions limit the
lifetime of atoms in the trap, which in principle is the longer, the lower the residual
gas pressure. The primary goal in designing the UHV system is therefore to provide
the lowest possible pressure. Additionally, a variety of considerations have to be
taken into account, to which I will shortly refer in the following.

Glass cell

Not long ago, experiments with neutral atoms have been usually performed in stain-
less steel vacuum chambers with many windows for optical access. This concept,
however, has some major practical and economical disadvantages: Since imaging
optics with high numerical apertures require to be positioned close to the trapping
region of the atoms, the respective elements need to be placed inside the chamber,
which make them difficult to align from the outside. The same applies for mag-
netic coils which have to be preferably mounted close to the atoms to minimize
the dissipated power and the currents required for operation. Apart from the fact
that coated vacuum windows with a flatness of less than A\/4 per inch are com-
paratively expensive, using many windows increase not only the complexity of the
vacuum setup, but also the risk of vacuum leakage which increases with the number
of flanges required to mount them.
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Instead, we use a cuboid glass cell which permits a compact design and free
optical access almost over its entire extent. The glass cell is made from Vycor
glass (Corning, VYCOR 7913) — a 96% silica glass which is typically used for high
temperature applications. Its outer dimensions are 30 mm x 30 mm X 125 mm with
a wall thickness of 5 mm providing low diffusion leak rates. The surfaces of the glass
cell are optically polished to a flatness of \/4 per inch and broadband antireflection
coated at the outside (770 — 870 nm, 22.5°, R < 0.3%).! Due to the compact design,
coating at the inside of the glass cell was technically not possible. The inner surfaces
thus only provide a reflectivity of R &~ 4% in the relevant wavelength range. Despite
of this disadvantage, the compact design allows to place all imaging optics and
magnetic coils outside the vacuum, see Sec. 2.2.1 and Sec. 1.1.4, respectively.

The glass cell is fused to a tubular graded seal quartz-to-metal adaptor (Larson
Electronic Glass Inc., SQ-100-F2) with an inner diameter of 19 mm. The latter is
flanged to the vacuum chamber by a CF40 flange, see Fig. 1.2. In contrast to con-
ventional quartz-to-metal seals, which rather use Kovar to match the coefficients of
expansion, the adaptor is entirely made from nonmagnetic materials, the magnetic
permeability of which is less than 1.005. By this, magnetization of the adaptor is
effectively suppressed, allowing a high long-term stability of magnetic fields in the
trapping region of the atoms located in the center of the glass cell. This stability
is absolutely essential for working with magnetically sensitive internal states of the
atoms, see Chap. 3.

Vacuum apparatus

The vacuum apparatus comprises a custom-made vacuum chamber which has been
adapted exactly to the experimental requirements and manufactured in the insti-
tute’s own workshops. It is designed to maintain an ultra-high vacuum in the
attached glass cell, reduce the effect of magnetic distortions in the trapping re-
gion by employing nonmagnetic materials and placing magnetic sources in larger
distances from the trap center while keeping the design compact. The vacuum
chamber is made from nonmagnetic, forged stainless steel of grades ANSI 316LN
ESR (all CF flanges) and ANSI 316L (main pipe and pipe sockets), both providing
a magnetic permeability of less than 1.005. Apart from this property, these steel
grades are characterized by highest purity, homogenous structure and low out-
gassing rates. After the welding and manufacturing process, the vacuum chamber
has been vacuum-annealed at 1050 C for one hour. This established heat treatment
procedure not only removes residual impurities from the manufacturing process,
but also reduces the hydrogen amount in the steel and thus further decreases its
outgassing rates.

Note that the vacuum setup has been designed for optically cooling and trapping of both ru-
bidium and cesium atoms. The chosen wavelength range of the antireflection coating thus
comprises all required wavelengths for this purpose. The coating angle of incidence of 22.5°
sufficiently suppress reflections of commonly used beams, the incident angles of which range
from 0° to 45°.
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Figure 1.2.: Three-dimensional model of the vacuum apparatus.

In Figure 1.2, a three-dimensional model of the vacuum apparatus is shown. The
main pipe connects the glass cell to an ion-sublimation combination pump (Varian,
Vaclon Plus 300 combination pump with StarCell elements). The latter provides
a side-mounted CF port to which a water-cooled cryopanel (Varian, model 919-
0180) containing a titanium sublimation pump (Varian, model 916-0050) is flanged.
The length of the main pipe ensures a sufficiently large distance between the glass
cell and the permanent magnets of the ion pump, so that their stray magnetic
field can be easily compensated in the trapping region (|Bs| < 0.5G). The cross
section of the pipe is adapted to that of the ion pump, ensuring an optimum pump
performance. Both, the cesium and rubidium reservoirs are attached through all-
metal angle valves (VAT, “Easy-close” series 540) to the side-mounted CF16 ports
which are located close to the ion pump. A further CF40 port with an all-metal
angle valve seals the vacuum chamber against the atmosphere. To this valve, a
turbomolecular drag pumping station (Pfeiffer, TSU 071 E) has been temporarily
flanged to bring the pressure down to the operation region of the ion pump.

To unbiasedly measure the pressure, a Bayard-Alpert nude ionization gauge (Var-
ian, UHV-24p) is flanged deep into the vacuum chamber. By this, heating of its
inner walls during measurement is avoided, which otherwise would increase the out-
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MOT beams
lS cm :

Figure 1.3.: Three-dimensional model showing the mounting of the vacuum apparatus into
a rectangular opening of a custom-made optical table. For a better overview, a part of
the table and supporting elements attached to the upper CF port of the vacuum chamber
have been hidden in the model.

gassing rate. The ionization gauge has been frequently used in the early stage of
the experiment, i.e. until the desired pressure has been reached. Afterwards, we
estimate the pressure from the lifetime of the atoms in the dipole trap.

A CF63 port opposite to the glass cell holds a diffusion bounded quartz vacuum
window (Spectrosil 2000) which provides a flatness of A/4 per inch and is antire-
flection coated on both sides (770 — 870 nm, 0°, R < 0.3%). Two additional CF63
ports on both sides at the same height leave room for possible extensions.

The entire vacuum apparatus is rigidly mounted in an aluminum cage and placed
into a rectangular opening (60 cm x 30 cm) of a custom-made optical table (Thor-
labs) in such a way, that the vertical position of the glass cell is situated 5 cm above
the surface of the table, see Fig. 1.3. This table is made from nonmagnetic stain-
less steel (ANSI 316L). It is seismically mounted on active, self-leveling vibration
isolation supports, which prevent the coupling of ambient background vibration in
the building (typically in the 4 — 100 Hz range). By placing the bulky vacuum com-
ponents below the table, we not only save space on its surface, but also improve
the stability of the entire experimental setup by lowering the center of gravity of
the vacuum system. Otherwise, systems with a high center of gravity experience
stability problems, if they are supported on active self-leveling pneumatic isolators.

The vacuum apparatus has been baked at 200°C for one week. At full pump
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Figure 1.4.: Hyperfine level scheme of the Dy line of cesium. Red arrows indicate the
cooling and repumping transitions.

power, i.e. operating the ion pump and the titanium sublimation pump simultane-
ously, final pressures of less than 5 x 10~!? mbar have been achieved. Since then,
only the ion pump and the cryopanel are permanently operated. Including the
residual cesium gas, we typically achieve a pressure of 3 x 10~ mbar.

1.1.3. Laser system

Laser cooling and trapping of atoms in a MOT usually requires a closed cycling
transition. We therefore operate the cooling laser on the F' = 4 — F’ = 5 transition
of the Dy line (852.3nm), see Fig. 1.4, where throughout the thesis primed (non-
primed) quantum numbers refer to the 62P3/2 (6281/2) electronic state of cesium.
However, because of a small probability of off-resonantly exciting an atom to the
F’" = 4 level, from where it can spontaneously decay to the F' = 3 ground state, an
additional repumping laser operated on the F' = 3 — F’ = 4 transition is required
to pump the atom back into the cooling cycle. Both, the cooling and repumping
laser are external cavity diode lasers in Littrow configuration [73] (partially self-
development,? operated with a Toptica DC110 controller unit). They are actively
stabilized to atomic transitions using Doppler-free polarization spectroscopy [75,76],
resulting in line widths of approximately 1 MHz. Details on experimental setup and
performance, and further references can be found in Refs. [77,78].

The cooling laser is locked to the crossover signal of the FF =4 — F’ =3 and
F =4 — F' = 5 transition, the frequency of which is red-detuned by 225 MHz with

2An image of the diode laser design can be found in Ref. [74].
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1. Trapping of single atoms

respect to the F =4 — F’ =5 cycling transition. This detuning is partially com-
pensated using an acousto-optical modulator in double pass configuration. The
latter shifts the laser frequency by 2 x 110 MHz towards the cycling transition,
allowing us to control the power and detuning of the cooling laser beams electron-
ically. The repumping laser is directly locked to the signal of the FF =3 — F' =4
transition.

To save space on the main optical table, both diode lasers and the respective
spectroscopies are set up on a separate table. Single mode, polarization-maintaining
optical fibers guide the laser light to the main table close to the glass cell, see
Fig. 1.7 in Sec. 1.2.3. Right after the fiber coupler, each of the three incident MOT
beams is circularly polarized and focused to a waist radius of 1.4 mm in the trapping
region. The retro-reflected beams, the polarizations of which are changed by passing
through a quarter-wave plate twice, are focused slightly tighter to compensate for
the losses from passing the uncoated surfaces of the glass cell. The repumping beam
of the MOT is overlapped with the vertical cooling beam. Once the MOT beams are
properly aligned, this compact setup requires almost no maintenance over several
months.

1.1.4. Magnetic coil system

Trapping a small number of well-localized atoms in a MOT and transferring them
into an optical lattice to manipulate their electronic states requires a switchable
magnetic field gradient of the order of 300 G/cm. Such gradient can be generated by
a pair of magnetic coils in anti-Helmholtz configuration which for practical reasons
are placed outside the UHV glass cell. The design of these coils should be primarily
adapted to the geometrical constraints imposed by the dimensions of the glass cell
and the optical access required, for instance, for three mutually orthogonal pairs of
counterpropagating molasses beams and the imaging optics, see Sec. 2.2.1. It should
also consider the limited power for their operation, heat dissipation, additional
space for water cooling, stability and suppression of eddy currents for fast-switching
purposes, either by proper choice of materials or a clever design.

To provide the required field strength for an affordable power supply and meet
the geometrical constrains, the bobbins of the MOT coils have to be placed close
to the trapping region, aligned parallel to the surfaces of the glass cell. Taking the
intended paths of the MOT beams into account (see Fig. 1.3), their symmetry axes
have to coincide with the vertical MOT beam.

Besides operating a single atom MOT, we aim to employ a magnetic field gradient
to position-dependently manipulate electronic state of individual atoms trapped in
a one-dimensional optical lattice, see Sec. 3.4. Due to the geometry and confinement
of the optical lattice, such manipulations prefer the symmetry axis of the coils to
coincide with the lattice axis [79] since the field gradient of anti-Helmholtz coils in
their center is twice as strong along the symmetry axis compared to that along a
perpendicular axis. A stronger field gradient along the lattice axis improves both
the selectivity and efficiency of position-dependent manipulation of the atoms, see

12



1.1. A magneto-optical trap

Figure 1.5.: Three-dimensional model (left) and manufactured parts (right) of the MOT
coils. Special cooling water supply connections (a) serially connect the cooper pipes (b)
ensuring identical flow pressure in each pipe and thus protecting them from clogging by
calcification. Ultra-thin, thermally conductive and electrically resistant shrimp tubes (c),
and epoxy potting compounds (d) electrically isolate the coil bobbins from the cooper
pipes. Bobbins sides facing the glass cell (e) are painted black. Thermally conductive
gel-like pads (f) fill the gap between the outer wire layer and the brackets (j). A build-in
docking station (g) allows mounting a box with magnetic field sensors (h). Teflon bolts
(1) support the bobbins for a high stability.

Sec. 3.4. In our case, the lattice axis is perpendicular to the vertical MOT beam.
Consequently, a further pair of anti-Helmholtz coils is required, which we will refer
to as addressing coils. Finally, we need three pairs of mutually orthogonal Helmholtz
coils to compensate magnetic DC-fields and for application of guiding fields.

The dimensions of each coil pair have been numerically optimized to meet the
requirements and take the above constraints into account, including space require-
ment of other coils and their holders. Additionally, simple estimations of heat
dissipation have been performed. It turned out that not all optimum solutions
could be technically realized. For this reason, the final design has been developed
in cooperation with the institute’s own workshop, in which the coil system has been
finally manufactured. In the following, I will shortly present its main parts.

MOT coils

Each of the MOT coils has an inner diameter of 26 mm, an outer diameter of 106 mm
and a height of 20mm. It is wound with a flat, highly heat-resistant enameled
copper wire (2.00mm x 1.25 mm, type W 200, thermal class 200 C) and epoxy-
molded on a single-block milled-aluminum bobbin with integrated water cooling
copper pipes, see Fig. 1.5. The thermally conductive and electrically resistant
epoxy potting compound (Duralco 128) fixes the wire while ensuring ideal heat
dissipation by filling gaps between individual windings and provide a direct contact
to the water-cooled bobbin. To prevent induction of eddy currents during switching
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1. Trapping of single atoms

of the coils, each bobbin comprises a main slit from the center to the outside and 10
supporting slits segmenting the conductive material. Electrically bypassing of the
slits through the integrated cooper pipes is prevented by partially covering these
pipes with ultra-thin, thermally conductive and electrically resistant shrink tubes.
For stability reasons, both bobbins are supported against each other by Teflon
bolts to interrupt eddy currents around the glass cell between them. The bobbin
sides facing the glass cell are painted black to reduce stray light. Heat from the
outer winding layer is conducted to the water-cooled region using brackets. A thin,
thermally conductive and electrically resistant film electrically isolates the brackets
from each other and the slit bobbin. Highly compliant, gel-like pads (Bergquist,
Gap Pad VO Ultra Soft) fill the gap between the outer wire layer and the brackets
to support heat dissipation.

It should be mentioned that the entire coil design employs nonmagnetic materials,
including bolts and screws. The strength of the field gradient along the symmetry
axis of the MOT coils has been measured using a Hall-probe mounted on a trans-
lation stage, yielding (16.1 +0.1) G/cm A. The coils have been tested to sustain
continuous currents up to 12.5A (201 G/cm) and even 45 A for short times.

Addressing coils

A single addressing coil has an inner diameter of 148 mm, an outer diameter of
188 mm and a height of 40 mm. It is wound with two separated wires, each form-
ing an independent coil. By this, part of the addressing coils can be operated in
anti-Helmholtz configuration to generate strong quadrupole fields whereas another
part can be optionally operated in Helmholtz configuration at the same time to
provide a strong guiding field. For both coils, we use the same enameled wire as
for the MOT coils, which is also epoxy-molded on a single-block milled-aluminum
bobbin. Water cooling copper pipes are integrated close to the outer winding layer
for optimum heat dissipation. Unlike the MOT coils, the addressing coils have to
sustain high currents for long times maintaining a constant temperature. Because
of thermal expansion of the bobbins, the center of the quadrupole field may mea-
surably shift by a distance of approximately 2 um (see e.g. Fig. 7.1 in Sec. 7.1.2) if
their temperature changes on the order of one degree. This shift would affect the
position-dependent manipulation of the atoms. For this reason, besides maximizing
the strength of the field gradient, the coil design, including the winding geometry
has been primarily focused on heat dissipation. Suppression of eddy currents has
been merely considered by slitting the bobbins once.

In Figure 1.6(a), a three-dimensional model and the manufactured parts of the
addressing coils are shown. The strength of the field gradient along the symmetry
axis (lattice axis) is (2.84+0.1) G/cm A (measured with a Hall-probe). It agrees well
with the value inferred from the position-dependent Zeeman shift of the measured
atomic transition frequency, see Sec. 3.4.1, which gives (2.74 £ 0.01) G/cm A. The
coils have been tested to sustain continuous currents up to 45A (123 G/cm) for
the time intervals of interest. The optional Helmholtz coils provide a guiding field
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1.1. A magneto-optical trap

Figure 1.6.: Three-dimensional model (left) and manufactured parts (right) of (a) the
addressing coils, and (b) the compensation and guiding field coils. For a better overview,
the bobbins (black plastic) are hidden in the model in (b), whereas the front coil bobbin
has been removed in the image of manufactured parts. An image taken at an early stage
of the experiment (c), shows the cube-shaped coil system mounted to the aluminum cage
and the optical table.
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1. Trapping of single atoms

of (22.6 £ 0.1) G/A, resulting in a maximum field strength of 1000 G using the
currently available power supply, see below.

Compensation and guiding field coils

Compensation and guiding fields are generated by three pairs of mutually orthog-
onal, rectangular coils in Helmholtz configuration. They are wound with the same
enameled wire as the MOT coils. Each rectangular coil is epoxy-molded on a bobbin
which is milled from a durable hard plastic. This material is also used to support
the entire coil system, see Fig. 1.6(b), reducing the inductance of eddy currents.
The compensation and guiding field coils are air-cooled. Each pair provides a field
strength of 1.8 G/A.

The cube-shaped coil system is finally mounted to the aluminum cage which
supports the vacuum apparatus. It is partially placed into the opening of the optical
table, see Fig. 1.6(c). The upper and lower side of the cube provide additional holes
around the beam axis which are compatible with 30 mm cage system (Thorlabs)
for optical mounts. This allows us to mount the optics of the vertical MOT beam
directly on the cube.

Power supplies

The MOT coils and addressing coils share a common power supply (Delta Elektron-
ika, SM 70-45 D) with a built-in isolated amplifier card (option P145) for analog
programming, providing up to 70V and 45A. It is connected to a custom-made
switching box which permits fast switching of (and between both) coils via a TTL
input within milliseconds. Parts of its electric circuit design are based on the switch-
ing device of Ref. [77], whereas instead of the power MOSFETs?, IGBT* modules
have been employed while capacitors and resistors for power dissipation have been
adjusted to the inductance of our coils.

The compensation and guiding field coils are driven by a triple-output power
supply (Toellner TOE 8733-1), which provides two outputs with up to 16V and
2 A, and a single output with up to 7V and 5A. All outputs provide a residual
ripple of 50 pA.

1.2. A one-dimensional optical lattice

Selective manipulation of individual atoms in specific electronic states requires that
the atoms are well localized and separated, while any perturbation changing their
electronic states is sufficiently suppressed on the relevant timescales. Meeting the
latter two requirements, however, is inherently impossible in a MOT since the
trapped atoms are spatially inseparable whereas continuous scattering of photons

3MOSFET: Metal-Oxide-Semiconductor Field-Effect Transistor.
4IGBT: Insulated-Gate Bipolar Transistor.
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1.2. A one-dimensional optical lattice

continually changes their electronic states. Instead, the precooled atoms are trans-
ferred into a one-dimensional optical lattice — a periodic array of conservative
trapping potentials, generated by interaction of a far-detuned standing wave light
field with the atomic dipole moment. The separation between individual trapping
potentials forming the sites of the optical lattice is defined by the periodicity of the
standing wave, whereas photon scattering rates are only a few photons per second,
meeting the requirements stated above.

1.2.1. Classical model of a dipole potential

Besides an intuitive understanding, a classical model of a dipole potential provides
a good approximation to the quantum-mechanical treatment, characterizing its es-
sential properties and dependencies on experimental parameters. It relies on the
Lorentz model of a classical damped oscillator driven by an external, monochro-
matic electric field E(r,t) = (Eo(r)exp(—iwt) + c.c.) /2 [28]. According to this
model, the induced dipole moment of the atom d(r,t) obeys the equation of mo-

tion
.. 2

d(r,t) + Dod(r,t) + wid(r,t) = — E(r,1) (1.2)
Me

with the resonance frequency of the oscillator wg and the energy damping rate due

to classical dipole radiation [80]

e2w?

rp=——=, 1.3
Y bregmecd (1.3)
where me and e are the rest mass and electric charge of the electron, respectively,
and g¢ the electric constant.
The induced dipole moment is related to the electric field through the complex
atomic polarizability o(w)

d(r,t) = a(w)E(r,t). (1.4)
From the stationary solution of Eq. (1.2), we obtain

2 1 6 3 T 2
alwy= L OmeclTey) (1.5)
me wj —w? —iwly,  wi —w? —iw3(T'/wf)

where in the last step, the on-resonance damping rate I' = T,, = (wo/w)?T, and
Eq. (1.3) have been employed. The former is determined from a simple quantum
mechanical model of a two-level atom rather than from Larmor’s formula [28],
extending the initial classical model of a dipole potential to a semiclassical approach.

The time-averaged (denoted as (...)) interaction energy between the induced
dipole and its driving field finally results in a dipole potential

Utip(r) = 3 {d(r. ) B(r 1)) =~ Re {a(w)}1(r) (1.6)
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1. Trapping of single atoms

with the field intensity I(r) = cgo|Eo(r)|?/2. Another important quantity is the
photon scattering rate which imposes a limit on the lifetime of internal states [64].
This rate is determined analogously from the absorbed power P, yielding
P, 1. 1
Rr) = 220 i B0 = St o) ). (1)
In our experiment, the detuning of the light field A = w — wyp is much larger than
the natural line width (|JA| > T'). On the other hand, the detuning is much smaller
than the optical resonance frequency wp, so that |A| < wp and thus w/wy ~ 1.
Therefore, we can rewrite Egs. (1.6) and (1.7) in the rotating wave approximation
as [28]

32 T
Udip(r) = EEN (r), (1.8)
0
3rc? T2
Ry(r) = —=—=I(r). (1.9)
2hwg’ A2

From these equations, the basic properties of dipole trapping and photon scattering
in far-detuned, monochromatic light fields can be inferred, which remain valid even
in a quantum mechanical treatment of a multi-level atom: First, both the dipole
potential and photon scattering rate scale linearly with the intensity of the light
field. Second, while the dipole potential depends linearly on the reciprocal of detun-
ing, the respective dependency of the scattering rate is quadratically. Therefore, to
minimize the photon scattering rate, it is preferable to work with a large detuning
while compensating the decreasing potential depth by higher intensities. Finally,
the sign of the detuning determines the nature of the corresponding conservative
dipole force Fgip(1r) = —VUqgip(r) exerted on the atom by the light field. In case of
blue detuning (A > 0), the dipole potential is positive, yielding a repulsive dipole
force, whereas for red detuning (A < 0), it is negative and the corresponding force
is attractive.

Remarks on multi-level atoms

The above semiclassical model provides a simple expression for the dipole potential.
However, it neither takes the multi-level structure of the atom nor the polarization
of the electromagnetic field into account. In general, the dipole potential depends on
the particular state of the atom, including atomic fine, hyperfine and even Zeeman
substates. The latter are differently affected by the polarization of the light field, see
Sec. 4.1. To understand these properties, a full quantum mechanical treatment of
the atom-light field interaction is required which takes all relevant atomic substates
into account. Such quantum mechanical description provides AC-Stark shifts (also
referred to as “light shift”) of every atomic level. For cesium atoms, the AC-Stark
shift of the 62S; /29 62P, /2 and 62P5 /2 electronic states have been extensively studied
in our group, see e.g. Ref. [47,49,78] and references therein. Throughout this thesis,
I will merely refer to some results of these studies.
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1.2. A one-dimensional optical lattice

For a linearly polarized light field, the multi-level structure of cesium can be
approximately taken into account by applying the semiclassical model to the D;
and Do transition separately and adding up the resulting contributions weighted
with each transition’s oscillator strength [77]. This yields a similar expression as in
Eq. (1.8), albeit with an “effective” detuning

1_1<1+2> (1.10)
At 3\Ap,  Ap,/)’ '

The so calculated dipole potential differs only marginally from a quantum mechan-
ical calculation.

1.2.2. Periodic array of trapping potentials

According to previous considerations, a periodic array of confined trapping poten-
tials requires a periodic intensity pattern of monochromatic light, the frequency
of which is far detuned from the transition frequencies of the atom. In the one-
dimensional case, such a pattern can be realized by interference of two focused
counterpropagating, linearly polarized Gaussian laser beams. For A,z < 0, atoms
are attracted to the maxima of the resulting standing wave intensity distribution.

Let E(r,t) and E9(r,t) be the electric fields of two counterpropagating, linearly
polarized Gaussian beams, the polarization of which is given by ej,. In cylindrical
coordinates (r = (p, z,¢)), they can be written as

El(’l", t)
EQ(’I", t)

A(r) cos(wt — f(r)) - ejn (1.11)
A(r) cos(wt + f(r)) - enn (1.12)

with the auxiliary functions

N

2

_pi
A(r) = EO wo e w2(z) and f('r') =kz+ 2R( )
z

w(z)

corresponding to an amplitude and phase, respectively. Here, w(z) = wy+/1 + 22 /23
denotes the beam radius with the waist radius w, and the Rayleigh length z, =
w3 /A, R(z) = z(1 + 23/2%) the radius of curvature of the wavefronts and 7(z) =
arctan(z/z,) the Gouy phase. The contributions of the latter two can in principle
be neglected in the trapping region (|z| < z,), yielding f(r) ~ kz. The standing
wave intensity distribution of both interfering beams is then given by

—n(z), (1.13)

I(r) = ceo{[E1(r,t) + Eao(r,1)]?) = 2ceA?(r) cos?(f (1))
\z\gzo Imaxw?—i)ej;(z) COSQ(kZ) (1.14)

with the peak intensity Iyax = 4P/ wwg characterized by the power of a single laser
beam P. Using Eq. (1.8), we finally get the dipole potential of a one-dimensional
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1. Trapping of single atoms

optical lattice

2
Ui () = —Uo—0_ "8 cos? (k 1.15
dlp(r) - 011)2(2)6 CO8 ( Z)’ ( . )

where Uy denotes its maximum depth, also referred to as trap depth. This potential
is thus periodic along the beam propagation axis, the so-called lattice axis. Its min-
ima in which atoms are trapped will be also referred to as potential wells or lattice
sites. The periodicity of the lattice, A/2, is determined by the laser wavelength A.
Radially, i.e. perpendicular to the lattice axis, the dipole potential has a Gaussian
profile. It provides a transversal confinement of the atoms determined by the waist
radius of the laser beams.

Each potential well of the optical lattice can be well approximated by a cylindri-
cally symmetric harmonic oscillator, e.g. by a Taylor series expansion of Eq. (1.15)
at (p,z) = (0,0). In this harmonic approximation, the oscillation frequencies of a
trapped atom in the axial and radial direction are given by

20U,
Qux =2 1.16
and
40U,
Qad = 1| —— |, 1.17
d meswi (117)

respectively, where mgg denotes the mass of the cesium atom. They are also referred
to as axial and radial trapping frequencies.

1.2.3. Experimental setup

To generate the light field of the optical lattice, we use a commercial (Coherent
Monolithic Block Resonator, MBR~110) tunable ring titanium:sapphire (Ti:S) laser,
pumped with a solid-state laser system (Verdi V-18, 532nm) which provides a
maximum output power of 18 W. The Ti:S laser can be operated in a range from
700nm to 1020nm depending on the built-in optics set. It can be locked to a
stabilized internal reference cavity, providing a Gaussian (TEM) transverse mode
with linear polarization and a maximum output power of 3.4 W at a wavelength of
A = 865.9nm."

In Figure 1.7, a schematic overview of the optical lattice setup is shown. After
passing through an optical isolator (Linos FI 660/110-8 SI), the output beam is
actively power-stabilized using an acousto-optic modulator (AOM) based feedback
loop. It allows us to control the laser power and thus the lattice depth using an
analog input voltage, providing a bandwidth of 30 kHz. The pointing stability of the
laser beam is passively stabilized by shortening the free beam path using a fiber line

5The choice of this wavelength is discussed in Sec. 4.1.
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1.2. A one-dimensional optical lattice
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Figure 1.7.: Schematic overview of the optical lattice setup. The incident laser beam from
a Ti:S laser (a) passes through an optical isolator (b) and an AOM (c) used for power
control and stabilization, the output signal for feedback of which is measured by a fast
photodiode (f). The beam passes a fiber line (d), a setup for precompensation of polar-
ization distortions (e), a system of lenses (g) and finally the glass cell (h) and vacuum
chamber (i) before entering the polarization control setup (j, see Sec. 4.3) and being
retro-reflected. (k1) and (ki) indicate two of three MOT beams. The missing beam is
perpendicular to the image plane. For overview reasons, the coil system (1, see Sec. 1.1.4),
parts of the imaging system (m, see Sec. 2.2.1), the microwave setup (n, see Sec. 3.2.2)
and optical pumping setup (o, see Sec. 3.1.1) are shown.

and enclosing the entire optical table by a PVCS strip curtain. The latter protects
the mounted optical elements from dust and acoustic vibrations while preventing
draft and reducing temperature variations.

To ensure linear polarization of the laser beam in the trapping region of the atoms,
polarization distortions from optical elements in the beam path are precompensated
using a combination of a polarizer, a half- and a quarter-wave plate. The laser is
finally focused to a waist radius of 20 ym in the trapping region of the atoms by
a system of lenses, which has been previously simulated and optimized using an
optical design software. Details on the lens system can be found in Ref. [68].

After passing through the vacuum chamber and its window, the laser beam is fi-

SPVC: Polyvinyl Chloride.
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1. Trapping of single atoms

nally retro-reflected, passing the polarization control setup twice. The latter allows
to rotate the polarization angle of the retro-reflected linearly polarized beam. Rota-
tion of polarization, however, is only employed for the state-selective transport and
its applications and will be therefore discussed in detail in Chap. 4. Unless stated
otherwise, throughout this thesis the polarization of the retro-reflected beam is
identical to that of the incident beam.

For the sake of completeness and illustrative reasons, parts of the magneto-optical
trap and the optical pumping setup and their positions on the main optical table are
also shown in Fig. 1.7. The optical pumping setup will be presented and discussed
in detail in a subsequent chapter, see Sec. 3.1.1. The same applies for the imaging
setup to detect fluorescence of the atoms (see Sec. 2.2.1) and the microwave setup
to manipulate their internal states, see Sec. 3.2.2.

1.3. Computer control system

The entire experiment, its parameters, experimental sequences and acquired data
are controlled and processed by a single personal computer (PC) and self-developed
software, which I have developed during this thesis. The software is adapted to the
multi-threading and multi-core capability of the CPU”. By this we avoid communi-
cation delays, which would otherwise occur if several computers are employed. The
computer comprises two high-speed, multifunction data acquisition boards (Na-
tional Instruments PCle-6259), each providing four 16 bit analog outputs (—10V
to +10V) and 48 digital outputs with a full scale settling time of 2 us defining
the maximum time resolution. Both cards use the PCI® Express bus and con-
tain six DMA® channels each to maximize the data throughput without using the
computer’s processing time. They are synchronized via the RTSI'Y bus.

The computer additionally comprises a static analog output board (National
Instruments PCI-6723), a high-performance GPIB!! board (National Instruments
PCI-GPIB) and a PCI controller for the camera, see Sec. 2.2.2. The former pro-
vides 32 additional analog outputs (—10V to +10V) and 8 digital outputs which
are rather used as fixed voltage sources. The GPIB interface is used to upload
waveforms to the arbitrary waveform generators employed in the microwave (see
Sec. 3.2.2) and the polarization control setup (see Sec. 4.3).

A detailed description of the self-developed software for controlling experimen-
tal sequences (“Control Center”), uploading arbitrary waveforms (“WaveGen”) and
controlling the camera (“iXacq”) is given in App. A, whereas methods for processing
of acquired images are partially discussed in Sec. 2.3 and Sec. 4.5.3.

"CPU: Central Processing Unit.

8PCI: Peripheral Component Interconnect.
SDMA: Direct Memory Access.

'ORTSI: Real-Time System Integration.

L GPIB: General Purpose Interface Bus.
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2. Fluorescence detection of neutral
atoms in an optical lattice

Detection and manipulation of individual atoms on neighboring sites of an optical
lattice has recently come to the fore of various applications of quantum informa-
tion science [16,81-83], providing a technical challenge for lattice site separations
in the optical wavelength domain. In a different regime, where lattice sites are
separated by several micrometers, single atoms could be optically resolved [84,85].
This approach, however, has currently proved to be inapplicable for most already
established schemes, which favor site separations in the optical wavelength regime.

Recently, single-site detection and addressability using focused electron beams
from an ultra-high vacuum compatible electron gun [44,45] has been reported. How-
ever, this technique is not easily integrated in many neutral atoms experiments, in
which, in contrast, optical imaging by fluorescence light is widely established. Up-
grading existing experimental setups with high resolution imaging optics encounters
difficulties, due to spatial constraints imposed by vacuum components and the opti-
cal access. In this work, I follow a different approach which builds up on the success
of other research fields, including astronomy and biology. I overcome the previous
restrictions imposed by the diffraction limit [43] with a markedly improved data
quality and reduced noise, together with advanced numerical processing of fluores-
cence images.

2.1. The deconvolution problem

Every acquired image is blurred whenever the optical system used has a finite
resolving power. This process can be mathematically expressed as a convolution of
the original light distribution with the Point Spread Function (PSF) of the image —
a characteristic intensity distribution of an ideal point source imaged by the optical
system. Assuming the PSF to be shift-invariant (isoplanatic!) and considering the
fact that each light distribution can be decomposed into a collection of point sources,
the imaging equation can be written as

Lip(r,y) = (Pyp * Ogp)(x,y) + ap(T,y)
= / / Pop(z —u,y —v)Ogp (u,v) dudv + eyp(z,y), (2.1)

!The isoplanatism is not fulfilled in general, see Sec. 2.3.3. However, there are small regions where
the PSF is almost shift-invariant. These regions are called isoplanatic patches.
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2. Fluorescence detection of neutral atoms in an optical lattice

where O, (x,y) and I,p(x,y) denote the original and imaged intensity distribu-
tions, P,p(z,y) the area normalized? PSF and e, (7, y) additive measurement er-
rors (noise) affecting the image. The subscript 2D distinguishes between two- and
one-dimensional functions introduced later in this work.

The shape of the PSF primarily depends on the geometry of the optical sys-
tem and its imperfections, arising from defocusing and optical aberrations. For a
diffraction-limited (aberration free) optical system with a circular entrance pupil,
the PSF is the well-known Airy pattern [86]. It consists of a bright central Airy
disc, encircling 83.8% of the total energy, surrounded by concentric rings of succes-
sively decreasing intensity. The radius of the Airy disc sets the limit for the smallest
resolvable distance in the lateral plane, called Rayleigh criterion [87].

In addition, image acquisition involves spatial sampling and digitalization when-
ever digital detectors such as Charge Coupled Devices (CCDs) are used. Therefore,
the detected light distribution is only known at regularly spaced sampling points

IQD[xzﬁ y]] = (P2D * OQD)[xia y]] + €D [.’L’i, y]] ) (22)

where z; and y; denote the horizontal and vertical position of a sampling point {i,7},
e.g. a CCD pixel, €, [mi,yj] incorporates additional noise arising from the digital
detection, and squared brackets are used to distinguish discrete from continuous
functions. Note that in general Iy (7;,y;) # Ioyplz;, y;)-

Both, sampling and noise lead to information loss in the acquisition process. The
reverse process aiming to reconstruct the unblurred image is called deconvolution,
referring to inversion of Eq. (2.2). Being an inverse problem, deconvolution is
inherently ill-conditioned. Therefore, no unique solution exists in the presence of
noise, since many light distributions, being convolved with the PSF, are compatible
within the error bars with the observed image. For this reason, regularization
techniques are used to select a plausible solution amongst the family of possible
ones.

There are a variety of deconvolution strategies available in the literature. For an
overview, see Ref. [88] and references therein. The diversity of strategies reflects
different ways of estimating the true signal under various idealizations of its prop-
erties. Different assumptions about the PSF and the instrumental noise have to be
considered to constrain the solutions and efficiently use the computational resources
available. In this work, I use a parametric deconvolution to determine the positions
of atoms in an optical lattice. This method assumes the PSF or its derivatives to be
analytically known. Furthermore, it requires all distortions of the original signal,
e.g. by the stray light, to be reduced to a minimum. By this, the fluorescence signal
of the atoms can be modeled in a simple way — as a sum of intensity spikes on
a homogeneous background, the positions and fluorescence contributions of which
are determined numerically. This idealization enables to reduce the complexity of
the problem to a manageable level, since only a small number of parameters has to

22 Jo Pap(,y) daedy = 1.
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2.2. Imaging setup

be precisely determined, being supported by a high number of sampling points. By
this, determining the positions of the atoms can be performed almost in real-time.

2.2. Imaging setup

Fluorescence detection of atoms in optical lattices has been widely spread over
the years, enabling and advancing the control of internal and external degrees of
freedom of each individual atom [47,89]. It puts the highest demands on efficient
fluorescence collection, suppression of stray light and the noise performance and
sensitivity of the detector. Diffraction and optical aberrations impose a limit on
the optical resolution, whereas noise performance of the detector and stray light
strongly affect the chances of successfully overcome this limit using numerical post-
processing.

2.2.1. Optical setup

The fluorescence light of the atoms is collected by a self-assembled, diffraction-
limited microscope objective with a numerical aperture of NA = 0.29, covering a
fluorescence fraction of 2.1% of the 47 solid angle [77,90]. The microscope objec-
tive is composed of standard catalog lenses (25.4 mm diameter) to reduce the cost
of manufacture. Its lens design was entirely adopted from Ref. [90], meeting the
requirements and spatial constraints imposed by the experimental setup. These
constrains include a compact design and a long range working distance with a focal
length of fobj = 36 mm, allowing the objective to be placed and aligned outside the
UHYV glass cell between the mounting of the magnetic coils. Furthermore, the work-
ing distance prevents the stray light stemming from reflections of molasses beams
off the non-coated inner surface of the glass cell to enter the entrance pupil of the
objective, whereas reflections off the outer surface are directly shielded using beam
tubes, see Fig. 2.1. The lens design has been numerically optimized to minimize
spherical aberrations, introduced by the glass cell wall of 5mm thickness. The
wavefront deformations of the assembled microscope have been measured with a
share-plate interferometer, providing a peak-valley wavefront distortion of less than
A/4 over 90% of the clear aperture (for details see Ref. [77,78]).

The microscope objective collimates the fluorescence light of the atoms, which
is then imaged by a plan-convex lens with fimg = 2m, resulting in a theoretical
magnification of fimg / fobj ~ 55.6.% All lenses are permanently mounted in a black
anodized aluminum tube with an internal thread, preventing the stray light from
being reflected on the inner surface of the tube and entering the optical path. The
objective is mounted on a three-axis translation stage, providing the relevant degrees
of freedom for the everyday alignment. A black flexible welded bellow connects
the adjustable objective to an optically shielded system of mirrors and blackened

3 A precise measurement of the magnification utilizing the periodicity of the optical lattice is given
in Sec. 2.4.2
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2. Fluorescence detection of neutral atoms in an optical lattice

2000 mm

e

Figure 2.1.: Detail of the imaging setup. Two counterpropagating laser beams (a) form
the one-dimensional lattice. Beam tubes (b) shield the objective (¢) from stray light
of molasses beams (d) off the glass cell (e). A three-axis translation stage (f) allows
a precise alignment of the objective. Tubes and mirror cubes (g) bridge the distance
between the imaging lens and the detector, while built-in apertures (h) strongly suppress
the remaining stray light. A narrow-band optical filter (i) in front of the detector (j)
filters the stray light from the optical lattice.

tubes, which bridge the 2m distance and the elevation between the imaging lens
and the detector. The tube system comprises a stray light trap consisting of five
sooted apertures with gradually decreasing inner diameters of 16,14,12,10 and
8 mm, which exclude most of the out-of-focus light. Each aperture is made out
of steel and mounted in a sliding plastic holder, allowing to smoothly move the
apertures along the tube axis from the outside of the tube using magnets. The
position of each aperture has been iteratively aligned to minimize the stray light
while avoiding obstructions and maintaining the imagining quality of the objective
characterized by its line spread function, see Sec. 2.3.3. A narrow-band optical filter
(CWL* at 850.5nm, FWHM?® of 5nm) with a measured transmission of 82.3% at

4Central Wavelength
SFull Width at Half Maximum
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2.2. Imaging setup

852.3nm [78] suppresses the stray light from the optical lattice by more than 37 dB.

2.2.2. The EMCCD detector

The fluorescence signal of the atoms is detected using an FElectron Multiplying
Charge Coupled Device (EMCCD) camera (Andor iXon DV887DCS-FI) which is
capable of detecting a single photon without any additional image intensifier and
enables imaging with sub-electron noise up to video frame rates. It contains a
512 x 512 active pixels front-illuminated frame transfer CCD (L3Vision CCD97
[91]) with a pixel size of 16 x 16 um?, enabling on-chip charge multiplication before
the readout process, while utilizing the full quantum efficiency performance (= 40%
at 852nm) of the CCD. The resolution of the EMCCD is therefore identical to that
of the CCD, and thus mainly determined by the pixel size, being only reduced by
photons absorbed near the boundary between the pixels. The sensitivity of the
CCD, however, is limited by the readout noise arising from the charge-to-voltage
and analog-to-digital conversion in the output amplifier and the video chain elec-
tronics. This limitation is particularly relevant for low-intensity signals with levels
falling beneath the readout noise floor. The EMCCD technology overcomes this
limitation [92], by applying a low-noise gain prior the conversion, boosting the sig-
nal above the noise floor of the output amplifier. The gain is applied in an additional
extended serial register, the electron multiplication (EM) register, between the shift
register and the output amplifier.

The EM register comprises several hundred of stages (536 for L3Vision CCD97
[91]). By applying a sufficiently high voltage at each stage, the electrons are multi-
plied by impact ionization, generating secondary electrons in the silicon, similar to
a staircase avalanche photodiode. Even though the probability of impact ionization
is very low at each individual stage, p;,,, ~ 1.5%, due to the high number of stages
N, the mean gain of the cascaded multiplication elements M = (1 + pimp)N reaches
values of up to several thousand. This gain mechanism, however, is stochastic and
thus introduces an additional system noise component, being evaluated quantita-
tively as the excess noise factor F' — a multiplying factor for the signal noise prior
the EM register, e.g. photon and dark current shot noise. The excess factor can be
analytically expressed by F2 = 2(M — 1)M~N+D/N L 1/M (see Ref. [93]). Thus,
for a high number of multiplication stages and a high gain, F? tends to 2, effectively
halving the quantum efficiency.

The noise performance of the detector strongly affects the quality of the fluo-
rescence signal, imposing the limit of the reliability and accuracy of determining
the number and positions of the atoms. Although the latter can be in principle
improved if the signal-noise relation is precisely known and properly considered in
the parametric deconvolution (see See. 2.3.6), the a priori reduction of noise pro-
vides the best strategy for improving the signal quality. In the following, I discuss
the dominant noise sources of our detection setup, providing strategies for their
reduction within the realms of technical possibilities. Quantitative specifications of
the noise sources can be found in Ref. [91].
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2. Fluorescence detection of neutral atoms in an optical lattice

Readout noise Readout noise arises from the readout of accumulated photoelec-

trons in each pixel. It can be decomposed into two parts, depending on
whether the noise arises before or after the EM register, or rather, whether
the noise is affected by the gain process or not. During the readout, the ac-
cumulated electrons are shifted on the CCD, yielding some electrons being
left behind, jump ahead or even generate additional electrons (clock-induced
charges). The resulting noise o, scales with the square root of the readout
speed. It is subsequently amplified in the EM register. The second part of the
readout noise, o..,,, arises from the charge-to-voltage and analog-to-digital
conversion, both being carried out after the multiplication process. Therefore,
this noise can be effectively reduced by increasing the gain. We operate the
EMCCD using the maximum gain® of M =~ 1000 at a readout rate of 10 MHz,
resulting in a total effective readout noise below 0.1 e~ /pixel.

Photon shot noise Photon shot noise arises from statistical fluctuations in the

Dark

number of incident photons, which translate into a variation of the mean
of accumulated photoelectrons Sgigna. It is a fundamental property of the
quantum nature of light and thus unavoidable in the image acquisition pro-
cess. The photoelectron fluctuations follow Poissonian statistics. Therefore,

S

shot — signal’
amplified in the EM register. We reduce the amount of photon shot noise
by suppressing the photons not stemming from the fluorescence of the atoms,
e.g. additive signal background of the stray light.

the corresponding shot noise is given by o being subsequently

current noise Dark current arises from thermally generated electrons in the
silicon substrate of the CCD which leak into the pixels during the expo-
sure time. The amount of dark electrons Sy, , is proportional to the ex-
posure time and exponentially increases with the operation temperature of
the CCD [95,96]. For this reason, we operate the EMCCD at a tempera-
ture of —70°C, resulting in a dark current of 0.01 e~ /pixel/s for M =1 (no
gain). The corresponding dark current shot noise oy, = /Sy 15 Subse-
quently amplified in the EM register. Note that at low temperatures, the
multiplication gain is increasingly temperature-dependent and thus affected
by temperature stability (typically +0.01°C, resulting in a gain stability of
+1%).

Photo-response non-uniformity Photo-response non-uniformity (PRNU) describes

the difference in pixel response to uniform light sources due to variations in
pixel geometry and substrate material across the chip. The corresponding
noise oy, is proportional to the incident pixel illumination, becoming increas-

SNote that the EM register suffers from gain aging effects, resulting in a gain fall-off over a period
of time [94]. This aging process is even accelerated, by operating the EMCCD at maximum
gain. Therefore, using our EMCCD camera for more than one year, we expect the maximum
gain to be lower than specified.
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2.3. Determining the number and positions of the atoms

ingly prominent for high illumination levels. This noise is amplified in the
EM register.

The total noise of the EMCCD per pixel can be modeled by summing the vari-
ances of the individual noise sources, while incorporating the influence of the EM
register, yielding

2 2 2 2A72 102 2 2 2 2
Ototal — A Oconv + A*M*F (Ushift + Oshot + Odark + Upr) ) (2'3)

where A denotes the total video chain gain, i.e. the electron-to-digital number
conversion factor. Therefore, the effective total noise is given by

_ 2 2 2 2 Q2
Ototal, eff = \/Jconv,eff + F (Jshift + Ssignal + Sdark + apI‘Ssignal) ’ (24)

where o
ability.

conv,eff = Tcony /M and oy, denotes the relative pixel-to-pixel response vari-

2.3. Determining the number and positions of the atoms

The acquisition of fluorescence images of the atoms is typically performed at a lattice
depth of U/kp = 0.4mK, for which atom tunneling is negligible. The atoms are
illuminated with a red-detuned three-dimensional optical molasses at A\f = 852 nm
which also provides continuous Doppler cooling and counteracts heating of the
atoms. The EMCCD image is typically taken at an exposure time of 1s. It provides
a sampled intensity distribution I,p[z;, yj], where z; and Y, denote the horizontal
and vertical position of pixel {7, j}, respectively. The intensity distribution of a
single atom trapped in the one-dimensional optical lattice shows a characteristic
ellipticity, originating from the shape of the trapping potential, see Fig. 2.2(a): The
atom is vertically confined to the lattice axis by the Gaussian profile of the laser
beams width, whereas its horizontal position depends on the occupied lattice site.
The vertical width of the fluorescence spot, i.e., perpendicular to the lattice axis,
is primarily given by the spread of the thermal wave packet of the atom in radial
direction of the standing wave potential. In axial direction, the atoms are strongly
confined: The horizontal 1/y/e half-width of the fluorescence spot, corresponding
hor

to og5" = (810 + 19) nm in the object plane, is mainly caused by diffraction within

the imaging optics (with a theoretical value of agi‘g = 647nm). Compared to this
width, thermal motion of the atoms (J}?}?r = 23nm) and drifts of the standing wave

(<20nm/s, see Sec. 2.3.5) can be neglected on the timescale of the exposure time.

To simplify the axial position determination, we bin the acquired intensity distri-
bution vertically I[z;] = >, Ip[z;,y,], see Fig. 2.2(b). The resulting distribution
is related to the unknown source distribution S(x) by a convolution equation

;] = (L * S)la;] + elz;], (2.5)
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Figure 2.2.: (a) Image of atoms in a one-dimensional optical lattice acquired with 1s ex-
posure time. (b) The corresponding binned intensity distribution. (c) Segmentation of
the binned intensity distribution into regions of interest (shaded regions) and estimation
of the background baseline ag (horizontal solid line): vertical dashed lines indicate the
unextended and unmerged regions in which the binned intensity distributions exceed the
threshold (horizontal dashed line). (d) Cumulative integration of the binned intensity
distribution in each ROI.

where L(x) = (§ * Pyp,)(x) is the area normalized Line Spread Function (LSF) of
our imaging optics (vertically binned PSF7), which is assumed to be analytically
known and position-independent over the whole acquisition region, and €[z;] the
additive noise with a variance Var(e[x;]) = 2.

The axial confinement of the atoms (O.?ﬁ)r < J;f)’r) and systematical suppression of
the stray light down to a homogeneous background allow us to model the unknown

source distribution as

N
S(x)=ao+ Y a;d(x — ), (2.6)
j=1

"The vertical binning of an continuous sampled 2D function can be mathematically expressed as
a convolution with a 1D Dirac delta function é(x).
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2.3. Determining the number and positions of the atoms

where a, denotes the constant baseline of the stray light background, §(x) the Dirac
delta function representing the strongly confined atom, a; and ; the fluorescence
contributions and the positions of N atoms, respectively.® Therefore, the position
determination of the atoms in a one-dimensional lattice corresponds to a parameter
estimation of the modeled distribution S(x) from the measured intensity distribu-
tion

N
Ifz;] =ag+ Y a;L(z; — &) + €lz;] - (2.7)
j=1

2.3.1. Counting atoms in an optical lattice

The parametric deconvolution requires the number of parameters to be known,
which are directly related to the number of atoms trapped in the optical lattice,
see Eq. (2.6). So far, the number of atoms has been determined in the MOT by
integrating the detected fluorescence signal in a given time interval and assuming
that each trapped atom contributes to the total fluorescence signal by the same
amount [46]. To determine the number of atoms in an optical lattice, the atoms
have been transferred back to the MOT with a high efficiency [67]. This transfer,
however, is destructive, removing the atoms from the optical lattice each time their
number has to be determined. Even though the atoms can be retransferred to the
optical lattice, their original distribution in the lattice cannot be restored. Thus,
the position of the atoms is not maintained by this counting procedure.

In this work, I follow a different approach, reliably inferring the number of atoms
directly from the fluorescence signal of atoms trapped in an optical lattice. Com-
pared to atom counting in the MO, this approach bears two significant advantages:
Firstly, the position of the atoms in the optical lattice is not affected by the count-
ing procedure. Furthermore, in combination with the parametric deconvolution,
this approach allows a continuous monitoring of both, the number and positions of
the atoms, providing a direct insight into the atom dynamics in the optical lattice.
Secondly, the reliability to infer the correct number of atoms in the optical lattice
is not affected by the transfer efficiency of the atoms between the MOT and the op-
tical lattice. This advantage becomes significant for large numbers of atoms, where
the transfer efficiency is reduced by light-induced collisions between the atoms [67].
In spite of all advantages, direct counting of atoms in an optical lattice imposes in-
creasing requirements on the fluorescence detection, including high signal-to-noise
ratio and suppression of signal distortion by the stray light. Furthermore, longer
exposure times are required for a comparable counting reliability, due to a signifi-
cantly smaller fluorescence signal of the atoms in an optical lattice compared to the
signal of atoms trapped in a MOT.

8We define the atomic positions as the center of the thermal wave packets of the atoms.
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2. Fluorescence detection of neutral atoms in an optical lattice

Image segmentation

The determination of the number of atoms in an optical lattice is performed after
a preceding step — the image segmentation. In the image segmentation, we divide
the binned intensity distribution, sampled on a discrete interval J, into regions of
interest which contain fluorescence from atoms and redundant regions which only
contain background. Since parts of the parametric deconvolution are based on
Fourier transforms (see Sec. 2.3.5), excluding noise from redundant regions allows
us to improve both, the performance and accuracy of our numerical method. For
this purpose, we track the regions of the binned intensity distribution exceeding a
predefined threshold over a fixed range. The threshold is usually set to 20% of the
height of the single atom intensity distribution; the width of the fixed range to half
of the width of this distribution at the threshold level. Thresholding allows us to
efficiently distinguish real fluorescence contribution of the atoms from possible noise
spikes — the characteristic artifacts of the EMCCD detection, see inset of Fig. 2.9
in Sec. 2.3.6. This distinction becomes more relevant for images acquired with
shorter exposure times (100-200 ms), e.g. used for the microwave spectroscopy (see
Sec. 3.2.3), yielding a low signal-to-noise ratio. The regions exceeding the threshold
are extended by a fixed width, which has been previously adjusted to incorporate
fluorescence contributions of atoms in the wings of each atom’s distribution. Finally,
the regions are merged in case of overlap, see Fig. 2.2(c).

Counting of atoms

In the following, let K be the number of regions of interest obtained from an ac-
quired image after the image segmentation. We label the binned intensity distribu-
tions of each region of interest (ROI) by theindex k = 1,..., K, namely I, [z, ,]. The
same is done for each sampling interval defining the ROI, J, = {xk’l, e ,x,;Mk} C
J, consisting of M, pixels with positions z; ;. We estimate the background baseline
aq by calculating the mean value of the iﬁtensi‘cy distribution within the redun-
dant regions, {I[z;]|z; € J\ U} J;}. For a more precise estimation, optionally the
median instead of the mean value is used.” Note that this simplified baseline es-
timation assumes a homogeneous background level, being restricted to a sparely
filled optical lattice and a truly homogeneous background.

For each ROI, we determine the number of atoms NV, by integrating the binned
intensity distribution I, [z, ] above the background baseline a over the correspond-
ing interval J,. Since each atom contributes equally, the cumulatively integrated
distribution exhibits characteristic steps at integer multiples of the averaged single
atom fluorescence contribution I, see Fig. 2.2(d). Therefore, the atom number for

9The noise distribution in low-intensity regions of the binned intensity distribution is positively
skewed with outliers pulling the mean to a higher value (see Fig. 2.9 in Sec. 2.3.6) resulting in
a small systematical error of the baseline ag. This error can in principal be reduced using the
median instead of the mean value, however, at the expense of performance of the estimation
procedure.
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Figure 2.3.: Histogram of the total fluorescence contribution of the atoms If°* calculated
from the ROIs of approximately 6000 images, each acquired with an exposure time of
1s. The integer numbers on the rescaled horizontal axis correspond to the number of
atoms per ROI The solid line shows a fit of Eq. (2.9) to the histogram.

each ROI is given by

My,

N, = I{°Y/I,, with I}°* = Z (I Jzg) — ag) (2.8)
i=1

where I;°" denotes the total fluorescence contribution of the atoms for the kth ROL.
The total number of atoms in the image is given by N = >, N, accordingly.

The reliability and accuracy of the counting procedure strongly depends on the
signal-to-noise ratio of the binned intensity distribution, being also affected by
the spatial inhomogeneity of atom illumination and detector sensitivity or their
fluctuations over the time. To determine the averaged single atom fluorescence
contribution I, and estimate the reliability of inferring the correct number of atoms
in a ROI, we assume Gaussian distributions of the total fluorescence contributions
If°* around p,,cy = nd, — ¢ and fit a sum of Gaussian functions

7
f(z) = Py(z) + Z hne—(x—un)Q/(%%) (2.9)
n=1

to the histogram of If°" considering the ROIs of approximately 6000 images. The
fit parameters h,, and o, in Eq. (2.9) denote the heights and the 1/y/e half-widths
(the standard deviations) of the Gaussians, respectively. A second-order polynomial
Py(z) = by + by + byz? with Py(z) > 0 models the histogram background, arising
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Figure 2.4.: (a) Standard deviation o,, of the total fluorescence contribution for n atoms
per ROI as inferred from Fig. 2.3. The solid line shows a fit of the model function
o(n) from Eq. (2.10). (b) Reliability of inferring the correct number of atoms in a ROI
calculated from the standard deviations o, using Eq. (2.11). The solid line shows the
reliability as obtained from the model function o (n).

from fluorescence contributions of atoms which leave the optical lattice during the
exposure time, and ¢ in p, compensates the systematic deviation resulting from
the simplified estimation of the background baseline a, entering Eq. (2.8).

In Figure 2.3, a rescaled histogram of I}°* and the corresponding fit are shown.
The histogram reveals a periodic structure with peaks centered at positive integers
n corresponding to the number of atoms in a ROI. From this, we conclude that
the model function in Eq. (2.9) and the calculation of the numbers of atoms using
Eq. (2.8) is well supported. Using the median for the background baseline estima-
tion, we obtain /I, = (2.1 £0.2)% from the fit. This deviation is negligible and
thus no sophisticated background baseline estimation is required.

The standard deviation o, of the total fluorescence contribution for n atoms per
ROI follows a characteristic trend, reflecting the noise characteristics of the image
acquisition, see Fig. 2.4(a). According to the noise model of Eq. (2.4), this trend
can be modeled by the following function

5(1) = 1/ (Ceomst)” + (xqrev/)” + (cm) (2.10)

considering the signal-independent noise contributions, the shot noise contributions
(x 4/n), and noise contributions with linear signal dependency (o n). Note that
the noise contributions are not directly related to the fit parameters cqqngp, Coqre
and ¢, since the number of atoms is calculated from a difference of the binned
intensity signal with its background baseline ag which in turn both are affected by
the noise. From a fit of the model function o(n) to the standard deviations o,,, we
obtain ¢yt /Coqrt = 0.2703 and ¢, / Coqrt = 0.170-2. Therefore, for small number of
atoms per ROI (n < 12) the /n-contribution and thus the shot noise dominates.
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2.3. Determining the number and positions of the atoms

In Section 2.3.6, we confirm this conclusion by a standardized and more precise
analysis of the signal-noise relation.

The reliability of inferring the correct number of atoms n in a ROI can be de-
duced from the area of the corresponding (normalized) Gaussian distribution with
a standard deviation o, within the distinguishability interval [—1,/2, I, /2]

I,/2
F(o,) = ! / e/ g (2.11)
2ro,
_Ia/2

In Figure 2.4(b), the resulting reliabilities for n atoms per ROI are shown, calculated
using the standard deviations o, and the model function o(n), respectively. To
estimate the reliability of inferring the correct number of atoms from Eq. (2.8),
where in contrast to the definition in Eq. (2.11) the influence of the systematical
deviation in the background baseline estimation ¢ is neglected, we shift the Gaussian
distribution in Eq. (2.11) by € and apply a second-order Taylor series approximation
around ¢/, < 1

I,/2
~ 1 2 2
Flon) = / o (e-0)2/(202) 4

V2moy,

o 71&/2
1 13 12 2
— — a8 5, a/(San) 2 4
F(Un) 2\/%0_%6 (e/Ia) + O ((e/Ia) ) * (212)

=:C(oy,)

Since |C(a,)| < 6:/6/(7e3) < 1.86, for ¢/I, = (2.1 +0.2)% the deviation of F(c,,)
from F(o,) is negligible (< 1073). Consequently, small systematic errors of the
background baseline estimation marginally affect the counting reliability.

In most experiments presented in this work, relying on the determination of
the atomic position and therefore on precise knowledge of the number of atoms,
a small number of atoms is initially widely distributed over several sites of the
optical lattice. This distribution provides images with several isolated ROIs, each
containing at most eight atoms. Using the model function o(n) in Eq. (2.10) a lower
limit for the reliability of F'(o(n < 8)) > 98% is deduced. The reliability of inferring
the total number of atoms within the image is then given by F(N) =[], F(o(Ny))-

2.3.2. Determining the line spread function with sub-pixel accuracy

The analytical description of the LSF constitutes one of the most important pre-
requisite of the parametric deconvolution. Although, in principle, the measured
intensity distribution of an isolated atom yields information on the LSF, a single
image does not provide the required resolution and accuracy due to noise and the
limited EMCCD resolution. To overcome these limits, we use a method which al-
lows us to reconstruct the LSF with sub-pixel accuracy by simultaneously reducing
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2. Fluorescence detection of neutral atoms in an optical lattice

the influence of the noise. The additional information content required by the re-
construction process is obtained by considering the intensity distributions of up to
hundred of single isolated atoms.

In the following, we assume K binned intensity distributions I, [z, ,] with k =
1,..., K of images with one isolated atom each. The ROIs are defined by J, =
{xm, e T um} C J, each comprising M pixels separated by the pixel distance
A. The width of each ROI, M A, is chosen in such a way that the fluorescence
contribution of the atom is completely contained in this region with sufficiently
large space on either side. Note that, although the width of the ROI is equal
for all considered distributions, the position of the region can vary from image to
image. Unless otherwise noted, all positions, distances and derivatives are expressed
in length units of CCD pixels in the detection plane (A = 1pixel), as originally
obtained from the acquired images. The conversion factor to infer the dimensions
in the object plane in a standard unit (meter) is determined in Sec. 2.4.2.

Let L(x) be an initial model of the area normalized LSF, which, being amplitude
scaled and offset shifted, roughly approximates the shape of the intensity distribu-
tion of a single atom, e.g. a Gaussian function. From the fit to each of the sampled
single atom intensity distributions I, [z, ,], we determine the position of the isolated
atom §; by minimizing 7

M
. 2
min Z {akL(ﬂck,z — &) + b — Ik[xk,i]} ) (2.13)
(o &by}

where a;, denotes the fluorescence contribution of the atom and b, the background
baseline. Note that &, is not restricted to the sampling points, taking any value
within J; = [xk"l, Ty - An approximation of the continuously sampled represen-
tation [, (x) in Ji relying on the discretely sampled data Ij[z, ;] can be written
as

M
I (z) = Z Iz | Ra (2 — 2p) (2.14)
i=1
with the rectangular function

RA(x):{l for —A/2 <2 <A/2, (2.15)

0 else.

We superimpose the continuously sampled representations of all considered single
atoms intensity distributions as follows

- 1 X
@)= 2> iz —&). (2.16)

k=1

The resulting distribution I (x) is centered at x = 0. It represents the mean single
atom distribution in the interval J¢ = [—d, d] with d = min, {&, — 1,2, 5,y — &)
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Figure 2.5.: Determination of the line spread function from intensity distributions of iso-
lated atoms with sub-pixel accuracy. (a) Intensity distribution of an isolated atom.
Superimposed intensity distribution with sub-pixel accuracy (1/10 pixel) of 5 (b), 10 (c)
and 50 (d) isolated atoms. The solid line in (d) shows the fit of Eq. (2.13), indicating
the accuracy of the self-consistent LSF model.

We resample I(z) on a s € Nuj times denser grid J = {&,...,%,,,} calculat-
ing I[Z;] = I(Z;). The distance between the new sampling points is then given

by A = A/s. For sufficiently large number of considered intensity distributions
(K > s), an intensity distribution with sub-pixel accuracy is obtained, while the
noise is simultaneously reduced by a factor of VK, see Fig. 2.5(d). This recon-
struction procedure allows us to increase the sampling resolution in a controlled
way. The only arbitrariness entering the procedure arises from the initially mod-
eled approximation of the LSF. To successively eliminate this arbitrariness, we use a
self-consistency loop, which iteratively improves the modeled LSF until convergence
is reached: Based on the sub-pixel sampled and noise-reduced intensity distribution
I[z ;] in J, we construct an improved model for the LSF L(x), determine its model
parameters from a fit, and successively repeat the previous reconstruction procedure
with L(z) instead of L(x) until self-consistency is reached. Since in each iteration of
the self-consistency loop, the model of the LSF and thus the accuracy of determining
the atom positions &, is improved, the reliability of the reconstruction procedure is
increased and the arbitrariness is successively eliminated. The self-consistency loop
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2. Fluorescence detection of neutral atoms in an optical lattice

converges within few iterations resulting in a precise analytical model of the LSF.
This model is based on the more resolved data, the higher the factor s is chosen,
and is the more accurate, the more sampled intensity distributions (higher K) are
considered.

2.3.3. Determining the isoplanatic patch

The isoplanatic patch denotes a region, where the LSF of the optical system is shift-
invariant, fulfilling a mandatory requirement for the convolution representation of
the imaging process. Therefore, high accuracy and reliability of the parametric
deconvolution can only be expected in this region. To determine the isoplanatic
patch of our imaging system, we reconstruct the imaged intensity distribution of an
isolated atom for different detection regions with sub-pixel accuracy (see Sec. 2.3.2),
for each considering more than 50 successively acquired images. For each sub-pixel
resolved distribution fn[zij], we determine the height h, and the area A, in an
interval of equal width, large enough to contain the detected fluorescence signal
of the atom.!® The area corresponds to the detected energy fraction (fluorescence
and background), reflecting spatial deviations due to inhomogeneous illumination
or detector sensitivity, or obstructions by the apertures of the stray light trap.
Assuming the area to be constant over the whole detection region, the height of the
distribution is directly related to the Strehl ratio (see Sec. 2.3.4), revealing shift-
variance of aberrations affecting the shape of the inferred LSF. Higher values of h,,
indicate less aberrations resulting in a better resolution.

In Figure 2.6, the resulting intensity distributions for different positions in the
detection region and the relative deviations of the corresponding areas and heights
from a maximum (optimum) value are shown (|4,,— A ax|/Amax a0 [Ay, =P/ Pmax
with A, = max{4,|n=1,...,N} and h,,, = max{h,|n=1,...,N}). The dis-
tributions in Fig. 2.6(a-f) reveal a characteristic shape, consisting of a central peak
with sinc?-like features to the left and a smooth decay to the right. The sinc?-like
features are gradually suppressed close to the borders of the detection region, while
the distribution becomes smaller and broader, reflecting degradation of the LSF in
these regions, see Fig. 2.6(g,h) and rather weakly Fig. 2.6(a). This degradation is
quantitatively visible in the relative areas and heights. Small fluctuations of the
area in the central detection region indicate inhomogeneous illumination or detector
sensitivity, whereas a significant increase of the deviation close to the right border
arises from obstructions by the apertures of the stray light trap. Even though the
apertures have been aligned with respect to minimize this effect, a trade-off has been
made between the distortion by the stray light and obstructions by the apertures.
The relative deviation of the heights reveal a similar trend, almost following the
corresponding areas except for a striking deviation close to the right border of the
detection region. This deviation most likely arises from field curvature wavefront
aberrations, since no deliberate correction of these aberrations has been incorpo-

10Note that we determine the area and the height with respect to the zero line, consciously allowing
the signal background to affect both parameters.
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Figure 2.6.: Sub-pixel resolved intensity distributions of an isolated atom at different de-
tector positions (a)-(h)). From each distribution the area and the height is determined.
Solid circles in the central plot indicate the relative deviation of the area from a maxi-
mum determined value; open circles, the relative deviation of the height from a maximum
value. The shaded region indicates the isoplanatic patch.

rated in the lens design of the objective [90]. From this analysis, we finally infer the
position of the isoplanatic patch and its width of 262 pixels (51% of the detection

region) corresponding to 77 um in the object plane (178 lattice sites).

Finally, we model the LSF of the isoplanatic patch, using the method described
in Sec. 2.3.2, considering all single atom distributions measured in this region. The
resulting shape of LSF can be analytically described by

L(x)

1
Co

1
Co

- {cle—#/@c%) i efm2/<2c§>]

— [016*12/(205) + sinc? (c3x)} , if <0

, if x>0.

(2.17)

where the parameters ¢, ¢, and ¢ are determined from a constrained fit, which
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2. Fluorescence detection of neutral atoms in an optical lattice

ensures the twice continuously differentiability required by the parametric deconvo-
lution (see Sec. 2.3.5), whereas ¢, normalizes the area of the LSF. The model func-
tion in Eq. (2.17) is mainly based on the theoretical LSF of a diffraction-limited
objective, being well approximated by a sum of a sinc?-function and a Gaussian
function. The piecewise definition incorporates the asymmetry of the measured
LSF arising from coma-type aberrations which among others strongly affect the
optical resolution, see Sec. 2.3.4. This model, being scaled and offset shifted, fits
well to all sub-pixel reconstructed single atom distributions in the isoplanatic patch.
For high accuracy of the parametric deconvolution, especially in determining atom
separations beneath the Rayleigh criterion, the LSF has to be reestimated prior
the image analysis. This does not necessarily need to be done in a preliminary
measurement, if real-time deconvolution is not required. In general, each set of
images contains a sufficient number of images with well-isolated atoms, allowing
to determine the LSF afterwards for a post-analysis of the data. It turns out that
the model parameters in Eq. (2.17) do not significantly change over several months
when the objective is only refocused from time to time.

2.3.4. Characterizing the line spread function

Determining the LSF with sub-pixel accuracy enables us a precise quantitive anal-
ysis of our optical system, which can be used to identify its imperfections and
infer the resulting limits of optical resolution. For this purpose, we introduce
the Optical Transfer Function (OTF) which is commonly used as an international
measuring standard to characterize the image quality of an optical system. The
OTF is defined as the Fourier transform (FT) of the area normalized PSF [86],
H,p(u,v) := FT {P,p(x,y)}, and therefore directly related to the area normalized
LSF by

H(u) :== Hyp(u,v =0) = FT {6(z) * Pyp(x,y)} = FT{L(x)} . (2.18)

The magnitude of this complex function of real variables, M,p(u,v) = |[Hyp(u,v)|
(M(u) = Myp(u,v = 0)), is referred to as the Modulation Transfer Function (MTF),
the phase as the Phase Transfer Function, accordingly. The MTF is also known as
spatial frequency response which describes the ratio of modulation, e.g. of a sinu-
soidal intensity test pattern, leaving to that entering the optical system over the
range of frequencies of interest. It is thus directly related to the resolution and the
contrast properties of the optical system. A further commonly used characteristic
quantity is the Strehl Ratio (SR), which compares the measured MTF of an optical
system to that of an optimum, diffraction-limited system M (u)

/M(u)du L(0)
SR = - . (2.19)
/Mopt(u)du Lopt(o)
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2.3. Determining the number and positions of the atoms

The Strehl ratio is directly related to waveform aberrations of an optical system [97],
providing a quantitative measure of the imaging quality.

The advantage of analyzing the imaging system in the Fourier domain arises from
the convolution theorem, providing that the OTF of a composite optical system is
given by the product of OTFs of the subsystems [86]. The same holds for the MTF.
For the imaging system presented in Sec. 2.2.1, the overall OTF can be written as

H(u) = Hopj(u) Hyeq (u) (2.20)

[¢]

where H Obj(u) denotes the OTF of the objective, including possible defocusing, and
H,.(u) the OTF of the detector. The latter incorporates the shape and the size
of the detector and the sampling grid, detector specific properties for diffusion and
charge transfer efficiency (for details see Ref. [98]). By restricting the analysis to the
isoplanatic patch (see Sec. 2.3.3), the influence of the apertures forming the stray
light trap can be neglected. The same holds for the optical narrow-band filter.

Incorporate atomic motion

For a diffraction-limited objective with a circular entrance pupil, the theoretical
one-dimensional defocused OTF (v = 0) can be approximated by [99]

; 4 [(ab
Hgbfj(u, Az) = —cos (?)
. {ﬁJl(a) T kL LA J2n+1<a>1}
n=1

4 ab

—% Sin <5>

Sy EEDD ) (a) — (@) (2.21)
n=0

with a = 47wb, b = 2|u|/uc, the maximum wavefront difference w ~ NA2Az/(2n),!!
B = arccos(|u|/u.), where u. = 2NA /\¢ denotes the cut-off frequency, A the wave-
length of fluorescence light, n the diffraction index, Az the defocus amount and
Jn(x) the nth order Bessel function of the first kind. Since the series in Eq. (2.21)
converge slowly [100], it is convenient to apply a further approximation as proposed
in Ref. [101], resulting in

%(25 — sin B) jinc [&TT“) (1 - %) %] for u < e, .22

0 for u > uc,

Hl (u, Az) =

(o]

" The maximum wavefront difference is usually geometrically derived and discussed in the image
space, see Ref. [100]. Treating the microscope as a thick lens and following Refs. [99, 100],
assuming the amount of defocus being small, we infer a relation for the maximum wavefront
differences which is completely characterized by the parameters in the object space.
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Figure 2.7.: (a) Theoretical, diffraction-limited line spread function (LSF) of the micro-
scope objective without (ngj (x), solid thin line) and with incorporating the radial motion

of the atoms (f/ggj (x), dashed thin line). The solid thick line shows the experimentally
determined LSF L(z) modeled from the sub-pixel resolved intensity distribution of a
single atom. For comparison, all area normalized LSF are scaled by 1/ ngj(()) to directly
reveal the Strehl ratio from the value at zero position, see Eq. (2.19). (b) The corre-
sponding modulation transfer functions (MTFs). The dotted line shows the MTF of the
detector in the region set by the cut-off frequency u. = 2NA /)¢ of the optical system.

where jinc(z) = 2Ji(z)/z. This approximation has been experimentally proven
[102] to yield sufficiently good results for our purpose.

In the ideal case, assuming the atoms being strongly confined in the radial direc-
tion of the one-dimensional optical lattice in the focal plane, the theoretical OTF
is given by

P - f < C
HYL (4, Az = 0) = #(0—sinp) foru<u (2.23)
0 for u > u. .

The corresponding LSF and MTF are shown in Fig. 2.7. However, taking the
radial motion of the atoms into account by averaging Eq. (2.22) weighted with
the spread distribution of the thermal wave packet in radial direction of the one-
dimensional lattice, P,uq(z), the OTF of a diffraction-limited objective imaging
radially oscillating atoms can be calculated by

A4 () / Pra(2)HE (u, 2) d. (2.24)

For our system, the radial motion of the atoms decreases the Strehl ratio to SR =
0.96, corresponding to a peak-valley wavefront distortion of Af/9 (see Ref. [97]).
The corresponding LSF and MTF, imposing the intrinsic limit of our fluorescence
imaging, are shown in Fig. 2.7. Both functions reveal only small discrepancies,
compared to the case of radially confined atoms: For the MTF, we deduce a max-
imum relative deviation of 8% at u ~ u./2. Note that, even if the degradation of
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2.3. Determining the number and positions of the atoms

the imaging quality due to the radial motion of the atoms is small for our setup,
its influence on the Strehl ratio becomes more dominant for objectives with higher
numerical apertures. This fact needs to be considered in upgrading or replacing the
present microscope objective in the future.

The effect of detector sampling and magnification

To estimate the OTF of the detector, we assume that the whole rectangular pixel
of the effective pixel width A, incorporating the magnification factor, responds
uniformly to the incident light, neglecting diffusion and charge transfer efficiency.
The OTF of the detector is than given by [98]

H o (u) = sinc(mA - u) . (2.25)

The corresponding MTF, M, (u), is shown in Fig. 2.7. From M, (u) > 0.94 for
u < u. with u. being the cut-off frequency of the optical system, we deduce that
for the given magnification, the resolution of the imaging setup is not limited by
the sampling of the detector. Moreover, the effect of the detector on the overall
OTF and MTF, and thus on the SR of the imaging system is negligible. Note
that, even though increasing the magnification of the imaging system does not
affect the optical resolution, the sampling resolution can in principle be improved.
The latter plays a decisive role in the success of numerical post-processing of the
acquired images. However, there is an upper limit for improving the sampling by
magnification. This limit is exceeded, if the number of incident photons per pixel
is so small that the resulting signal is indistinguishable from statistical fluctuations
or detection noise.

MTF of the imaging system and resolution limit

The MTF of the imaging system is calculated from the self-consistent model of the
LSF of Eq. (2.13) fitted to the sub-pixel resolved, binned intensity distributions
in the isoplanatic patch, see Sec. 2.3.3. In Figure 2.7, the LSF and the resulting
MTF are shown together with the corresponding theoretical, diffraction-limited
counterparts. The measured LSF reveals a significant asymmetry, characteristic for
coma-type aberrations: Pronounced sinc?-like features on the one side of the central
peak and a smeared out tail on the other side, both indicate that the binning of the
image is performed perpendicular to the plane of the aberration axis. Therefore,
the imaged atoms are most likely not in line with the optical axis of the objective
in the horizontal plane along the optical lattice axis. From the well-pronounced
sinc?-like features, we deduce that spherical aberrations or possible defocusing play
a minor role. The MTF also reveals a strong degradation of the imaging system,
providing a reduced modulation contrast almost over the whole frequency range.
The resulting Strehl ratio of 0.72 corresponds to a peak-valley wavefront distortion
of (3/10)\s. This distortion is higher than the expected value of A\f/4, measured with
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2. Fluorescence detection of neutral atoms in an optical lattice

the share-plate interferometer [77,78]. However, it should be noted that the share-
plate measurement has been performed on a separated compact setup, allowing an
easier alignment and thus avoiding coma-type aberrations.

Finally, we use the measured LSF to infer the limit of optical resolution, em-
ploying the contrast of two atoms with equal fluorescence contribution, separated
by a distance d, as a characteristic quantity. The contrast is defined by C' =
(Imax — Imin) / (Imax + Imin), where I'yay denotes the maximum intensity of the binned
intensity distribution and I;, the minimum intensity occurring in the region be-
tween the atoms. According to the Rayleigh criterion [87], the minimum distance
resolved by a diffraction-limited objective is given by dpin = 0.61\s/NA, yielding a
minimum contrast of Crmin ~ 19%. This distance corresponds to a minimum resolv-
able separation of four optical lattice sites. For the measured LSF, the minimum
contrast is exceeded for distances larger than five lattice sites. Hence, in both cases
the optical resolution is far beyond the requirements to resolve two atoms on neigh-
boring or even next-nearest neighbor sites. Therefore, numerical post-processing is
essential to overcome the resolution limit imposed by the imaging system.

2.3.5. Parametric deconvolution

To determine the positions of the atoms, we use a deconvolution method related to
the spike-convolution model fitting presented in Ref. [103]. This method is restricted
to a particular class of signals, including the modeled unblurred distribution of the
atoms S(z) in Eq. (2.6). It uses a trigonometric moment estimation to roughly
estimate the parameters in Eq. (2.7). We use this estimation procedure to calculate
an initial guess for a subsequently applied, iterative maximum likelihood estimation
method — the Levenberg-Marquardt fitting algorithm [104, 105].

In the following, for the sake of convenience, we consider a binned intensity
distribution I[x;| of a single ROI defined by the interval J = {z,,...,x,,} which
consists of an even number M of equally spaced pixels. The distance between
neighboring pixels is given by A, the width of the ROI by M A, accordingly. The
number of atoms N within the ROI is determined using the counting procedure
presented in Sec. 2.3.1.

We assume the LSF to be analytically known, twice continuously differentiable
and have a finite support in [—f, ], where = M A/2, with no hole in the corre-
sponding Fourier transform. This assumption ensures that the Fourier coefficients
of the LSF

8
1 g
b, = %/L(az) eI /B g | (2.26)
-8

calculated for j =0,..., N, do not vanish.

The connection between the trigonometric moments and the parameters of the
signal S(x) in Eq. (2.6) is given by the spectral structure of the Toeplitz matrix
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constructed from the Fourier coefficients of the binned intensity distribution I[z,]:

j 7 ZI UT (z;) (2.27)

where the transformation 7 : [zy,z,,] = [-7, 7], 2 — T(z) = —n+7n(z —z,)/0 is
used. Using the Fourier coefficients from Eq. (2.26) and (2.27), we calculate j, = f,,
9; = fjﬁo/ﬁj and g_; = gj for j =1,...,N. It can be shown by direct calculation
that g; are the Fourier coefficients of the unknown signal S(x).

We construct the Toeplitz matrix G N = (gmfj) jm=o0,...N» compute its smallest
eigenvalue which corresponds to the (local) background baseline a, in Eq. (2.6)
and the corresponding eigenvector o = (a, ..., ), see Ref. [103] and references
therein. By solving the polynomial equation

N
Hz—e 7) Za =0, (2.28)
j=1

we determine the N distinct roots on the unit cycle, which we denote as {e!™|j =
1,...,N}. From the latter, we directly obtain the trigonometric moment esti-

mates of the atomic positions §; = T*I(Tj), using the inverse transformation

T L [—ma] = [z, 2y, = T Lt) =2, + B(t +m) /7.

After estimating the atomic positions, we determine the fluorescence contribu-
tions of each atom a; by a linear least squares method based on Givens decompo-
sition, minimizing

2

M N
min E Iz;] —ag — E a;L(z; — &) - (2.29)

Note that at this stage, the additive noise in Eq. (2.7) is not explicitly considered,
e.g. by additional weighting in Eq. (2.29).

Although the trigonometric moments estimation method is fast, it suffers from
a lower accuracy compared to the commonly used iterative non-linear maximum
likelihood minimization algorithms, including the Gauss-Newton [106] or the more
robust Levenberg-Marquardt [104, 105] algorithm. The convergence of the latter,
however, strongly depends on the initial guess, which in the ideal case has to be
close to the final solution. For this reason, we combine the trigonometric moment
estimation and the iterative minimization algorithm, combining the advantages of
both methods. We subsequently improve the estimated parameters ag, a; and &,
using them as an initial guess in a Levenberg-Marquardt fitting algorithm, mini-
mizing ,

M N
1
min g — Iz —a—E a;L(x; —&; , 2.30
{agsa; &l i=1eN} = 07 bl = 4 i (= 45) (2.30)

where at this stage, we optionally consider the noise €[z;] by weighting the fitted
data with o7 = Var(e[z;]).
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Figure 2.8.: Estimation of the digitizer offset from the intensity histogram of an acquired
image (inset). The digitizer offset value corresponds to the position of the maximum
value in the histogram (vertical dashed line).

2.3.6. Inferring the signal-noise relation

In general, the performance and accuracy of parameter estimation using the Leven-
berg-Marquardt algorithm is increased by weighting the data points according to the
errors (see Eq. (2.30)), which in our case, arise from the detection noise. The noise
model is well known (see Sec. 2.2.2), assigning detection noise to an originally clean
signal. The model parameters still need to be determined to infer a signal-noise
relation which enters the Levenberg-Marquardt algorithm. However, it is inherently
impossible to determine a clean signal from a single noisy image. Therefore, even
knowing the signal-noise relation, a small systematical error in the wighting of the
data points has to be accepted.

In the following, we present a statistical method based on the analysis of several
hundred of images, which allows us to estimate the noise level to a set of intensity
levels of the binned intensity distributions rising above the background baseline
(fluorescence signal). For signals much larger than noise, this method has been
confirmed by simulations to provide a good approximation of the signal-noise re-
lation. To cover the full signal range, we extend the noise estimation to signals
falling below the background baseline, using a standard method which infers the
noise from uniform intensity distributions for different mean intensity levels. Fi-
nally, we estimate the lower noise limit, imposed by the conversion noise of the
readout process, from a statistical model. From a fit of the noise model of Eq. (2.4)
to the set of signal and noise values, we finally infer an analytical expression of the
signal-noise relation.

Estimating noise for signals above the background baseline

To infer the signal-noise relation above the background baseline, we consider a set
of successively acquired images of the same atom distribution (with the typical
exposure time of 1s) of, on average, four atoms loaded into the optical lattice. We
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adjust the intensity distribution IQD[xi,yj] of each image for digitizer offset!? by
pixel-wise subtracting its value b g,
Toplz;, yj] = Iyplz;, yj] — bofrset, - (2.31)

The offset value is estimated from an intensity histogram of each image separately,
thereby eliminating the effects of offset fluctuations over time. It corresponds to
the position of the maximum value in the histogram (see Fig. 2.8), assuming that
most pixels in the detection area do not accumulate any photoelectrons and the
amount of dark electrons is negligible during exposure.

Let Iéll)) [z;,y;] and Ig)) [;, ;] be two offset-adjusted intensity distributions of suc-
cessively acquired images of the same atom distribution. From both distributions,
we calculate the pixel-wise average using

- 1 1 2
Iyplr;,y;] = B <Z§D) [, 9] +I§D) [wiayj]) . (2.32)

The resulting distribution roughly approximates the clean intensity signal. Note
that the accuracy of this approximation can in principle be increased by calculating
the average from significantly more than two images. However, we intentionally
restrict the analysis to two images for two reasons: First, due the limited storage
time of the atoms in the optical lattice, the probability to acquire a high number of
images of the same (stationary) atom distribution is low, especially for distributions
comprising a high number of atoms. Second, we have checked by simulations that
for signals much larger than noise the two-image approximation of the clean signal
already provides accurate results using the statistical method described below.

The squared noise assigned to the clean signal is inferred from the squared stan-
dard deviation of both initial intensity distributions using the average

1 - 2 2 - 2
U%D[xmyj] = (ZéD) [%wyj] - Z2D[9Cz7yj]> + (ZéD) [%wyj] - Z2D[9Ci7yj]>
1 1 2 2
-9 <IéD) [xiayj] - IéD) [%w%]) . (2.33)

Since we are interested in the signal-noise relation of the binned data, we calculate
the clean binned intensity distribution and the corresponding squared noise

Ilz,) = Zj2D [%’ayj] ) (2.34)
J

02[351‘] = Z U%D [xiayj] . (2.35)
J

12 A positive digitizer offset is used in an analog-to-digital converter to represent the average zero
value of an analog signal. It prevents clipping of the negative portion of the analog signal in
the conversion process, since a digitizer only has positive numbers while an analog signal can
fluctuate both above and below an average value.
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2. Fluorescence detection of neutral atoms in an optical lattice

From the latter, we pixel-wise assign the noise to the binned signal, o[z;] — Z[z,].
This assignment, however, is not unique, i.e., signals of equal intensity level on
different positions of the binned distribution are assigned to different noise values,
which in turn, are Gaussian distributed around a mean value. The accuracy of the
mean value increases with the number of estimated noise values, assigned to the
same intensity level. For a binned intensity distribution with only few atoms, the
number of data points of equal intensity level decreases with increasing intensity,
see Fig. 2.8. Therefore, several distributions are required to cover the full intensity
range, increasing the accuracy of the mean noise values. For this reason, up to 1000
images providing 500 clean intensity distributions are considered in the following
analysis.

From now on, we label each clean intensity distribution, the positions of its data
points and the assigned noise by an index k € N, namely Z, [z, ;] and o[z, ;. We
divide the intensity range into sub-intervals U, = [(I —1)du, léu) of a fixed width
du . For each sub-interval U,, we trace all clean intensity distributions for intensity
values lying within the sub-interval and construct a set of indices Q, , = {i|Z, [z, .] €
U,} of the corresponding data points. We calculate the mean intenéity represen,ting
the sub-interval using

I, = % Z Z Tilwk) (2.36)

Uk iy,

where N, = >, N, ; with N, ; being the number of elements in the set Q, ;. The
corresponding mean squared noise is than given by

=g D ot (237

ko i€Qy,

Finally, we assign the mean noise to each intensity level of the sampled region,
o, — fl, see Fig. 2.10. The sampling density of the intensity region is determined
by the width of the sub-intervals du, whereas the accuracy of the assigned mean
noise value by the number of data points NV;.

Estimating noise for signals below the background baseline

The signal-noise relation below the background baseline is inferred from images
with a uniform intensity distribution over the isoplanatic patch, acquired for a
fixed signal intensity each. The photon signal intensity is aligned by the power
of the laser beams, forming the optical molasses. The amount of dark current is
controlled by the exposure time, while the internal shutter of the EMCCD camera
is closed. From the binned intensity distribution Z[x,] of each offset-adjusted image
Toplz;,y;), we calculate the mean intensity signal level and its standard deviation,
corresponding to the noise. To increase the accuracy of the mean value and the
standard deviation, ten images acquired under identical conditions are considered
for the calculation. Results are shown in Fig. 2.10.
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Figure 2.9.: Intensity histogram of 50 binned intensity distributions, dominated by the
readout noise. In the inset, a single binned intensity distribution is shown, revealing
characteristic spikes due to the electron multiplied clock-induced charges. The solid line
in the histogram shows the fit of the statistical model of Eq. (2.40).

Estimating the readout noise arising from signal conversion

The readout noise arising from the charge-to-voltage and analog-to-digital conver-
sion determines the noise level in the low-intensity limit of the image acquisition
process. To infer this limit for the binned intensity distributions, we acquire a set
of 50 images in darkness with the internal shutter closed and an exposure time of
50ms each. At this exposure time and an EMCCD temperature of —70°C, the
dark current is negligible. From all binned intensity distributions of offset-adjusted
images, we calculate a histogram of intensities, see Fig. 2.9. The histogram reveals
a characteristic shape determined by the two contributions of the readout noise (see
Sec. 2.2.2): A Gaussian peak centered close to zero resulting from the noise of the
conversion process,'3 followed by a long tail due to clock-induced charges generated
during the frame transfer operation or the electron multiplication. To extract the
contribution of the conversion process, we fit a statistical model to the histogram.
The model incorporates weighted probability distributions describing the random
output of each of the three involved readout stages (for details, see Ref. [107,108]):

(i) A Gaussian probability distribution G(z) with a zero mean and a standard

deviation o describing the output after the conversion process.

conv,bin
(ii) Assuming that after the frame transfer operation, a clock-induced charge

(CIC) is present at the input of the multiplication register with a probability of

13For an intensity histogram of a single pixel, the Gaussian distribution is centered exactly at zero.
However, for the binned data the Gaussian contribution of the histogram appears to be shifted
due to the convolution of the asymmetric single pixel distributions of the binned pixels.
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2. Fluorescence detection of neutral atoms in an optical lattice

Deic» then the probability of z . electrons to be present at the output is given
by [107,108]

pClC eXp( ClC/M) lf T . > 0

? C1C

Py (ge) = 2.38
010( 01c 1_/ ClC if oz :0’ ( )

>0

where M denotes the mean gain of the electron multiplication process, see Sec. 2.2.2.

(iii) Considering a small probability p&» to generate a spurious electron at each
stage of the electron multiplication register, the probability of x&% electrons being
present at the output is given by [108]

C

pc]c eXp 3 em
Z )/N , if 28>0
Pac'(zéic) = (2.39)

>0

with IV = 536 multiplication stages of the register.

The probability distribution to find a given number of electrons reading a single
pixel, after passing all three readout stages, is determined by the convolution of
the distributions (i), (ii) and (iii). Since we are interested in the binned data, we
convolve the resulting distribution K times with itself, where K denotes the number
of pixel rows of the images. We fit this distribution to the histogram, minimizing

S {H(T,) — (G * Py x P& (eT,)}" (2.40)

cic Ci1c
em
{a ¢ Uconv bm’pmc ’pmc}

where the fit parameter ¢ normalizes the histogram and ¢ denotes the conversion
factor between CCD counts and the number of electrons. From the fit, we infer
a noise of the conversion process of 0., 1;, = (10.3 £1.1) CCD counts, whereas
Peie = (2.2£0.7)x1072, p = (6.1£1.5)x10~% and ¢ = (12.0£1.5) e~ /CCD counts.
The noise of the conversion process agrees well with that determined in Ref. [108],
and also pSi < p,;. meets the expectation [96].

Signal-noise relation for binned intensity distributions

Joining results of signal-noise assignments for signals above and below the back-
ground baseline and including the noise level in the low-intensity limit o, ...
allows us to fully characterize the signal-noise relation in the relevant intensity Te-
gion. In Figure 2.10, results of these assignments for binned intensity distributions
are shown. We observe a dominant square-root dependency of the noise on the
intensity signal, apparent on the slope in the double-logarithmic plot. As expected,
small deviations appear for high intensity levels reflecting the increasing influence of
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Figure 2.10.: Signal-noise relation for a binned intensity distribution, estimated from a sta-
tistical analysis of images. Open circles show results from the two-image analysis; filled
circles from the calculation of the mean value and standard deviation of a uniform inten-
sity distribution for different intensity levels. The error bars are smaller than the point
size. The horizontal line indicates the lower limit of the noise, arising from the electron-
to-voltage and analog-to-digital conversion. Vertical lines separate the regions labeled to
the respective signal contributions. The dashed line indicates the trend, expected from
a shot noise dominated image acquisition.

linear scaling noise, e.g. arising from the photo-response non-uniformity (PRNU),
see Sec. 2.2.2. We stress that the signal-noise relations inferred from two different
methods merge seamlessly, confirming the accuracy of the two-image approximation
deduced from simulations. Following the noise model of Eq. (2.4), we fit

o(Z) = [y in + BT + BT (2.41)
to the data points of the signal-noise relation (see Fig. 2.10), obtaining ¢; = 10.98 £
0.05 and ¢, = (3.0 £ 0.2) x 1072, This result quantitatively confirms the shot noise
dominance over the relevant intensity region. However, it should be noted that
the linear noise contribution of the PRNU may be inherently underestimated by
the two-images method, since fixed systematic effects cancel when two images are
subtracted.

Finally, we construct a relation directly assigning squared errors 012 in Eq. (2.30)
to each data point I[x;] with the objective of maintaining the real-time performance
of the parametric deconvolution. For this purpose, computationally expensive oper-
ations, e.g. calculation of intensity histograms for each image to adjust the images
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2. Fluorescence detection of neutral atoms in an optical lattice

to the digitizer offset, have to be avoided. Thus, we take the background base-
line a; of the stray light as a constant reference, which, fixing the power of laser
beams forming the optical molasses, turns out to be stable over time. Therefore,
once the background baseline level is determined with respect to the digitizer offset
Geonst from several preacquired images, the squared error entering the Levenberg-
Marquardt fitting algorithm in Eq. (2.30) is given by

2
Jl2 =0 (I[xl] —ag+ a’const)

2
- O-?,onv,bin + C% (I[xl] —ag + a’const) + C% (I[xl] —ag + a’const) . (242)

2.3.7. Filtering of erroneous results

In some numerically challenging cases, mainly occurring for many optically unre-
solved atoms in a ROI, the parametric deconvolution fails to accurately determine
the position of the atoms. This may happen for an inaccurate initial guess, yielding
the subsequent fitting algorithm to settle on a set of parameters that minimizes
Eq. (2.30) in the local sense but not in the global sense, being caught in a local
minimum. A further source of errors are atoms which leave the optical lattice
during the exposure time. In all these cases, the erroneous results have to be effi-
ciently identified and excluded from further analysis to maintain a high reliability
of inferring the positions of the atoms. Since manual verification of each result is
time-consuming and therefore inapplicable for real-time processing, we aim on an
automatic verification scheme. This scheme requires an unbiased reliability crite-
rion based on a sensitive, easily accessible error indicator. For this, we utilize the
fluorescence contributions of the atoms a; estimated in the final stage of the para-
metric deconvolution, see Eq. (2.30). These parameters turn out to be sufficiently
sensitive to identify most of the deconvolution errors.

In Figure 2.11, a histogram of fluorescence contributions a . is shown, obtained
from the parametric deconvolution of 20530 atoms from approximately 6000 images
with up to eight atoms per ROI (the same data set as used in Sec. 2.3.1). The his-
togram reveals a Gaussian peak centered at a = (90669 £ 42) CCD counts with a
standard deviation of o, = (6492+51) CCD counts. Both values only slightly devi-
ate from the averaged single atom fluorescence contribution I, = (90934+126) CCD
counts and the corresponding standard deviation o; = (6795 + 111) CCD counts,
inferred from the fit of Eq. (2.9) to the histogram of I}°*, see Sec. 2.3.1. This fact
indicates the proper working of the algorithm. The homogeneous background in the
histogram mainly arises from fluorescence contributions of atoms leaving the optical
lattice during exposure. The same applies to the contributions with a; > a, where
one of two or many nearby atoms leave the trap, whereas its partial contribution
is wrongly assigned to the nearby atoms by the algorithm. The noticeable rising
in the histogram close to 2a and the zero value corresponds to the cases of two
atoms being wrongly regarded as one by the algorithm, even though neither of the
involved atoms has left the trap during exposure. We stress that the interpretation
of the respective histogram contributions relies on a manual investigation of the
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Figure 2.11.: Histogram of fluorescence contributions of a single atom a;, calculated using
the parametric deconvolution. The solid line indicates a Gaussian fit to a local region of
the histogram. Vertical dashed lines indicate the borders of a typical acceptance region,
corresponding to the +£30 confidence interval.

respective binned intensity distributions, carried out on random samples. Atoms
leaving the trap during exposure are identified from a sequence of successive images
of the same atom distribution.

Following the analysis of the histogram in Fig. 2.11, it is apparent to regard those
results of the parametric deconvolution as reliable, the parameters a; of which
contribute to the Gaussian distribution centered around the average single atom
fluorescence contribution a. Consequently, the reliability criterion for the automatic
verification can be written as

ja;, —a| < e, (2.43)

where ¢ determines the borders of the acceptance region. Results of which param-
eters fail to pass this criterion are regarded as erroneous being excluded from the
subsequent analysis. In addition, we exclude the total ROI containing the erroneous
result, since it may affect the estimation accuracy for the nearby atoms. Note that,
apart from the number of excluded results, the width of the acceptance region also
affects the accuracy of determining the positions of the atoms, see Sec. 2.4.1. For
typical applications, we set € = 30, providing 14% of the results failing the relia-
bility check. Most of these result can be traced back to the numerically challenging
cases with several atoms occupying nearest lattice sites. In comparison, only 5% of
the atoms leave the optical lattice during the exposure time.

2.3.8. Remarks on implementation and performance

The image analysis module is written in ANSI C in LabWindows CVI (National
Instruments) software development environment. It utilizes high-performance li-
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Figure 2.12.: Average computation time of the parametric deconvolution for a single ROI.
The error bars are smaller than the data points. The solid line shows a fit of Eq. (2.44).

braries, e.g., the LabWindows CVI Advance Analysis Library, mainly for matrix
operations, including solving of eigenvalue and eigenvector problems, and Numerical
Recipes [109], providing a fast and customizable Levenberg-Marquardt fitting algo-
rithm. The image analysis module is part of two self-developed software versions: a
real-time image acquisition and image analysis software “iXacq” and a post-analysis
software “Post Deconvolution” to post-analyze the acquired data from stored image
files, for details see App. A.2 and A.4, respectively. Both versions are optimized for
computational performance. The real-time version additionally utilizes the multi-
threading and multi-core capability of the CPU (Intel Pentium D 935, 3.2 GHz),
allowing to simultaneously analyze and store the acquired images while new im-
ages are acquired. By this, we avoid computational delays in sequences relying on
successively acquired images, e.g. for continuous monitoring of atoms. Results for
atom positions, atom numbers and atom separations are stored in separated files,
including the erroneous results being marked as such for root cause analysis.

In Figure 2.12, the average computation time of the parametric deconvolution
for a single ROI as a function of the number of atoms n is shown.'* From a fit of
the function

f(n) =ty +tn”, (2.44)

we infer the fit parameters ¢, = (0.17 £0.01)ms, ¢; = (0.11 £0.01) ms and o =
2.10 + 0.04. Therefore, the computation time scales approximately quadratically
with the number of atoms per ROI. Incorporating the transfer time of the image

14The benchmark test has been performed on an Intel Pentium M processor with 1.6 GHz. Note
that the lab computer (Intel Pentium D 935, 3.2 GHz) used for real-time deconvolution provides
a higher performance.
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Figure 2.13.: (a) Position of a single atom continuously monitored with a time step of 1s.
The solid line indicates the drift of the respective lattice site; the shaded stripe, the
maximum trapping region. (b) Histogram of deviation of the atom position from the
lattice site center. The solid line shows a Gaussian fit to the histogram.

from the camera, the time for vertical binning, image segmentation, determination
of atom number and storing the images and deconvolution results, we estimate
an upper limit of the overall time to analyze a typical image being far below the
shortest reasonable exposure time of 100ms. Thus, the frame rate for continuous
monitoring of atomic positions is limited by the exposure time, rather than by the
parametric deconvolution.

2.4. Detecting atoms on neighboring lattice sites

The parametric deconvolution allows us to continuously monitor the positions of
the atoms with a frame rate limited by the exposure time. The determined posi-
tions of the atoms, however, are subjected to position fluctuations and drifts of the
optical lattice relative to the imaging optics, affecting the accuracy of the paramet-
ric deconvolution. Improving the accuracy by averaging the position from several
successively acquired images is only reasonable, if the drift of the optical lattice
is negligible during the acquisition time. Furthermore, drifts of the optical lattice
strongly affect the reliability of inferring the transport distance of atoms whenever
atoms are transported in the lattice, see Sec. 4.5.3.

To infer the drift of the optical lattice relative to the imaging optics and the
accuracy to determine the atom position from a single image, we track the position
of a single atom over a long time period from successively acquired images with
1s exposure time each, see Fig. 2.13(a). We observe small fluctuations of the
atom position around an approximately linear trend, indicating a slow drift of the
optical lattice. This drift mainly originates from the thermal expansion of the
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2. Fluorescence detection of neutral atoms in an optical lattice

optical table. From a linear fit to the atom positions, we deduce a drift-velocity of
(16.6 + 0.1) nm/s, which is negligible for all applications presented in this work.!®

The accuracy of determining the position from a single image with a typical expo-
sure time of 1s is inferred from a histogram of deviations of the atom positions from
the fitted center of the lattice site. The histogram reveals a Gaussian distribution,
see Fig. 2.13(b). From a fit, we infer an accuracy of o,,,s = (0.149 £ 0.007)\/2 =
(65 £ 3)nm (standard deviation of the Gaussian). For comparison, the spread of
the Gaussian thermal wave packet of the atoms along the trap axis is given by
aﬁ‘fr = 23nm. Note that the estimated accuracy incorporates the non-resolvable
fluctuations of the optical lattice. Therefore, the numerical accuracy of the paramet-
ric deconvolution to determine the atom positions from a single image is expected
to be higher.

Some applications presented in this work require the relative distance between
atoms occupying different lattices sites rather than their absolute positions to be
known. Compared to the accuracy of determining the absolute positions, the accu-
racy of determining distances is decreased (o, = \/iapos). However, because the
fluctuations and drifts of the optical lattice equally affect all trapped atoms, by aver-
aging the distances from many successively acquired images of the same distribution
the accuracy of determining the distances can be significantly increased [43,110],
being only limited by the storage time of the atoms. So far atoms have to be opti-
cally resolved to reliably infer the correct number of sites separating them [43,110].
In the following, we show that the parametric deconvolution presented in Sec. 2.3.5
together with a precisely determined LSF and the signal-noise relation overcome
the previous restrictions.

2.4.1. Parametric deconvolution of atom clusters

We apply our numerical method to approximately 6000 images in order to both
investigate its efficiency and accuracy, and to extract the distribution of atom sep-
arations. For this purpose, we repeatedly load on average four atoms into the
optical lattice and successively acquire several images of the same atom distribu-
tion. From each image with N atoms passing the reliability criterion of Eq. (2.43),
we determine the atom positions and calculate the corresponding N(N — 1) dis-
tances. Following Ref. [43], we additionally calculate the averaged distances from
successively acquired images of the same atoms to reduce the statistical error. For
a large number of atoms loaded in the optical lattice, the atoms are rather clustered
than being well isolated from each other. This results in ROIs containing several
optically inseparable atoms, see Fig. 2.14. These atom clusters constitute the most
challenging cases for our numerical post-processing method.

In Figure 2.15, the histograms of determined distances from both single images
and three-image averages are shown. Both histograms reveal a periodic structure,

15The drift of the optical lattice is usually checked prior each measurement requiring an accurate
estimation of positions and the distance covered by the atoms after being transported in the
lattice. From all these measurement we infer an upper limit of the drift-velocity of 20 nm/s.
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Figure 2.14.: Fluorescence image and the corresponding vertically binned intensity distri-
bution I[z;] of an atom cluster. The shaded region indicates the ROI. The extracted
positions &, and the (scaled) fluorescence contributions a, of the atoms are shown as
vertical lines. The solid line shows the resulting source distribution S(z) of Eq. (2.6)
convolved with the LSF.

perfectly reproducing the periodicity of the optical lattice, as well as a marked
decay in the number of occurrences for small separations. We stress that the lattice
periodicity does not enter in any way our estimation procedure. Thus, the strict
adherence to the periodicity and the well separated histogram peaks provide a
striking confirmation for the high precision and reliability of our detection. For each
histogram peak, we estimate the reliability F,, of inferring the correct number n € N
of sites separating two atoms, assuming Gaussian distributions of the measured
distances around d,, = n\/2 and fitting a sum of Gaussians centered at d,, to the
histogram

30
f(z) = Z h, e~ (@ dn)*/(207) (2.45)
n=1

where o, estimates the accuracy of determining the distance d,,. The reliability

F,, is then given by the area of the normalized Gaussian centered at d,, within

[dn - )‘/4’dn - )‘/4]

M4
P = ;m /ewdn)?/@o%mx. (2.46)
"_\/4

For site separations below the theoretical diffraction limit (n < 5), we obtain
F,_, = 81.0-99.7% (0,4 = 72-123nm), whereas above the diffraction limit Fy o9 =
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Figure 2.15.: Histogram of determined distances. The upper rows correspond to the dis-
tances obtained from a single image; the lower rows to the distances obtained from the
averages over three successively acquired images of the same atoms.

98.2-99.9% (0599 = 67-91nm). Reducing the statistical error by averaging the
distances from three successively acquired images of the same atoms increases the
reliability to F\*) > 99.98%, and F\"), > 99.992%. This allows us to investigate
possible atomic interactions in the nearest-neighbor regime.

The marked decay in the number of occurrences for small separations can partially
be traced back to the cases with three or more atoms occupying nearest lattice sites.
These cases are challenging from a numerical point of view and cause our algorithm
to provide increasingly inaccurate results, which then fail to pass the reliability
criterion of Eq. (2.43). From simulations, we deduce that this does not hold for

pairs of nearest neighbors separated by at least two lattice sites from other atoms.

Adjusting the acceptance region and incorporating the noise characteristics

In the following, we investigate the influence of the acceptance region and the
incorporated signal-noise relation in the final stage of the parametric deconvolution
on both, the accuracy of determining the distances and the reliability of inferring the
correct number of sites separating two atoms for separations below and above the
theoretical diffraction limit. For this, we reanalyze the previous data set for different
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Figure 2.16.: Histogram of distances modulo /2 for distances (a) below, d, € D*®!, and (b)
above, d, € DV, the theoretical diffraction limit, obtained from a single image with 1s
exposure time for a typical acceptance region border of ¢ = 30,. The solid line shows the
fit of Eq. (2.47) to the histogram. The fit parameters o, ,; = (0.21£0.01)A/2 = (91£4) nm
and o, = (0.1824+0.001)\/2 = (79.8+0.4) nm provide the mean accuracy of the distance
measurement, respectively.

borders ¢ of the acceptance region (see Eq. (2.43)), with and without incorporating
the signal-noise relation in the parametric deconvolution. We divide the set of
distances D, = {d;|i = 1,...,M_} calculated from single images into two subsets:
DY = {d, € D.|d, < 4.5\/2} and D2 = {d, € D.|d; > 4.5)\/2}, corresponding
to atom separations below and above the theoretical diffraction limit, respectively.
Utilizing the periodicity of the optical lattice, for each subset, a histogram of the
distances modulo \/2 shifted by A/4 is calculated. Such a histogram reveals only a
single peak centered at zero, see Fig. 2.16. Compared to the multi-peak histogram
analysis, this procedure allows us to reduce the statistical error of inferring the
accuracy and reliability, arising from an insufficient number of accepted results for
small values of €. From a fit of

f@)=h (e—(x+)\/2)2/(202) 4 e/ (20%) 4 e—(m—A/2)2/(202)> (2.47)

to the histogram, where the fit parameter h incorporates the heights of the three
superimposed Gaussian distributions, for each subset, we deduce the mean accuracy
of determined distances (o}, and o,; ). The mean reliability of inferring the correct
number of sites separating two atoms is calculated according to Eq. (2.46).

In Figure 2.17, the accuracy and reliability for different borders of the accep-
tance region are shown for distances below and above the theoretical diffraction
limit, with and without incorporating the noise characteristics, respectively. In
both regions, incorporating the signal-noise relation in the parametric deconvolu-
tion increases the accuracy of determining the distances by =~ 5%. This increase,
however, translates only in a noticeable improvement of the reliability for distances
below the diffraction limit. By increasing the width of the acceptance region, both
the accuracy and reliability decrease, since erroneous results increasingly enter the
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Figure 2.17.: Accuracy of determining the distances (upper graphs) and reliability of infer-
ring the correct number of sites separating two atoms (lower graphs) for different borders
e of the acceptance region for distances below, d; € DP¢!, (a) and above, d; € DY, (b)
the theoretical diffraction limit. Lighter (darker) bars indicate the values with (without)
incorporating the signal-noise relation in the Levenberg-Marquardt algorithm.

histogram of distances. Due to the Gaussian distribution of fluorescence contribu-
tions around a mean value a (see Fig. 2.11) and a negligible homogenous background
arising from an insignificant number of atoms leaving the optical lattice during the
exposure time, the effect of erroneous results entering the histogram of distance in
Fig. 2.16 is comparably small and thus certainly underestimated. Decreasing the
acceptance region border below ¢ = 30, in contrast, increases the accuracy and
reliability at the expense of the number of results passing the reliability criterion.
The acquisition of Njpg successive images of the same atom distribution provides a
more efficient strategy for increasing the accuracy, reducing the statistical error by
\/Nimg. This strategy, however, significantly increases the duration of experimental
sequences which are mainly dominated by the exposure time.

2.4.2. Calibration of the image scale

Resolving the precisely known periodicity of the optical lattice from distances be-
tween atoms occupying different lattice sites allows us to calibrate the image scale,
relating the length units of CCD pixels in the detection plane to the length units in
the object plane. For this purpose, we introduce a conversion factor «,,, defined
by

dobj - aconvddet ) (248)
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2.4. Detecting atoms on neighboring lattice sites

where d;,; denotes the distance in the object plane (in meters) and dg4,, the corre-
sponding distance in the detection plane (in CCD pixels). Therefore, knowing the
periodicity of the optical lattice in the object plane, the corresponding periodicity
in the detection plane needs only to be precisely determined to infer the conversion
factor auyqpy-

We infer the periodicity in the detection plane from a Fourier analysis of a set of
distances [111], D = {dy¢ ;17 = 1,..., M} with M = 4082, calculated from averages
of three successively acquired images of the same atom distribution.'® From this

set, we construct the periodic distribution function

Z 8(z — dyey ;) (2.49)

and calculate its Fourier transform

2 17 ik 1 ok,
k) = FT{f(@)} = —= | H@periten - LS s (250
e j=1

The latter allows us to determine the period of f(x) corresponding to the A\/2
periodicity of the atomic separations.

The real part of f (k) exhibits sharp peaks at integer multiples of the spatial
frequency k,, corresponding to the periodicity of the optical lattice, whereas its
imaginary part provides zero crossings at these frequencies, see Fig. 2.18. Therefore,

according to Eq. (2.48), the conversion factor a.,,, can be calculated by

= ko\/2. (2.51)

conv

From the Fourier transform of f(z), we infer

o = (294.65 + 0.02) nm /pixel , (2.52)

conv

al™ = (294.63 + 0.01) nm /pixel , (2.53)

conv

where af¢ denotes the conversion factor obtained from the position of the first
peak in the real part of f(k > 0), olm
corresponding zero crossing of the imaginary part, respectively. The statistical
error, originating from the finite size of the set D is estimated similar to Ref. [111].
From the average of both conversion factors, we finally obtain

the conversion factor obtained from the

Qegny = (294.64 + 0.02) nm /pixel . (2.54)

conv

Thus, for a pixel size of 16 um, we deduce a magniﬁcatjon of 54.3.
The decay of the peak heights in the real part of f(k) with increasing integer
multiple of k, arises from the deviations of the Dirac spikes in f(z) from a perfectly

1We use the same set of data as for the calculation of the histogram in Fig. 2.15 of Sec. 2.4.1.
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Figure 2.18.: Real and imaginary part of the Fourier transform f (k) of the periodic distri-
bution function f(x). Vertical dashed lines indicate the integer multiple of the spatial
frequency k,. The peak of the real part and the zero crossing of the imaginary part at
kq are shown in a detail view. The dashed line shows a Gaussian envelope fitted to the
peaks maxima.

periodic distribution, i.e. a Dirac comb with a spike separation of 1/k,. This can
be intuitively explained assuming the determined distances dccd, j being Gaussian
distributed around the spikes positions of the Dirac comb with a standard deviation
0. The deviations of ddet,j
convolving the comb with the Gaussian distribution. According to the convolution
theorem, the Fourier transform of the resulting function is a product of the Dirac
comb with a spatial frequency separation of k; and the Gaussian function with a
standard deviation of 6 = 1/(270), forming the envelope of the Dirac comb. The
real part of the resulting function reasonably agrees with Re f (k) inferred from the
measurement, see Fig. 2.18. From a fit of the Gaussian envelope to the peak maxima
of Ref (k) at integer multiple of k;, we deduce the (mean) accuracy of determining
the separations of atoms of o = (724+1) nm. The corresponding (mean) reliability of
F =99.7% agrees well with the values, estimated from the histogram of distances,
see Sec. 2.4.1. Small deviations are expected due to the fact that the distances in
D cover only a finite interval, whereas according to the definition, the width of the
interval covered by the spikes of the Dirac comb is infinite.

from the spikes of this comb can be incorporated by

2.4.3. Parametric deconvolution of atom pairs

To investigate the influence of possible interaction induced effects in the physically
interesting regime of neighboring atoms, and to get an unbiased insight in the
statistics of atom pair separations, in the following experiment, we focus on the

62



2.4. Detecting atoms on neighboring lattice sites

distance distribution of isolated atom pairs only. For this purpose, we reduce the
mean number of atoms loaded into the MOT to about two atoms using a high field
gradient of 345 G/cm, which also favors short distances. From single-atom images,
we infer the interaction-free position distribution, which is given by the overlap of
the MOT and the one-dimensional lattice. From two-atom images, we determine
the atom separations averaging over three successively acquired images of each pair
of atoms.

To remove the bias of our numerical method from the statistics of atom pair sepa-
rations, leading to the decay in the number of occurrences for small separations, the
parametric deconvolution is extended by an additional stage. This stage aims on
reanalyzing the data, whenever convergence failures of the Levenberg-Marquardt
algorithm occur yielding results which fail the reliability criterion of Eq. (2.43).
Most of these failures arise from an incorrect initial guess of the trigonometric mo-
ment estimation, increasingly occurring for nearby atoms. Fortunately, for only two
nearby atoms in a ROI, the positions of both atoms can be easily guessed, assuming
them in a small region on both sides of the center of the ROI. This assumption turns
out to be sufficiently accurate for the subsequent deconvolution steps. We utilize
this assumption in the additional stage: Whenever a ROI with two atoms fails the
reliability check, the initial guess is automatically reestimated by the “simple guess”
and reentered the Levenberg-Marquardt algorithm. The convergence of the latter is
facilitated by reducing the number of parameters to be estimated. Considering the
fact that nearby atoms are less affected by inhomogeneous illumination or detector
sensitivity, the fluorescence contribution of both atoms can be assumed to be equal,
and thus described by a single parameter. By this, we recover all results which
previously failed the reliability criterion for convergence reasons. Deconvolution re-
sults for atom pairs in the optically resolvable and non-resolvable regime are shown
in Fig. 2.19(a-f).

In Figure 2.20, the histograms of single-atom positions and pair separations are
shown. The latter reveals a clear gap for two atoms loaded into the same lattice
site, reflecting light induced atom losses. The underlying loss mechanism is known
[112-114]: The atoms gain sufficient kinetic energy in an excited molecular potential
to leave the optical lattice. For larger separations, starting from nearest-neighbor
sites, the distance distribution follows a Gaussian shape. This shape fits well to
a modeled distribution which assumes statistically independent positions of both
atoms. The number of occurrences ) as a function of distance d is then given by

Q(d) =2Qy(P * P)(d) = 2Q, / P(z)P(x — d)dx, (2.55)

where P(x) denotes the normalized fitted single-atom position distribution (Gaus-
sian with a standard deviation of o = 9.51/2), see Fig. 2.20(a), and @, the total
number of analyzed atom pairs. From this fact, we conclude that for our one-
dimensional lattice, atoms in neighboring lattice sites do not affect each others’
storage time, which is limited by background gas collisions. We stress that for
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Figure 2.19.: Parametric deconvolution of atom pairs (a) occupying neighboring lattice
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and (f) six lattice sites. The dashed lines indicate the contribution of each individual
atom convolved with the LSF; the solid line the respective contribution of their sum.
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Figure 2.20.: (a) Histogram of absolute positions of single atoms transferred from the MOT
into the one-dimensional lattice. Error bars indicate the statistical error. The solid line
shows a Gaussian fit. (b) Histogram of distances between two transferred atoms. Solid
bars correspond to the measured distances averaged over three successively acquired
images; shaded bars to the distance distribution in terms of lattice sites. The solid line
shows the distribution Q(d) of Eq. (2.55).

isolated atom pairs with separations below the diffraction limit, our numerical pro-
cedure provides an increased reliability of more than 95.0%, exceeding the number
quoted for clusters of atoms.

2.5. Conclusion

In this chapter, I have presented the developed and adopted numerical post-proc-
essing methods which allow us to accurately and reliably determine the number, the
positions and separations of individual atoms in a sparsely filled one-dimensional
optical lattice at all relevant distances from fluorescence images. The imaging setup
has been discussed in detail, meeting the requirements on efficient fluorescence col-
lection, imaging quality, suppression of stray light and noise performance. The
microscope objective is capable of optically resolving the atoms separated by more
than five lattice sites. The parametric deconvolution overcomes this limit, reliably
inferring the correct number of sites separating two atoms down to nearest neigh-
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bors. This has been demonstrated by resolving the periodicity of the optical lattice
down to separations of neighboring lattice sites of 433 nm.

The parametric deconvolution requires the LSF of the optical system to be ana-
lytically known. I have presented a method, providing a precise and self-consistent
estimation of the LSF with sub-pixel accuracy, directly from a set of images of
isolated atoms. This method has been used to determine the isoplanatic patch.
Another method has been developed to directly deduce the noise performance of
the detector from a set of atom images by inferring its signal-noise relation. The
dominant square-root dependency of the noise on the signal in this relation reveals
that our fluorescence detection is primarily shot noise limited in the relevant signal
region. By incorporating the measured signal-noise relation in the parametric de-
convolution, the accuracy of determining atom separations has been increased by
5%. High computational performance of the deconvolution enables to continuously
monitor the positions of the atoms almost in real-time with a frame rate limited by
the exposure time.

The new degree of precision in detection allows us to directly observe light-
induced atom losses and to distinguish between on-site and nearest-neighbor con-
tributions, from statistics of atom pair separations. Furthermore, it paves the way
for preparation and manipulation of single atoms in confined spaces, simplifying
the engineering of two atoms interactions using state-selective optical lattices, see
Chap. 7.
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3. Engineering internal states of neutral
atoms in an optical lattice

Engineering internal states of microscopic two-level quantum systems (qubits) forms
the basis of a recently growing research field of experimental quantum physics, with
implications for quantum information [13,14,16], quantum cryptography [115,116],
and communication [117,118]. Cesium atoms in optical lattices form ideal two-
level quantum systems, exhibiting favorable properties for storing and processing of
quantum information. Their easily accessible, long living internal states make them
ideally suited for robust qubit states. In the past decade, experimental methods
to prepare, coherently manipulate and detect internal states of individual cesium
atoms have been developed [46-48]. Further methods, well-established in related
research fields, have been recently adopted [119]. In this chapter, I present the
technical implementation of these methods, analyzing their performance with regard
to the state-selective transport and its applications.

3.1. State preparation and detection

In general, any state of a two-level quantum system can be generated by a sequence
of unitary operations on a well-defined initial state. The initial state is usually
one of the two basis states spanning the Hilbert space of the qubit Hqpit = C2 It
is selected to provide a high preparation efficiency with a minimum of technical
effort. For cesium atoms, the outermost Zeeman sublevels of the hyperfine ground
states, |0) = |F' =4, mp =4) and |1) = |F = 3, my = 3), see Fig. 3.1(a), are ideally
suited for the basis states. The |0) <> |1) transition frequency can be easily tuned
sufficiently far from other transition frequencies by an external magnetic field which
lifts the degeneracy of the Zeeman sublevels. Both basis states play a particular role
in the quantum state engineering adopted in this thesis: State |0) is selected as the
initial state, being easily and reliably prepared using optical pumping, whereas state
|1) is used for the state-selective detection. Both, state preparation and detection,
but also any coherent manipulation on the qubit states are performed on molasses
cooled atoms in an adiabatically lowered optical lattice with a depth of kg x 80 K,
resulting in a typical temperature of the atoms of 10 K.

3.1.1. State initialization by optical pumping

To prepare trapped cesium atoms in the initial state |0), the atoms are optically
pumped with a o T-polarized laser beam, which is resonant with the F' = 4 — F' = 4
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Figure 3.1.: (a) Zeeman splitting of magnetic sublevels in the 62S; s2 ground state man-
ifold of cesium. The degeneracy of the magnetic sublevels is lifted by an external
guiding field due to the linear Zeeman effect. State |0) = |F =4, mp = 4) and state
|1) = |F = 3, mp = 3) define the orthogonal basis states spanning the Hilbert space of
the qubit. (b) Geometrical arrangement and polarizations of the laser beams used for
state initialization and detection. The incident optical pumping and repumping beam is
blocked after passing the trapping region.

transition. An equally polarized beam of the repumping laser, frequency stabilized
on the F' =3 — F’ = 4 transition, is used to transfer the atoms back to the optical
pumping cycle, whenever the atoms decay to the F' = 3 ground state. Since the
final state |0) is a dark state, scattering of photons during optical pumping cycles
is reduced to a minimum. The power of the optical pumping (Pypt = 30nW) and

repumping beam (Pep = 7nW), as well as their pulse durations (7,,, = 20ms and
Trep = 21 ms), are experimentally optimized to prevent the atoms from being heated

during the pumping process. The difference in pulse durations is deliberately chosen
to ensure that the repumping laser is switched off long after the optical pumping
laser, incorporating delays of the shutters.

As a source of the optical pumping light, we decouple a part of the unshifted MOT
cooling laser, considering the fact that the F' =4 — F/ = 3 — F’ = 5 crossover tran-
sition is detuned by only +25MHz from the required F = 4 — F’ = 4 transition.
The small residual detuning is partly compensated by the light shift of the atomic
transitions arising from the light field generating the optical lattice. For the re-
pumping light, a part of the MOT repumping laser is decoupled.

The optical pumping and repumping beam are shined along the lattice axis, par-
allel to the quantization axis, see Fig. 3.1(b). The latter is defined by a magnetic
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guiding field with a strength of |By| = (2.95 £ 0.02) G (see Sec. 3.2.3), which coun-
teracts depolarization of the optically pumped atoms due to uncompensated DC
components and AC fluctuations of magnetic fields. To ensure polarization purity
of both laser beams in the trapping region of the atoms, polarization distortions
arising from optical elements in the beam path are precompensated using a com-
bination of a polarizer, a half- and a quarter-wave plate, aligned to the maximum
optical pumping efficiency.

The experimental setup of the states-selective optical lattice incorporates retarda-
tion elements affecting the polarization of the retro-reflected beam, see Sec. 4.3. To
prevent the optical pumping and repumping beam from being retro-reflected and
reentering the trapping region with a “wrong” polarization, both incident beams
are slightly tilted with respect to the lattice axis, allowing them to be blocked af-
ter passing the trapping region. The earth magnetic field and other DC magnetic
fields in this region are compensated using three orthogonal pairs of compensation
coils, see Fig. 1.6(b) in Sec. 1.1.4. Perfect compensation is achieved by minimizing
the width of a Zeeman spectrum [49]. Performing microwave spectroscopy on the
|0) <> |1) transition (see Sec. 3.2.3), the efficiency of optical pumping is measured
to exceed 97%. A small loss in efficiency is attributed to the tilting angle of the
optical pumping beam with respect to the quantization axis.

3.1.2. State-selective detection

The population in F' = 3 (including the qubit basis state |1)) is detected using a
so-called “push-out” technique [49], which removes the atoms in F' =4 (including
state |0)) from the optical lattice while leaving those in F' = 3 unaffected. For
this, we shine a laser beam operating on the F' =4 — F' =5 transition, perpen-
dicular to the optical lattice axis, see Fig. 3.1(b). The power Pousn =40 uW and
the pulse duration Toush = 190 118 of the push-out beam are optimized so that its
radiation pressure force overcomes the radial dipole force and pushes the atoms in
F =4 out of the lattice within less than half a radial oscillation period. By this,
we prevent off-resonant excitations to F’ = 4, from where the atoms can sponta-
neously decay into the F' = 3 ground state. For the push-out beam, we use the
cooling laser beam of the MOT which is shined perpendicular to the lattice axis.
It is tuned to resonance and switched using an AOM, while the retro-reflected
beam and the other MOT beams are previously blocked using shutters. In con-
trast to Ref. [79], where the quantization axis is rotated along the push-out beam
prior to the push-out to prevent spontaneously decay to F' = 3 by employing the
(F'=4,mp =4) — (F = 5,my = 5)-transition, we intentionally oppose this strat-
egy for two reasons: First, for our system, rotating the quantization axis by changing
the direction of the guiding field does not provide any improvements in the push-
out efficiency. Second, by omitting changes of the guiding field, additional delays
of tens of milliseconds between state manipulation and detection are avoided. Fur-
thermore, since there is no need for changing the guiding field within a short time
interval, the stability of magnetic compensation and guiding fields generated by the
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coils can be increased using low-pass filters with a high time constant (> 20 ms) for
the respective driving currents.

The state-selective detection allows to directly infer the population of atoms
in state F' = 3 from the mean ratio of number of atoms initially loaded into the
optical lattice and surviving the state-selective push-out. For M repetitions of an
experimental sequence involving the push-out, the mean population in F' =3 is
then given by

M
1 Nagt 1

ar )
M k=1 Nbef,k;

Pp_s = (3.1)
where IV ¢, denotes the number of atoms determined from an initial image acquired
before, and N the number of atoms in a subsequent (final) image acquired
after the push-out. To infer the mean population in F' = 4, atom losses within the
time interval between each pair of acquired images have to be taken into account.
Assuming these losses being state-independent, the mean population in F' = 4 can
be determined from

Pp_y + Pp_3 = Psur(Timg) » (3.2)

where psur(Timg) denotes the survival probability of the atoms within the time in-
terval 7, between the acquisition of each initial and final image. The survival
probability can be directly measured by omitting the push-out in the sequence.
We stress that populations of the atoms in states F = 3 and F' = 4 should not be
confused with the projections on these states, which can be defined by

P P
Pp_g=—2"I= _— __ "I=3 (3.3a)
psur(Timg) PF:B + PF:4
P P

B psur(Timg) ﬁF:B + ﬁF:4 ’

obeying the normalization Pp_; + Pp_, = 1. These projections describe the prob-
ability of finding an atom in a given state if no atom loss occurs. The situation
is different for measurements of population in the qubit basis states. Here, the
population in state |0) can be directly measured by coherently inverting the basis
states |0) and |1) prior to the push-out (see Sec 3.2.4), assuming negligible spin
relaxations and photon scattering processes transferring the atoms into states lying
outside the Hilbert space of the qubit.

The statistical accuracy of determining ]5F23 from Eq. (3.1) increases with the
number of atoms N, ., initially loaded into the optical lattice and the number of
repetitions M of the e7xperimental sequence. It is also limited by the reliability of
inferring the correct number of atoms in the optical lattice. For this reason, in
experiments relying on atom counting in the MOT, the state-selective detection
has provided only reasonably results for a small number of initially loaded atoms
(Npes . = 5) [79]. Therefore, high numbers of repetitions have been used to suffi-
cientfy reduce the statistical error. By counting atoms directly in the optical lattice,
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we overcome this restriction allowing the state-selective detection being performed
on ensembles comprising higher number of initially loaded atoms (N, ., ~ 30). By
this, the number of repetitions can be reduced down to M = 5. ,

The efficiency of our state-selective detection is measured according to Ref. [79]:
We initialize the atoms in the ground state F' = 3 and F' = 4 by switching off the
MOT repumping laser 1ms before and after the cooling laser, respectively. For
each of both initialized states, we determine the mean survival probability after the
push-out from the ratios of the numbers of atoms, initially loaded and surviving the
push-out operation, see Eq. (3.1). The mean survival probability of atoms prepared
in F' = 4 is smaller than 1%, whereas for atoms prepared in F' = 3, it is larger than
99%, imposing a lower limit of the push-out efficiency.

3.2. Quantum state manipulation using microwave
radiation

An attractive feature of a two-level quantum system (qubit) is its ability to be
prepared in any desired superposition of its basis states

[¥) = l0) + B[1) (3.4)

with a, 83 € C and |a|? + |3]?> = 1. This ability fundamentally distinguishes the
qubit from its classical counterpart, the bit, opening up entirely new possibilities
for the information science. While our preparation of qubit states is deterministic,
employing coherent manipulations by driving magnetic dipole transitions between
the basis states using microwave radiation, their measurement, however, is proba-
bilistic and irreversible. It yields a collapse of the qubit states to a projection state,
e.g. one of the basis states, either |0) or |1) with probability |a|? and |3|?, respec-
tively. Since the adopted projective measurement of state |1) is unable to directly
reveal the amplitudes « and § in Eq. (3.4), sequences of well-defined single-qubit
operations prior to the projection are required to determine these amplitudes up to
a global phase.

3.2.1. The Bloch sphere representation

An illustrative geometrical representation of a pure single qubit state is a vector
with a tip on the surface of a so-called Bloch sphere — a unit sphere in R?. By
transferring the complex amplitudes « and § into polar coordinates, the general
qubit state of Eq. (3.4) can be rewritten as

) = " (cos(8/2)[0) + ¢ sin(9/2)]1)) | (3.5)

where the polar 0 < § < 7 and azimuthal angle 0 < ¢ < 27 define the position on
the sphere. The tip of the Bloch vector, see Fig. 3.2(a), is thus specified by

u = (u,v,w) = (cos ¢sin b, sin ¢sin @, cos ) . (3.6)
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Figure 3.2.: (a) Bloch vector representation of a qubit state on a Bloch sphere. The Bloch
vector is parameterized by the polar ¢ and azimuthal angle 6. (b) Evolution of the Bloch
vector initialized in u(ty) = (0,0,1) (|0)) for a resonant 7/2-pulse with ¢,y = 0, resulting
in an equal superposition of the qubit basis states |0) and |1). Shaded regions in (b)
and (c) indicate the rotation plane and the rotation angle 6,¢(t). (c) A resonant m-pulse
swaps the population of the two qubit basis states. (d) Without any driving (g = 0)
the Bloch vector precesses around the w-axis. The accumulated phase ®(t) is indicated
by the shaded region.

The +u-, +v- and +w-axis of the Bloch sphere correspond to the qubit states
% (10) + [1)), % (|0) 4+ 4|1)) and |0), respectively. As long as the two-level quantum
system is well isolated from its environment, different values of the global phase
0 <~ <27 in Eq. (3.5) can be ignored. Being indistinguishable in a probabilistic
projection measurement, they are represented by the same vector on the Bloch
sphere.

The time evolution of a Bloch vector u(t) on the sphere due to interaction of
magnetic dipole moment of the atom g with an oscillating, near-resonant microwave
radiation field is well approximated by the semiclassical description of the optical
Bloch equations [120,121]: Let By¢ be the strength, w the frequency and ¢.¢ the
phase of the microwave radiation field, Byfcos(wt + ¢y¢), then the Bloch equations
in the reference frame rotating at the microwave frequency read [120,121]

u=-Qxu, (3.7)

where Q = (Qg cos ¢, —Qr sin ¢y, 0) denotes the torque vector, Qg = uBy¢/h the
Rabi frequency and § = w — w, the detuning of the microwave frequency w from
the |0) «<» |1) transition frequency wp. The v and v components of the Bloch vector
can be interpreted as the in-phase and in-quadrature components with respect to
the driving field, whereas the w component describes the population difference of
the two atomic levels w = +1 and w = —1, corresponding to state |0) and |1),
respectively.

For any microwave driven, coherent manipulation on the two-level quantum sys-
tem in a well-defined state, the evolution of the Bloch vector on the sphere can
be directly deduced by solving the differential equations (3.7). For instance, driv-
ing the two-level system with a monochromatic radiation of constant amplitude,
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3.2. Quantum state manipulation using microwave radiation

the Bloch vector initialized in u(tg) = (0,0, 1) (state |0)) performs a so-called Rabi
oscillation, with the time evolution of the population difference given by

2
w(t)=1- 2% sin? <%> : (3.8)
where = \/Q%{ + 62 denotes the generalized Rabi frequency. From Eq. (3.8), we
infer that a complete population transfer is only achievable for the resonant case
(0 =0), yielding u(t) = (sin(2rt) sin ¢y, sin(Qrt) cos ¢y, cos(Qrt)). Therefore, res-
onant microwave pulses rotate the initial Bloch vector u(tg) = (0,0, 1) around the
axis defined by a vector 7(¢.r) = (cos ¢y, — sin ¢r,0) in the uv-plane, e.g. the u-
axis for ¢,f = 0, see Fig. 3.2(b), or v-axis for ¢,y = —7/2. The same applies for an
arbitrary initial Bloch vector u(tg) = (ug, vo, wp), yielding

u(t) = O, du)ulto) (3.9)
with the rotation matrix

72 4+ (1 —r2)cos(Qrt)  7,7,(1 —cos(Qrt))  —r,sin(Qrt)

v

O(t, ) = 7 To(1 —cos(Qrt)) 724+ (1 —72)cos(Qrt) r,sin(Qrt) |,
7, sin(QRrt) —r,, sin(Qgt) cos(Qrt)
(3.10)
where r, = cos(¢yf) and r, = —sin(¢yf) are the two non-zero components of the

vector 7(¢pyf) = (74, Ty, 0) defining the rotation axis. The rotation angle corresponds
to the integral of the Rabi frequency over the pulse duration ¢

Oee(t) = / Qr(t)dt, (3.11)
0

where the time-dependency of Qg (t') incorporates possible modulation of the Rabi
frequency during the pulse, e.g. by modulating the strength of the microwave ra-
diation. Therefore, any transformation of the Bloch vector can be carried out by
a sequence of rotations on the Bloch sphere implemented by resonant pulses with
controlled duration and phase.

It is often convenient to characterize the effect of a pulse by the area enclosed
by the integral of Eq. (3.11). Two types of pulses commonly used throughout this
thesis are the resonant (6,¢(t) = m/2)-pulse and the (6,¢(t) = 7)-pulse. A resonant
7 /2-pulse rotates the Bloch vector initialized in one of the two qubit basis states
|0) and |1) into the wwv-plane, creating an equal superposition of these states, see
Fig. 3.2(b). It is commonly used in the Ramsey spectroscopy to measure coherence
properties of a two-level quantum system, see Sec. 3.3.2. A resonant w-pulse swaps
the population of the qubit basis states, see Fig. 3.2(c). It is an inherent part of
the state-selective transport (see Sec. 4.5) as well as any spin-echo sequence, being
usually used as a rephasing pulse, see Sec. 3.3.3.
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3. Engineering internal states of neutral atoms in an optical lattice

Operation Symbol Dirac representation Matrix representation
m/2-pulse T L 75 (10) +11)) N <1 z>
Ge=0,6=0) U215 (o)~ i) valio

7 /2-pulse 0 o 0) — -\/L§¢(‘O> + ie*w’r‘f’l» N ( 1 iei(brf)
(prs €R, 6 =0) /200 |1y fe ﬁrf (10) — de=xe|1)) V2 \Ge~" ]
m-pulse i |0) — i|1) 0 1

(¢ =0,6=0) " 1) — 4[0) i 0
37/2-pulsc o 0= A ) L(7 )
(Gi=0,6=0) P21y 5 (j0)+4l) vili -1
3w /2-pulse Oy 0) — %¢(|0> - ie_i¢r'f|1>) 1 ( -1 ieiqﬁrf)
(o €R, 6 =0) /201y i ﬁrf (10) 4 ie~st[1)) 2 \Ge~ie 1
free evolution A |0) — i@ (t)/ 210) o1 ®(t)/2 0
Qr=06eR) 920 |1y v/ 0 o)

Table 3.1.: Dirac and matrix representation of the most common qubit operations.

Without any driving (Qr =0, 2 = (0,0,)) the Bloch vector precesses around
the w-axis with the angular frequency determined by d, see Fig. 3.2(d). The accu-
mulated phase during this free evolution is given by

O(t) = /6(t’)dt’ : (3.12)
0

In some parts of this thesis, the Dirac notation rather than the Bloch vector
representation is used. The time evolution of the quantum state of the two-level
system driven with monochromatic radiation resonant to the |0) < |1) transition is
then expressed by a unitary operator. Its matrix representation reads

Uerf(tmrf = exp (2 arfz(t)r((brf)6'> = cos <9rf2(t)> 1+isin <9rf2(t)> r(é)o, (3.13)

where the basis is defined by |0) = (1,0) and |1) = (0, 1), respectively, and & =
(6w, Oy, 0y) denotes the Pauli “vector” with the Pauli matrices

) o1\ . . 0 —i .. (1 0
01—<1 O),O'v O’Q—(Z. O) and szag—<0 _1>. (3.14)

The Dirac and matrix representation of the most common qubit operations em-
ployed in this thesis are listed in Tab. 3.1.

Ou
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Figure 3.3.: Microwave setup for coherent manipulation of the qubit states of individual
atoms. Both RF signal generators and the fixed frequency source are frequency stabilized
to a 10 MHz rubidium frequency standard. Frequency (FM) and phase modulation (PM)
of the generators are voltage controlled using arbitrary waveform generators or computer-
controlled analog output devices. An analog PIN diode attenuator is used for amplitude
modulation (AM).

3.2.2. Experimental setup

To generate microwave pulses, a cost efficient solution is used: The RF signal
of a fixed frequency source is mixed with the signal of one of the two narrow-
band vector signal generators — a primary generator with a frequency range of
250kHz ... 3.2 GHz and a secondary generator with 300kHz. .. 3.3 GHz. Since most
experiments presented in this thesis require either frequency modulation (FM),
including stepwise frequency sweeps, or phase modulation (PM), in most cases,
only one, namely the primary signal generator is used. The situation is different
for experiments employing fast multiple pulse sequences, e.g. controlled collisions
of two individual atoms (see Chap. 7), whereof one part of pulses is frequency
modulated while another part is phase modulated. Due to the limited dwell time of
tens of milliseconds required for changing the modulation mode, both modulations
cannot be simultaneously controlled by a single generator. For these experiments
both signal generators are sequentially used in combination: one for FM pulses, the
other for PM pulses. In the following, a brief overview of the individual components
of the microwave setup is given and schematically shown in Fig. 3.3.

Primary RF signal generator The primary vector signal generator (Agilent E4432B
ESG-D, 250kHz...3 GHz) permits frequency and phase modulation employ-
ing either the internal modulation source, a 40 MHz arbitrary waveform gen-
erator featuring 14 bit resolution, or external modulation sources using two
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3. Engineering internal states of neutral atoms in an optical lattice

external analog input channels. The I-Q-modulation option of the generator
has not been used so far. Both, frequency and phase modulation can be also
operated in a stepped sweep or a list mode with a minimum dwell time of
2ms and a maximum frequency and phase deviation of 0.1%. The generator
permits externally triggered pulse operation with rising and falling times of
150ns, providing a typical output power of +13 to —136dBm in the rele-
vant frequency range of 250kHz...1GHz. The pulse triggers are generated
either by an arbitrary waveform generator (e.g. Agilent 33250A) for timing-
critical applications or the computer control system, see Sec. 1.3. We operate
the signal generator with an output power of 14.1dBm, adjusted for opti-
mum performance with all subsequent, serially connected RF components.
The generator is frequency stabilized to a rubidium frequency standard —
a low phase noise, 10 MHz rubidium-disciplined crystal oscillator (Stanford
Research Systems, PRS10).

For practical reasons, in most experiments involving timing-critical sequences,
we prefer to modulate the frequency and phase of the pulses using an exter-
nal arbitrary waveform generator (e.g. Agilent 33250A) rather than internal
modulation source. This strategy simplifies the monitoring, adjusting and
synchronizing of pulse timings to other computer-controlled components of
the experimental setup.

Secondary RF signal generator The secondary vector signal generator (Rohde &
Schwarz SMIQ03B, 300kHz...3.3 GHz) is frequency stabilized to the same
rubidium frequency standard. It permits comparable properties to the pri-
mary one. This generator is only used in experiments involving controlled
collisions of two individual atoms, generating fast pulse trains with variable
frequency. Its optimum output power is set at 12.1 dBm.

Power combiner We use a zero-degree resistive (50€2) power combiner (Mini-Cir-
cuits ZFRSC-123-S+) with a frequency range of DC to 12 GHz to combine
the RF signals of both signal generators into a single output. The resistive
component prevents reflections of the incident RF signals back to the respec-
tive sources due to mismatched impedances, which otherwise would cause
distortions of the RF signal.

Fixed frequency source As a fixed frequency source, we use a phase-locked dielec-
tric resonator oscillator (PLDRO, MITEQ PLDRO-10-09040-3-15P) with a
frequency of 9.04 GHz. The PLDRO is frequency stabilized to a rubidium fre-
quency standard. The measured single sideband phase noise of the PLDRO at
a frequency offset of 1kHz from the carrier is lower than —105dBc/Hz [122].

RF mixer The output signal of the power combiner is mixed with the RF signal
of the fixed frequency source using a single sideband upconverter (MITEQ
SSM0812LC2CDC). The latter generates an upper sideband with the summed
frequency of both signals at the inputs while suppressing the carrier and the
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3.2. Quantum state manipulation using microwave radiation

lower sideband by 30 dB and 35 dB, respectively. A measured output spectrum
is shown in Ref. [122].

Analog PIN diode attenuator To modulate the amplitude of the RF signals, e.g.
for generating Gaussian-shaped pulses (see Sec. 3.4.4), we use a PIN' diode
attenuator (MITEQ MPAT-08001200-60-10) with a rising time of 150 ns and
a maximum attenuation of 63dB. The dependency of the attenuation on the
control voltage (U = 0...10V) is non-linear. For pulse shaping, we comprise
this nonlinearity by a previously measured calibration curve. From a fit to the
measured calibration curve, we deduce that the signal output amplitude of the
PIN attenuator scales with Agy = C(U/V')Ainp, where Ajyp denotes the sig-
nal amplitude at input and Capp(U/V) = a(U/V)~° the scaling function with
a =0.191 £ 0.003 and b = —2.57 = 0.03. Even though both RF signal gener-
ators permit amplitude modulation using an external analog input channel,
the properties of the upconverter significantly change with its input level. For
this reason, both signal generators are operated at a fixed optimum output
power, while amplitude modulation is performed on the mixed RF signal.

RF amplifier and antenna The amplifier (MITEQ AMF-6B-08500950-40-41P-TTL)
amplifies the RF signal by 50dB up to a maximum output power of 41 dBm
(12.5W) at a noise figure of 2.3dB. It is mounted on a water-cooled plate for
heat dissipation, which in contrast to an air-cooling solution, prevents from
heating of the surrounding optical elements. The output signal of the am-
plifier is guided by a low-loss (0.52dB/m) RF cable (Spectrum Elektrotech-
nik 300-1300-11-11) with a length of 1.3m to a waveguide-to-coax adapter
(FLANN 15094-SF40). This adapter is flanged to a terminator with an open
end (FLANN 15040) forming a microwave waveguide antenna. Its rectangu-
lar cross-section is small enough to fit between the MOT coils, allowing to
put the end of the waveguide antenna close to the UHV glass cell, 2 cm away
from the trapping region of the atoms. Following Reference [47], the inner
walls of the waveguide antenna have been sharpened at the output to reduce
reflections. The position and orientation of the antenna has been iteratively
optimized to maximize the intensity I+ of the microwave radiation in the
trapping region of the atoms. In each iteration the Rabi frequency Qr o< v/I ¢
has been measured (see Sec. 3.2.3), resulting in a maximum Rabi frequency
of Qr = 27 x (60 + 1) kHz.

3.2.3. Microwave spectroscopy

Coherent manipulation of qubit states using a sequence of resonant microwave
pulses requires the |0) <> |1) transition frequency to be precisely known. This fre-
quency is shifted with respect to the hyperfine transition frequency Appg mainly
due to the linear Zeeman effect of the guiding field, see Fig. 3.1. The quadratic

'PIN: Positive-Intrinsic-Negative.
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3. Engineering internal states of neutral atoms in an optical lattice

Zeeman effect and the differential light shifts of states |0) and |1), induced by the
light field generating the optical lattice, contribute lesser, but still measurably to
the total shift. Each shift contribution depends on a variety of experimental param-
eters, which are not only affected by the everyday alignment but also by technical
imperfections of the experimental setup. Most of these imperfections are fluctua-
tions on short time scales (noise) or long-term drifts decreasing the reproducibility
of repeatable sequences required in probabilistic measurements. The Zeeman shifts,
for instance, depend on the spatial homogeneity of magnetic fields in the trapping
region of the atoms and their stability over time. The light shifts, in turn, are
affected by power and frequency stability of the laser generating the optical lattice,
but also by the purity of polarization and geometrical alignment of the counter-
propagating beams. The effects of these imperfections on the total shift have been
investigated in detail on a comparable experiment [49,79]. Theoretical estimations
concerning our experiment can be found in Ref. [78].

In addition, there are contributions which indirectly affect the transition fre-
quency via one of the two shift types. The temperature of the atoms, for instance,
determines the energy distribution of the atoms and thus the spread of the atomic
wave function of each atom in its trapping potential of the optical lattice. Due
to the lattice geometry, a large spread of the wave function, especially in the less
confined radial direction, yields a broadening of the energy levels defining the qubit
basis states. Thus, performing repeatable measurements on an atomic ensemble,
the |0) <+ |1) transition line is effectively broadened. Let p(d) be a normalized de-
tuning distribution describing the broadening of the transition frequency, then the
measured microwave spectrum can be mathematically expressed as a convolution
of the ideal, Fourier-limited spectrum P(¢) with the detuning distribution

[e. 9]

P(8) = / p(8"P(§—¢&)dd . (3.15)

—00

From Eq. (3.15), two characteristic properties of the measured spectrum can be
deduced: First, since p(d) is a normalized distribution with a finite support, the
widths of the peaks in the measured spectrum P(§) are increased compared to
the ideal spectrum, while their heights are decreased. Second, assuming the ideal
spectrum to be locally symmetric around a peak at a resonance frequency, this
symmetry is not maintained for the measured spectrum whenever an asymmetric
distribution p(¢d) is involved. Asymmetric distributions are mostly attributed to
temperature effects described by the Boltzmann distribution, see Sec. 3.3.2.

The dependency of the |0) <+ |1) transition frequency on various experimental pa-
rameters affected by long-term drifts or changes in the everyday alignment, requires
a simple measurement technique to calibrate this frequency immediately prior to the
sequences involving qubit operations. The microwave spectroscopy is ideally suited
for this purpose. On the one hand, it allows to easily determine the transition fre-
quency with a high precision. On the other hand, from the shape of the microwave
spectrum, experimental imperfection affecting the Zeeman shifts and the light shifts
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3.2. Quantum state manipulation using microwave radiation

entering the spectrum by a characteristic distribution p(d) (see Eq. (3.15)) can be
inferred. The most critical parameters of our experimental setup, including the
polarization purity of the light field generating the optical lattice and the temper-
ature of the trapped atoms affected by the efficiency of the optical molasses, can
be directly probed by the atoms themselves. This property is utilized in the every-
day alignment, whereby the Fourier limited spectrum serves as a reference. Note
that even though the microwave spectrum reveals experimental imperfections, in
general, their sources cannot be directly distinguished from a single spectrum alone.

Experimental sequence

To record a microwave spectrum, we stepwise sweep the microwave frequency w; =
w1+ (i — Ddw (i =1,...,K) within a frequency region of interest I = [wi,wk]
including the |0) <» |1) transition frequency in its center. For this, we use the
frequency modulation of the (primary) RF signal generator in a triggered, stepped
sweep mode. The number of steps K defines the step size dw = (wxg —w1)/K and
thus, the sampling resolution of the recorded spectrum. The sequence to record a
microwave spectrum is computer-controlled, comprising the following steps:

(A) The atoms are initially loaded into the MOT and subsequently transferred
into the optical lattice with an initial depth of kg x 0.4mK, by switching off
the magnetic field gradient. The strength of the field gradient, the loading
and transfer time are chosen in such a way that on average 30 atoms remain
in the optical lattice after the transfer. The molasses parameters, including
the power (60 uW per beam) and detuning of the cooling laser (25 MHz red-
detuned with respect to the F' = 4 — F’ = 5 transition), are adjusted for image
acquisition, providing maximum fluorescence signal while avoiding heating of
the atoms. The number of atoms initially loaded into the lattice Npef(w;) is
determined from a fluorescence image with an exposure time of 100 or 200 ms,
see Sec. 2.3.1. After the image acquisition, molasses cooling is continued for
another 10ms with parameters adjusted for optimum cooling performance.?

Finally, the cooling lasers are switched off. The optical lattice is adiabatically

lowered to a depth of kg x 80 uK within 50 ms, while the guiding field is switched

on.

(B) The atoms are initialized into the qubit basis state |0) using optical pumping,
see Sec. 3.1.1

(C) For a predefined microwave power, controlled using the PIN diode attenuator,
we apply a rectangular microwave pulse with the frequency w; and a duration
meeting the m-pulse condition for resonant driving. The m-pulse condition is

2The molasses parameters for optimum cooling performance are adjusted in a preliminary mea-
surement, by measuring the temperature of the atoms (see Ref. [65]) while the power and
detuning of the cooling laser are successively scanned.
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Figure 3.4.: Fourier limited microwave spectrum of a rectangular m-pulse with a duration
of 8 us, showing the population in state |1) as a function of detuning from the unshifted
resonance frequency Agps. The solid line shows a fit of Eq. (3.16) to the data points.

found by iteratively recording microwave spectra and Rabi oscillations, see
below.

(D) A subsequent application of the push-out removes the atoms in F' = 4, includ-
ing those in state |0) from the lattice (see Sec. 3.1.2), while atoms in state |1)
remain unaffected.

(E) We switch off the guiding field, rise the depth of the optical lattice back to its
initial value, switch on the optical molasses with parameters adjusted for image
acquisition and acquire a final image, from which the number of remaining
atoms Nagt i(w;) is determined. The atoms are finally heated out off the lattice
using the optical molasses, while lowering its depth to a minimum.

The internal sequence loop (A-E) is repeated M times and subsequently repeated
with the next frequency w; until the border of the frequency region of interest is
reached. From the numbers of atoms, Nyerr(w;) and Nag i(w;i), we calculate the
population of atoms transferred to state |1) using Eq. (3.1), yielding a sampled
microwave spectrum ]Sm (w;).

In Figure 3.4, a Fourier limited microwave spectrum of a rectangular microwave
m-pulse with a duration of 8 us is shown, plotted as a function of frequency de-
tuning relative to the unshifted resonance frequency § = w — Apps. The spectrum
is recorded with M = 10 repetitions and a sampling distance of dw/2m = 10kHz.
From the fit of a function based on Eq. (3.8)

_ - 1 ~ 0% Ot
Ph)((S) = Prax 5 (1 + w(t)) = Prax - Q—P; sin? <7> (316)

with Q = /Q3 + (6 — 80)? to the measured data, we infer a maximum population

transfer of Ppax = (95 + 1)%, a Rabi-frequency of Qg = 27 x (60 + 1) kHz and a
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Figure 3.5.: Rabi oscillation between the qubit basis states |0) and |1). The solid line shows
the fit of Eq. (3.17) to the data points.

shift of the peak position of dy = 27 x (7.2189 + 0.0006) MHz. The inferred pulse
duration of ¢ = (8.06 & 0.04) us agrees well with the preset value. Note that the
maximum population transfer P,y is affected by the survival probability of the
atoms within the time interval between the acquisition of each initial and final
image, with a typical value of 98% for the used sequence. The remaining decrease
of Prax can be attributed to the limited optical pumping efficiency, since atoms in
|F' =4, mp # 4) are far off-resonant due to the Zeeman shift in the presence of the
guiding field and thus not affected by the microwave pulses. Dampings due to spin
relaxations (see Sec. 3.3) are negligible for the short pulse duration.

From the peak position §y, the strength of the magnetic guiding field By in the
trapping region of the atoms can be directly inferred, considering the fact that the
linear Zeeman effect provides the most dominant shift contribution, whereas contri-
butions of quadratic Zeeman shift and differential light shifts are two orders of mag-
nitude smaller. From 6y/2m = (3g3 — 494)ugBo/h, where g4 ~ 1/4 and g3 ~ —1/4
denote the Landé factors, up the Bohr magneton and h the Plank constant, we
infer a strength of |By| = (2.95 + 0.02) G.

Rabi oscillation

The measurement of Rabi oscillations provides a simple and accurate method to
determine the Rabi frequency required to adjust the pulse duration of any reso-
nant rectangular pulse 6,¢(t) = Qgrt, see Eq. (3.11). For this, a similar sequence
as for recording a microwave spectrum is used, whereas instead of the microwave
frequency the pulse duration t is swept, while the microwave frequency is fixed to
the measured |0) <+ |1) transition frequency, see above. In Figure 3.5, a measured
Rabi oscillation with a sampling resolution of 2 us is exemplarily shown. Note that
the microwave power used in this measurement is slightly different from that of the
recorded spectrum. Therefore, the measured spectrum and the Rabi oscillations
should be regarded independently. From the fit of a function based on Eq. (3.8)
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N
Pray(t) = Py + =i

(1 — cos (2Rt)) (3.17)
to the measured data, we obtain P, = (0.5 +0.1)%, Prax = (89.9 +£0.4)% and
Qr =27 x (58.82 £ 0.01) kHz. The deviation of Py, from the zero value is at-
tributed to the limited push-out efficiency, whereas a smaller value of ﬁmax com-
pared to that of the recorded spectrum, mainly results from a reduced survival
probability due to a larger time interval between the acquisition of each initial and
final image. To restrict the effect of survival probability only to the maximum pop-
ulation transfer, removing its bias from possible decay of the Rabi oscillation with
increasing time,? the time interval between the images is kept fixed, being defined
by the maximum pulse duration in the sweep. By this, all measured data points
are affected by the same survival probability value. From ﬁmin and ﬁmax, we finally
infer a fringe contrast of

C:ﬁmax_ﬁmin

M (98.9 +0.2)%, (3.18)
Pmin + Pmax

determining the reliability of coherent state manipulations.

3.2.4. Quantum state tomography

The methods presented so far revealed only a part of the information encoded into
a quantum two-level system, namely the projection of the quantum state onto the
basis state |1). In some cases, the complete quantum state [¢), characterized by the
complex amplitudes o and (3 in Eq. (3.4) or the polar and azimuthal angles ¢ and 6
in Eq. (3.5), needs to be known. The quantum state tomography aims to determine
this state up to a global phase through a series of projection measurements in
different basis states. Since each projection measurement disturbs the quantum
state, making it useless for further measurements, quantum state tomography must
be carried out in stages on a number of identical copies of this state. In each stage
a distinct aspect of the unknown state is revealed. The number of copies, generated
by repeating an experimental sequence or performing measurements on ensembles
of qubits, determines the accuracy of the extracted quantum state. Throughout this
thesis, we focus on the state tomography of a single qubit. A more general review,
including systems of many qubits in entangled states, can be found in Ref. [123,124]
and references therein.

So far, we have considered a single qubit in a pure state |¢), represented by
Egs. (3.4) and (3.5). However, measurements on ensembles of qubit states may
comprise ensembles of different pure states. In that case, the overall state is called
mixed. A mized state is described by a probabilistically weighted incoherent sum

3For the recorded Rabi oscillation shown in Fig. 3.5 the decay in the oscillation amplitude due to
spin relaxation is negligible and thus not considered in the fit function of Eq. (3.17).
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of pure states, represented by a density matrix operator
p=Y pil&)&l, (3.19)
i

where p; denotes the probabilistic weights (D, p; = 1) and |&;) the corresponding
pure states. For an ensemble of isolated qubits, the matrix of this operator can be
uniquely represented by only three parameters, Si, S and S3 [125]:

3
A—l i 4/\4
p=3 <11 +;SZJZ> , (3.20)

with the Pauli matrices ; defined in Eq. (3.14) and the parameters S; € R given
by

For a pure state, these parameters obey >, S% =1, whereas for a mixed state,
itis >, Siz < 1. For ), SZ-Q = 0 the density operator describes a completely mixed
state. Each parameter S; corresponds to the outcome of a specific pair of projective
measurements on orthogonal basis states

S1=P oy = Pro-my (3.220)
52 = P qoitny) ~ Por-inny (3.22b)
Sg = P‘0> - PH) s (3220)

where Py denotes the projection of p on state |€), i.e. the probability to measure
state |£), given by [125]

Py = (lpl€)
=Tr {|¢)(¢]p} (3.23)
with
Peo+ Py =1 (3.24)

and |¢ ) being the orthogonal complement of the basis state |) obeying (£|€,) = 0,
e.g. |0, ) = [1), etc. By combining Egs. (3.24) and (3.22), it appears that three pro-
jective measurements in the basis states % (10) + [1)), % (10) +4|1)) and |0) com-
pletely characterize the unknown quantum state p. This result is evident considering
the fact that the above basis states correspond to u-, v- and w axis of the Bloch
sphere uniquely defining a point in R3, see Sec. 3.2.1. The parameters S;, in turn, are
directly related to the components of the Bloch vector, u = (u, v, w) = (S1, 52, 53),
extending the Bloch sphere representation to the mixed states: For pure quantum
states, the tip of the Bloch vector lies on the surface of the Bloch sphere (|u| = 1),
whereas for mixed states it lies inside the sphere (|u| < 1). A Bloch vector with

83



3. Engineering internal states of neutral atoms in an optical lattice

|u| = 0 represents a completely mixed state, accordingly. The degree of "quantum-
ness” of the system is commonly characterized by the polarization of the state

II=,/5%+5%+53, (3.25)

specifying the length of the Bloch vector.

To perform quantum state tomography on a single qubit employing the state-
selective detection presented in Sec. 3.1.2, some additional considerations have to
be taken into account: First, due to atom losses in the optical lattice, either the
population of the complement basis state |{,) or the survival probability of the
atoms psur(Timg) has to be additionally measured to determine the projection on
the basis state |£), see Eq. (3.3). We prefer the former approach, even if twice as
many population measurements are required. The surplus information content can
be supportively used for consistency checks and error analysis, allowing to infer
the reliability of determining the unknown quantum state. Second, since our state-
selective detection enables only measurements of the population in state |1), proper
microwave pulses have to be applied just before the detection to transform the
remaining five states of interest onto the detectible state. A resonant 7/2-pulse with
¢rf = /2, for instance, transforms the basis state % (10) 4 |1)), which is associated
with the +u-axis of the Bloch Sphere, onto the detectible state |1) — the —w-axis
of the Bloch sphere, see Sec. 3.2.1. The same can be attained for the basis state
% (10) 4+ ¢|1)) (+v-axis) up to a global phase, applying a resonant m/2-pulse with
¢ = 0 prior to the state-selective push-out. Finally, considering the fact that two
orthogonal basis states can be transformed into each other by driving a resonant -
pulse, this pulse has to be applied prior to the push-out to measure the population
in state |0). Accordingly, the populations of complement states to those above
can be determined, by extending the respective pulses from 7/2 to 37/2-pulses,
i.e. a 3m/2-pulse with ¢,y = m/2 for the population in state % (10y — 1)) (—u-
axis) and a 3m/2-pulse with ¢,y = 0 for % (|0y —i]1)) (—v-axis). We summarize
the above considerations, by mathematically expressing our implementation of the
state tomography on a state p as follows:

Py Unjo,n/20) — Py Usr o, /2]

Si=—1+42P1 0. ld] = = - £y (3.262)
vz 0+L) P\l)[uw/2,7r/2/0] + P|1> [u37r/2,7r/2p]
Byl o] — Pyl o
Sy ==1+2P1 gy 4iyld) = | /Q’f] i s /Z’f] , (3.26b)
V2 Py Uz j2p] + Py [Usz 2]

P lU:p| — Py [p
S3 = —1+ 2P [p] = il ’f] J”[f], (3.26¢)
Py [Uzp] + Py [p]

where brackets are used to distinguish the projection and population measurements
on different density matrix operators and

Up=Uput. (3.27)
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3.2. Quantum state manipulation using microwave radiation
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Figure 3.6.: Implementation of quantum state tomography for a state-selective detection
restricted to only one directly detectible basis state |1). The unknown mixed state p
is represented by a Bloch vector, the components of which are illustrated by a cuboid.
Resonant microwave pulses with different phases transform (rotate) the remaining non-
detectible basis states, %(|0> +11)) (Hu-axis), \/ig(|0> — 1)) (—u-axis), \/ig(|0> +1i|1))
(4v-axis), %(|O> —i|1)) (—v-axis) and |0) (+w-axis) onto the detectible state |1) (—w-
axis). A subsequent measurement of the population in state |1) after each transformation
reveals a different aspect (component contribution) of the Bloch vector. The required
unitary operations, performing rotations on the Bloch sphere are visualized by red tra-
jectories for the Bloch vector, whereas (green) shaded areas indicate the rotation angle
and the rotation plane for each transformed basis state (axis).
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3. Engineering internal states of neutral atoms in an optical lattice

The respective unitary operators are defined in Tab. 3.1. Their Bloch sphere rep-
resentations are show in Fig. 3.6.

Remarks on tomography errors

In practice, reconstruction of the density matrix from a series of independent mea-
surements can never be performed exactly, especially if the measurements them-
selves contain statistical or systematical errors imposed by technical imperfections.
In that case, independent projection measurements may even be contradictious,
yielding unphysical parameters S; which violates the relation Y, S? < 1. State
tomography errors can be divided into three categories: errors in the projected ba-
sis, statistical errors and errors related to the stability of the experimental setup.
Errors in the projection basis mostly arise from inaccurate microwave pulses, be
it due to pulse amplitude, frequency or phase errors. These errors can be easily
identified in preliminary measurements, e.g. using the microwave spectroscopy. Fur-
thermore, since the influence of these errors on the reconstructed density matrix is
predictable, they can be easily modeled and incorporated in commonly used maxi-
mum likelihood algorithms [123,126] to constrainedly estimate the unknown state.
The same applies for statistical errors, which can be easily reduced by generating a
sufficiently large number of copies of the unknown state. In our experiment, errors
related to the stability of the experimental setup are the most dominant errors,
being attributed to technical limitations. These errors, however, are difficult to
characterize. They arise from drifts of experimental parameters over time, affecting
the time evolution of the unknown qubit state and the microwave operations over
the course of tomography, either in creation of copies of the unknown state or its
detection. Because a measurement of each basis state population takes approxi-
mately between 10-30 minutes, yielding total durations of 1-3 hours for a complete
tomography, small changes in the experimental parameters are unavoidable. Since
the time evolution of experimental parameters is not exactly known, it is nearly im-
possible to incorporate these errors in a numerical model which aims to constrain
the reconstruction of the unknown state.

3.3. Coherence properties

Suppose there is a perfectly isolated two-level quantum system, the time evolution
of which is unitary and thus reversible. Then, quantum information encoded in its
state would be preserved forever. Although such an ideal system would be highly
desirable, there is no perfectly isolated system in reality. A certain coupling of the
qubit to its environment is always present. As a consequence, the two-level quan-
tum system suffers decoherence — an irreversible evolution of an initially encoded
pure state to a completely mixed state, manifesting itself in a loss of phase relation
between two orthogonal basis states of the qubit. The characteristic timescale, on
which this phase relation is preserved to a certain degree, is denoted as coherence
time. The coherence time imposes a fundamental limit for most applications in
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3.3. Coherence properties

quantum information science. For this reason, it is important to precisely deter-
mine this quantity, identify the underlying decoherence mechanisms, and finally,
infer to which extent the requirements imposed by the application are fulfilled.
Ramsey spectroscopy [127, 128] has established itself for this purpose, becoming
a standard technique which provides a direct insight into coherence properties of
various quantum systems. In the following, we use this technique to investigate
coherence properties of our system.

3.3.1. Classification of decoherence effects

Measurements of a quantum state employ statistically large samples of its copies,
revealing only ensemble averages of microscopic polarizations. In this context, deco-
herence (or dephasing) of a quantum state manifest itself in a decay of the measured
macroscopic polarizations. Although dephasing of a quantum system can be caused
by a variety of effects, all of them can be classified into two main categories: ho-
mogenous and inhomogeneous dephasing effects. Homogeneous dephasing affects
each qubit of the measured ensemble in the same way, whereas in case of inhomo-
geneous dephasing, the phase of each qubit evolves differently. In the context of
quantum state engineering, however, the most significant difference between both
dephasing types concerns the reversibility: While inhomogeneous dephasing can be
reversed by spin-echo techniques (see Sec. 3.3.3), homogeneous dephasing is irre-
versible and rarely avoidable, imposing a limit on some of the experimental results
presented in this thesis.

Optical Bloch equations with damping

So far, we have considered only the coherent evolution of a quantum two-level sys-
tem interacting with an external microwave field, resulting in a reversible dynamics
of its quantum state. This dynamics is adequately described by the optical Bloch
equations (3.7), from which unitary operators, representing coherent manipulations
on the quantum state can be directly inferred. In real situations, however, this
system can irreversibly relax and dephase to a steady state. These relaxations can
be phenomenologically included by extending the optical Bloch equations to ensem-
bles of identical qubits, incorporating decay rates of population inversion (w) and
coherence, (u) and (v), respectively. The resulting optical Bloch equations with
damping are then given by [120,121]

<u> = 5<U> - QrfSin(¢rf) <U)> I (328&)

<U> = _6<u> - Qrfcos(¢rf)<w> i (328b)

(w) — ws

(W) = Qesin(op)(u) — Qpecos(p) (V) — T (3.28¢)

87



3. Engineering internal states of neutral atoms in an optical lattice

where (...) denotes ensemble average, T7 the longitudinal relaxation time describing
the decay of population (w) to a stationary value wg;,* and T, the total transverse
relaxation time, also referred to as the total dephasing time. This dephasing time, in
turn, incorporates contributions of the polarization decay time T4, and the reversible
inhomogeneous dephasing time 7% by the following relation

1 1 1

— =t . 3.29
15 T2’+T2* ( )

Once these characteristic time constants are known, the evolution of the quantum
state into a mixed state is predictable on all relevant time scales.

In our experiment, the longitudinal relaxation time 77 is mainly affected by scat-
tering of photons from the light field of the optical lattice, coupling the two hyperfine
ground states via a two-photon Raman transition. It is of the order of 100 ms and
thus considerably larger than the time interval in which preparation, manipulation
and detection of quantum states is performed. Therefore, longitudinal relaxation
plays only a minor role in experimental results presented in this thesis.

The polarization decay, characterized by the decay time T3, arises from fluc-
tuations of experimental parameters during the time interval of generating and
detecting copies of a quantum state. These fluctuations are attributed to technical
imperfections affecting the differential light shift and the Zeeman shift, and thus
the |0) <> |1) transition frequency of the atoms in the trapping region. Possible
sources include intensity fluctuations of the light field generating the optical lat-
tice, either due to laser power or beam pointing instabilities, but also retardation
elements used for the implementation of state-selective lattice potentials. In partic-
ular, the electro-optical modulator (see Sec. 4.3) degrades the polarization purity
of the light field, introducing an additional vulnerability to fluctuations of temper-
ature and driving voltage of the modulator. Magnetic fields fluctuations are mostly
attributed to driving currents of the coils, but also to stray fields from electronic
devices in the lab.

The inhomogeneous dephasing time T3 is affected by inhomogeneous effects which
assign each atom its own individual resonance frequency, resulting in macroscopic
polarization damping of the ensemble. In our case, this dephasing is dominated
by the finite temperature of the trapped atoms, yielding a thermal distribution of
atomic motion in potential wells of the lattice, which translates into a distribution
of differential light shift, see Sec. 3.3.2. This dominance and the relevant charac-
teristic decay times can be directly deduced from the evolution of the macroscopic
polarization and the phase of the qubits, measured using the Ramsey and spin-echo
spectroscopy.

3.3.2. Ramsey spectroscopy

Ramsey spectroscopy is a standard technique to investigate coherence properties of a
two-level quantum system, providing a direct insight into the underlying dephasing

4Note that atom losses in the optical lattice are not included in this decay time constants.
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3.3. Coherence properties

mechanisms. There are different variants of Ramsey sequences, including a time
scan only, a combined frequency-time scan and a combined phase-time scan. Each
of the them reveals a different aspect of the quantum system. While time evolution
of its macroscopic polarization can be equally inferred from all three variants of
Ramsey sequences, a combined frequency-time scan is particularly suited for high-
precision frequency measurements, whereas a combined phase-time scan provides a
direct insight into time evolution of the macroscopic phase. This so-called Ramsey
phase spectroscopy is preferred throughout this thesis.

The experimental sequence of the Ramsey phase spectroscopy is similar to that
of the microwave spectroscopy, see Sec. 3.2.3, except for step (C) and the scanned
parameter. Instead, two resonant 7/2-pulses separated by a preset time interval
7, the so-called Ramsey time, are applied, whereby the phase ¢.¢ of the final pulse
is stepwise scanned. To understand the shape of the resulting Ramsey spectrum,
in the following, we consider a single atom initially prepared in state |0). The
first resonant 7/2-pulse, represented by the unitary operator (Afw /2 (see Tab. 3.1),
generates an equal superposition of the basis states |0) and |1)

1
V2

rotating the initial Bloch vector uy = (0,0,1) to w = (0,1,0) in the wv-plane of
the Bloch sphere. During the Ramsey time 7, the Bloch vector precesses in the
uv-plane, accumulating a phase ®,(7), see Fig. 3.7. The corresponding quantum
state reads

U 2|0) = —= (10) +i[1)) , (3.30)

R 1 1 ) )

—= (10} + 1)) = —5 (e *72]0) + G D21y ) 3.31
Q%(T)\@(H 1)) 7 0) 1) (3.31)
The accumulated phase is finally probed using a second 7/2-pulse with a preset
Ramsey phase ¢.¢. This pulse transforms the components of the Bloch vector from
the uv-Plane onto a perpendicular plane containing the projection axis — the w-axis

2 1 i . —i T
Unjzon 75 (62%(7)/2|0> e )/2|1>)
= —jei®rt/2gin (% [ — <I>a(7)]> |0 + ie™"1/2 cos (% (e — <I>a(r)]> 11). (3.32)

A subsequent projection of the resulting state onto the detectible basis state |1)
. A . 2 1

Py (¢et, 7) = ‘<1|Uw/2,¢ercpa(T)Uw/2|0>‘ =5 (L +coslgr — ()]} (3.33)

yields a cosinusoidal pattern for the scanned phase — the so-called Ramsey fringe.

The transition from a single atom to an ensemble of atoms is performed by

ensemble averaging over all single-atom projection contributions. Note that, due

to inhomogeneous dephasing, the accumulated phase of each atom can be different.
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Figure 3.7.: Sequence of a Ramsey phase spectroscopy in Bloch sphere representation for
an ensemble of qubits: The first 7/2-pulse rotates the initial Bloch vectors in the uwv-
plane. A green trajectory shows the pulse driven evolution of a single Bloch vector of
the ensemble. During the Ramsey time 7, each Bloch vector precesses in the uwwv-plane,
e.g. due to a detuning between microwave radiation field and the |0) <+ |1) transition
frequency. Dephasing is indicated by a shaded area. A final w/2-pulse with a preset
phase ¢,¢ with respect to that of the first pulse (here ¢, = 0 and ¢¢ = 7/2) maps the
accumulated phases onto the projection axis (w-axis), resulting in a cosinusoidal Ramsey
fringe.

The resulting population in state |1) as a function of Ramsey phase yields again a
cosinusoidal Ramsey fringe

ﬁ\l)(ﬁﬁrﬁ T) = psur(Timg)<Pa7|1)(¢rf7 7))

= @ {1+ C(7) coslgpt — ®(7)]} (3.34)
with a modified Ramsey contrast C(7), the accumulated macroscopic phase ®(7)
and the survival probability of the atoms in lattice psur(Timg), see Sec. 3.1.2.

To investigate the time evolution of the Ramsey contrast and the accumulated
phase, Ramsey fringes are recorded for different values of Ramsey times using 7/2-
pulses with a typical pulse duration of 4 us. The atomic ensembles contain on
average 30 atoms. The Ramsey phase is typically scanned in an interval of [0, 47]
using 25 equidistant steps. To reduce statistical errors, for each phase value of the
scan interval, five repetitions of the Ramsey sequence are performed. T'wo recorded
Ramsey fringes are exemplarily shown in Fig. 3.8(a,b).

From a fit of Eq. (3.34) to each of the recorded Ramsey fringes with the fit
parameters C(7), ®(7) and pgur(Timg), the Ramsey contrasts and the accumulated
phases for different Ramsey times 7 are inferred. The resulting time evolutions of
both quantities are shown in Fig. 3.8(c,d).
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Figure 3.8.: Experimentally measured Ramsey fringes for a Ramsey time of (a) 7 = 60 us
and (b) 7 = 300 us. The solid line shows a fit of Eq. (3.34) from which the Ramsey con-
trast (c¢) and the accumulated macroscopic phase (d) is inferred. Both quantities are plot-
ted as a function of Ramsey time (c,d). Solid lines in (c) and (d) show a fit of Eq. (3.42)
and Eq. (3.40), respectively, both inferred from a semiclassical model describing inhomo-
geneous broadening of the |0) <+ |1) transition frequency due to energy-dependent light
shift. The inferred phase is a modulo 27 quantity. Therefore, for fitting purposes, an
offset of 27 is subtracted from the data points for Ramsey times of 7 > 300 us. Results
of both fits are listed in Tab. 3.2.

Inhomogeneous dephasing

To interpret the experimental results, we derive an analytical expression for the
evolution of Ramsey contrast and the accumulated macroscopic phase in time. The
derivation is based on a semiclassical approach, which has been proven to reasonably
agree with quantum mechanical density matrix calculation to within one percent
[66]. In this approach, the quantized motion of atoms trapped in potential wells of
an optical lattice is neglected, whereas the evolution of the phase during the time
interval between both m/2-pulses is only characterized by the average differential
light shift.

Consider the inhomogeneous broadening of the |0) <+ |1) transition frequency
being only caused by the energy-dependent light shift d;5(E) of each individual
atom. Then, by describing the energy distribution of the trapped atoms by a three-
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3. Engineering internal states of neutral atoms in an optical lattice

dimensional Boltzmann distribution with the probability density [65]

E? E
pe(E) = m exp <_kJB—T> , (3.35)

the distribution of the differential light shifts of the trapped atoms reads [66]:

(5) = 26— G exp (-5 (5 — )] with 5= 200
Pis(01s) = 9 Is 1s,0 p Is Is,0 w = kBT515,07

(3.36)
where T' denotes the temperature of the atoms, dj59 = dis(E = 0) the maximum
differential light shift at the bottom of the potential well and Uy the lattice depth.
Note that this equation is only valid in the harmonic approximation of the trapping
potential (kT < Up).

From a weighted average of all single-atom contributions of Eq. (3.33), the pro-
jection onto the detectible basis state |1) can be directly deduced. Assuming that
the accumulated phase of each atom evolves linearly in time

(I)a(T) - (5rf + 51S) T+ cI)rf,O ) (3.37)

where d,¢ incorporates possible frequency detuning of both 7/2-pulses from the
|0) <+ [1) transition frequency and ®,¢ a constant phase accumulated during these
pulses, the resulting projection reads

Py (¢, 7) = / pis(3fs) - % {1+ cos [¢ef — (Op + Ofg) T — Prgo]  dfy  (3.38a)
01s,0
_ % {1+ C() cos[bes — (7))} (3.38h)

with the Ramsey fringe contrast

2\ ~3/2
C(r)= <1 + @> , (3.39)
determining the polarization of the quantum state, and the phase of the Ramsey
fringe, given by

-

®(7) = 3arctan <g> + drp - T+ Prgp - (3.40)

The arctan term in Eq. (3.40) arises from the asymmetry of the differential light
shift distribution of Eq. (3.36). Note that the upper integration limit in Eq. (3.38a)
has been intentionally set to infinity instead of the maximum physically reasonable
value of j50/2 to guarantee an analytic solution of the integral.

Despite the non-exponential decay of the Ramsey contrast, the inhomogeneous
dephasing time T3 can be defined as the 1/e-time of the contrast

C(T3) =C0)e™t = T3 =p8Ve23-1. (3.41)
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Fit parameters results
Ramsey contrast at 7 =0 Crax 99+ 1)%
microwave detuning Ot/2m  —(4.25+0.04) kHz
phase offset Prro 0.19 £ 0.02
inhomogeneous dephasing time:
from the Ramsey contrast T (196 + 3) us
from the accumulated phase T4 (199 £ 7) us

Table 3.2.: Results from a fit of Egs. (3.42) and (3.40) to the Ramsey contrast and the
accumulated phase shown in Fig. 3.8(c) and 3.8(d).

Therefore, by incorporating Eq. (3.36), the inhomogeneous dephasing time is pro-
portional to the inverse of the temperature of the atoms.

To fit the data in Fig. 3.8(c), we extend Eq. (3.39) by an additional fit parameter
Chax which takes the deviation of the contrast from its ideal value into account,
arising from the microwave pulses themselves. This deviation has been already ob-
served in the measured Rabi oscillations, see Eq. (3.18) in Sec. 3.2.3. The extended
fit function thus reads

C(7) = Cpax - C(7). (3.42)

The fit results are listed in Tab. 3.2, together with results from the fit of Eq. (3.40)
to the accumulated phase, see Fig. 3.8(d).

The inhomogeneous dephasing times 7%, independently inferred from the Ramsey
contrast and the accumulated macroscopic phase, demonstrate a good conformity.
The same applies to the maximum contrast Cpax at 7 = 0, which agrees well with
the value from the measured Rabi oscillations, see Sec. 3.2.3. The unintentional
detuning of d,¢/2m ~ 4kHz, revealed by the fit, is most likely attributed to drifts
of the |0) <> |1) transition frequency over time. Note that Ramsey spectroscopy
is particularly sensible to such drifts, since they directly translate into the Ram-
sey contrast and the accumulated phase. Knowing the temperature for the preset
lattice depth [129], from Eq. (3.36), we infer a maximum differential light shift of
d1s,0/2m = (13 £ 2) kHz. This value, however, is significantly larger than the theo-
retically expected value of 4 kHz [78], assuming a perfectly linear polarized light field
generating the optical lattice, and thus, taking only the scalar component of the
differential light shift into account. The discrepancy from the measured value most
likely arises from polarization distortions of the light field due to circular polarized
components, introduced by the retardation elements of the experimental setup. In
particular, we expect most polarization distortions arising from the electro-optical
modulator. For magnetically sensitive qubit states (mp # 0), circular components
in the light field affect the overall differential light shift by its vectorial or tensorial
components [47]. This pertains in particular to the outer Zeeman levels, used as
qubit states in our experiment.
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Figure 3.9.: Spin-echo sequence in Bloch sphere representation. A m-pulse between the
two Ramsey 7/2-pulses rephases the dephasing Bloch vectors which are represented by a
shaded region. A colors gradient is used to visualize different detunings form the atomic
resonance frequency; green trajectories indicate the pulse driven evolution of a single
Bloch vector.

3.3.3. Spin-echo spectroscopy

Inhomogeneous dephasing can be reversed by a so-called spin-echo sequence, which
was invented by E. Hahn in 1950 for nuclear magnetic resonance [130] and succes-
sively applied to experiments with neutral atoms in optical lattices [46,131] just a
few years ago. This sequence extends the Ramsey sequence by a further m-pulse
applied between the two 7 /2-pulses, which aims to rephase the dephased ensemble,
see Fig. 3.9. We use the spin-echo sequence to infer the homogeneous transverse
dephasing time T3 of the atoms trapped in the optical lattice.

To derive the shape of the expected Ramsey fringes of a spin-echo sequence, in
analogy to Sec. 3.3.2, we consider the projection of the quantum state of a single
atom on the basis state |1). After the completion of the spin-echo sequence, it is
given by

~ ~ A~ N 2
Pa7|1>((brf, QTF) = <1‘Uﬂ/27¢erq>a,2(7—,r)Uchba,l(frﬂ)Uﬂ/Z’0>
1
=3 {1+ cos[pys — ADy (1) + 7]}, (3.43)

where 27, denotes the spin-echo time with 7, the time between each 7/2-pulse and
the rephasing m-pulse, A®,(77) = o 2(7r) — Pa,1(7r) the difference between the
accumulated phases during the time interval between the first 7/2-pulse and the

m-pulse @, 1(7x) = [;" da(t)dt, and the time interval between the 7-pulse and the
final 7/2-pulse @, 2(7:) = ff:’“ 0a(t)dt, respectively. Again, the transition from a

single atom to an ensemble of atoms is performed by averaging over all single-atom
projection contributions, yielding

P61, 272) = 5 {1+ C(2rs) coslgne — AB(rs) + 1} (3.44)
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In the ideal case, assuming that the individual resonance frequency of each atom of
the ensemble does not change during the sequence, i.e. §,(t) = const (AP, (7,) = 0),
complete rephasing occurs at the spin-echo time, resulting in a fully polarized quan-
tum state with a spin-echo contrast of C(27,) = 100%. However, due to fluctuations
of experimental parameters affecting the |0) <> |1) transition frequency, the differ-
ence between the accumulated phases is A®,(7;) # 0, being different from one
sequence repetition to another. In this case, the rephasing is incomplete.

In the following, we assume that all atoms experience identical fluctuations of
the |0) <+ |1) transition frequency, regardless of their energy in the optical lattice,
i.e. a homogeneous dephasing mechanism. We express the difference between the
accumulated phase by an average detuning difference AJ (averaged over 7,)

AP, (1) = A6 - 7, (3.45)

assuming its probability distribution to be Gaussian [46]

exp [—ﬂ} (3.46)

pBoT) 20%,(77)

1
- V2m0as(T)

with mean Ad = 0 and variance 03(7x). From a weighted ensemble average of all
single-atom contributions of Eq. (3.33), we obtain

o0

Py(@us.200) = [ DAG77) 5 {1+ coslons — AT -7 +)
,100
=3 {1+ C(27;) cos[pys + 7]} (3.47)
with the spin-echo contrast
C(27;) = exp (—%’7’7%0'25(7'”)> . (3.48)

Analogous to the inhomogeneous dephasing time T3, we define the homogeneous
dephasing time 73 as the 1/e-time of the spin-echo contrast
/ 2
C2r,=TH)=C0)e ! = T,= L . (3.49)
OAS (Tﬂ')

To determine the homogeneous dephasing time, we perform Ramsey phase spec-
troscopy, employing the spin-echo sequence for different values of spin-echo time.
For this, we use the same experimental parameters as in the previous section. From
a fit of

o psur(Timg)

Py (ot 27) = S {1+ O(27) cos[gus + 7 + 00 (277)]} (3.50)

to each recorded spectrum, we infer the spin-echo contrast C'(27,) and the deviation
from the expected macroscopic phase 6®(27,). This phase reveals how well the
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Figure 3.10.: Spin-echo contrast (b) and deviation of the macroscopic phase d® (a) as a
function of spin-echo time 27;. The solid line in (b) shows a fit of Eq. (3.51), from which
a homogeneous dephasing time T3 is inferred.

assumption A§ = 0 in Eq. (3.46) is fulfilled. The fit parameter psu (Timg) denotes
the survival probability of the atoms in the optical lattice.

In Figure 3.10, the resulting spin-echo contrast and the deviation of the macro-
scopic phase are shown as a function of spin-echo time. The deviation of the macro-
scopic phase from the zero value is negligible (see Fig. 3.10(a)), indicating that the
mean value of the average detuning difference is zero. Furthermore, it reveals that
inhomogeneous dephasing effects employing asymmetric detuning distributions (see
Sec. 3.3.2) are completely reversed. The same applies to the phase evolution due
to unintentional detuning of the microwave frequency from the |0) <+ |1) transition
frequency. From a fit of

C(27r) = Chax - C(271) (3.51)

to the inferred data, we obtain Cax = (99 + 1)% and oas(7r) /27 = (542 + 10) Hz,
yielding an irreversible dephasing time of

Ty = (415 + 8) us. (3.52)

In the next section, we will show that this value does not impose the upper limit
for most experimental results presented in this thesis. The irreversible dephasing
time can in principle be elongated by means of a multiple spin-echo sequence.

3.3.4. Carr-Purcell sequence

A spin-echo sequence can only recover from fluctuations that are effectively constant
over the time interval 7. Fluctuations on a time scale shorter than 7, are in general
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Figure 3.11.: Carr-Purcell sequence. The Carr-Purcell or multiple spin-echo sequence com-
prises n successively repeated spin-echos. The time interval separating the 7/2- and the
m-pulse is given by 7, = 7. /n, whereas two m-pulses are separated by the spin-echo time
27, respectively.

not removed by a single rephasing pulse. However, if the rephasing sequence is
repeated more frequently and the time scales of dominant fluctuations are longer
than 7., the homogeneous dephasing time T3 can be in principle elongated. This
is the idea behind the so-called Carr-Purcell (CP) sequence [132] — a sequence of
multiple rephasing pulses:

SCP = (77r/2,¢rf HQ@a’%(;ﬂ)[jﬂ@@a’m_l(;ﬂ) U7r/2 with 7~'7r = Tﬂ/n . (3.53)
=1

The Carr-Purcell sequence comprises multiple successively repeated spin-echos,
being also referred to as multiple spin-echo sequence, see Fig. 3.11. It aims to
completely rephase the atomic ensemble, by effectively reducing the difference of
the accumulated phases A®,; = @, 2i(7Tr) — Pa2i—1(7x). In the limit of n — oo
(A®,; — 0), the multiple-echo sequence approaches a driven Rabi oscillation. Con-
sequently, in the ideal case, the homogeneous dephasing time tends towards its
upper limit imposed by the spin relaxation time 7.

The Carr-Purcell sequence can be also seen as a high-pass filter acting on the spec-
trum of fluctuations affecting a two-level quantum system. The roll-off frequency
of this filter 1/7,; determines the elongation performance of the homogeneous de-
phasing time. Since multiple m-pulses are an essential part of the state-selective
transport (see Sec. 4.5), the Carr-Purcell sequence is already part and parcel of
most experiments presented in this thesis. In these experiments, the transport time
of Tirans = 20 us set the lower limit for the time interval between the m/2-pulse and
the subsequent m-pulse (7r > Tirans), and thus the upper limit for elongation of the
homogeneous dephasing time.

To determine the elongated homogeneous dephasing time, we repeat the Ramsey
phase spectroscopy, applying the multiple spin-echo sequence for different values of
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Figure 3.12.: Measured contras of a multiple spin-echo sequence with n echo repetitions
as a function of spin-echo time 2n7,. Filled circles show data for n = 2, open circles for
n = 3. Dashed (solid) line shows a fit of Eq. (3.56) to the data for n =2 (n = 3) echo
repetitions. From the fit results the elongated homogeneous dephasing times are inferred,
see Tab. 3.3. For comparison, the dotted line indicates the fitted curve of a single-echo
sequence (n = 1), as obtained from Fig. 3.10.

n and different spin-echo times. For this, we use the same experimental parameters
as in the previous sections. Similar to previous sections, it can be shown that
Ramsey fringes, measured after completing a multiple spin-echo sequence can be
expressed by

Py (der, 2n7r) = % {1 + C(2n#y) cos|grs + o(n)m + n - 6(27:)]}  (3.54)
with
0, for n even
o(n) = { 1, forn odd. (3.55)

Analogous to Sec. 3.3.3, we denote 2n7, as the (multiple) spin-echo time.

The deviation of the accumulated phase (negligible, and thus not shown) and
the (multiple) spin-echo contrast are inferred by fitting Eq. (3.54) to the measured
data. The resulting spin-echo contrast, plotted as a function of spin-echo time, is
shown in Fig. 3.12. Similar to Sec. 3.3.3, we determine the elongated homogeneous
dephasing time T;’ from a fit of

~ 1
C(2n7r) = Cinax €XD <—§n2%72025(%ﬂ)> (3.56)
to the spin-echo contrast, using

Cni=T5) =C(0)e' = T)=—"— (3.57)
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Number of spin echos n=1 n=2 n=3

Fit parameters
Maximum contrast Chnax (99 + 1)% 97+ )% (95 +2)%

ons(Tr)

Fluctuation amplitude (542 +£10)Hz (287 +5)Hz (256 +9) Hz

Homogeneous

T
dephasing time T 415+ 1) ps (787 +2)ps (879 +5) s

Table 3.3.: Results inferred from a fit of Eq. (3.56) to the data shown in Fig. 3.11.

Results for n =1, 2 and 3 are listed in Tab. 3.3.

The fit results in Tab. 3.3 confirm the expected elongation of the homogeneous
dephasing time by the Carr-Purcell sequence. However, significant elongation can
be only observed by comparing the results of a single-echo sequence n =1 and
the Carr-Purcell sequence with n = 2. Further increase of n provides only marginal
elongations, i.e. the fitted curve for n = 3 reasonably fits to the data of n = 2 except
of two data points, which may also be attributed to sudden changes of experimental
parameters during the measurement. Pulse trains with pulse separation limited by
the transport time 7; & Tirans provide similar results. From this fact, we conclude
that dominant fluctuations, mostly contributing to homogeneous dephasing, are
settled in the high-frequency region above 1/7i;ans &~ 50kHz. The origin of these
fluctuations has not yet been identified. Further investigation are therefore needed
in the future.

The evolution of the fit parameter Ciax with increasing pulse number partially
reveals the main shortcoming of the Carr-Purcell sequence: Fixed errors in pulse
frequency, amplitude or duration may accumulate throughout the sequence causing
progressive departure of the freely precessing Bloch vectors from the equatorial
plane and thus yielding a decay in the contrast of the echo train. This shortcoming
becomes more relevant in applications of the state-selective transport (see Sec. 4.5),
in which larger numbers of m-pulses are employed. While errors in pulse frequency
can be suppressed by broadband composite pulses (see Sec. 3.5), fixed errors in
pulse amplitude and length can be compensated by an extended version of the
Carr-Purcell sequence, also known as the Carr-Purcell-Meiboom-Gill or CPMG
sequence [133]. In the CPMG sequence the rephasing pulses are shifted by ¢,f = 7/2
with respect to the initial 7/2-pulse:

SCPMG = (77T/2,¢1-f H Qq)a’gi (’7'7‘—)07'(771'/2@(1)&’2,'_1(’7’7‘—) (771'/2 * (358)
i=1

By this, pulse errors are compensated on even-numbered echoes and are thus not
cumulative [21]. In our experiment, the CPMG sequence provides no considerable
improvement over the Carr-Purcell sequence, most likely due to the fact that the
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3. Engineering internal states of neutral atoms in an optical lattice

dominant pulse errors are not fixed. Instead, they unpredictably drift over time.

Analysis of dephasing mechanisms

Following Ref. [66], we aim to identify the dominant mechanisms responsible for
the observed homogeneous dephasing. For this, we compare the magnitude of the
inferred fluctuation amplitude from Tab. 3.3 to the amplitudes estimated from
measured fluctuations of experimental parameters. Details on the estimations can
be found in Refs. [66, 78].

Magnetic field fluctuations Fluctuations of magnetic fields directly translate into

fluctuations of the |0) <> |1) transition frequency due to the linear Zeeman
effect. They can be primarily attributed to the driving current of the coils,
which generate the magnetic guiding field. The power supply (Toellner TOE
8733-1) provides a relative current stability of I/l =3 x 107% on the
relevant timescales,” resulting in a fluctuation amplitude of oas(7r)/2m =
222 Hz. The frequency spectrum of these fluctuations, however, is expected
to settle in the low-frequency region < 1kHz, particularly due to a low-pass
filter employed in the circuit which suppresses the high-frequency compo-
nents. For this reason, we expect that fluctuations of the guiding field affect
marginally the homogeneous dephasing time whenever Carr-Purcell sequences
with Tr = Ttrans ~ 20 us are employed. Note that this does not apply for
magnetic field fluctuations caused by electronic devices in the vicinity of the
trapped atoms. The magnitude and frequency spectrum of these fluctuations
has yet to be investigated.

Beam pointing instability Pointing instability of the beams generating the opti-

cal lattice yields a variation of the trap depth. The latter in turn affects
the differential light shift and thus the resonance frequency of the atoms.
To roughly estimate the pointing stability in the trapping region, we record
position fluctuations of the atoms perpendicular to the lattice axis using fluo-
rescence imaging, yielding fluctuations with a relative deviation of 5% of the
beam waist. This results in a fluctuation amplitude of oas(7x)/2m = 16 Hz.

Intensity fluctuations Similarly to beam pointing instability, intensity fluctuations

of the laser generating the optical lattice contribute to homogeneous dephas-
ing. The relative intensity fluctuations are of the order of 2%, yielding a
fluctuation amplitude of oas(7r)/27m = 260 Hz. Thus, from all estimated fluc-
tuation amplitudes, it is closest to that inferred from the multiple spin-echo
measurement. Therefore, for our experimental setup, intensity fluctuations
of the laser provide the most dominant contribution to homogeneous dephas-
ing. Further investigations, including a frequency spectrum of the fluctuations

SThermal fluctuations of the power supply on a time scale of several hours are not considered,
since they do not affect the homogeneous dephasing time.
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will be needed to estimate their impact on the elongation of the homogeneous
dephasing time.

Other dephasing mechanisms Other dephasing mechanisms, including elastic col-
lisions and heating [66] have been estimated to be several orders of magnitude
weaker than the dominating dephasing effects discussed above. They play a
negligibly role on the time scale of the measured homogeneous dephasing time.

3.4. Position-dependent quantum state manipulation

So far, we performed coherent quantum state manipulation on atomic ensembles, i.e.
simultaneously on all atoms randomly distributed over sites of a one-dimensional
optical lattice. In that case, each individual atom is equally manipulated, irre-
spective of its position in the lattice. Recent applications in quantum information
science, however, place much higher demands with regard to controlled positioning
of atoms and their selective coherent manipulation with single-site resolution. In
the last decade, significant progress has been made in controlling positions and gen-
erating regular patterns of atoms. Various approaches ranging from optical tweez-
ers [134], optical conveyor belts [89], and magnetic micro-traps [135] have been
successfully applied for this purpose. Coherent manipulation of individual atoms
has been demonstrated rather for atoms occupying distant sites (2.5 ym) of a lattice
in the optical wavelength domain [47], or for atoms on neighboring sites of a lattice
with a period of 5.3 um [85]. Single-site resolution in optical wavelength domain
has not yet been achieved. Recently, single-site addressability in a two-dimensional
optical lattice with 600nm lattice spacing has been demonstrated, by removing
atoms from selected sites using a focused electron beam [45]. By employing this
technique, predefined patterns of atoms have been generated. Although this type of
addressing is not coherent, it impressively demonstrates that preparation of atom
patterns and single-site addressability are mutually compatible.

In this section, we pick up the ideas of nuclear magnetic resonance (NMR) tech-
niques. We employ a magnetic field gradient to manipulate quantum states of
individual atoms by tuning the frequency of the microwave radiation to the re-
spective Zeeman-shifted atomic resonance frequency. Our modified configuration
of anti-Helmholtz coils enables us to coherently manipulate individual atoms with
almost single-site resolution. We utilize this ability to prepare regular strings of
atoms with predefined distances. These strings are used as a starting point for the
realization of controlled two-atom collisions discussed in Chap. 7.

3.4.1. Position-dependent Zeeman shift

In our experiment, position-selective manipulation of atoms is performed in a
quadrupole magnetic field Bquaa(r,I). The field originates from two coils in anti-
Helmholtz configuration, where the symmetry axis of the coils coincides with the
optical lattice axis (z-axis), see Sec. 1.1.4. At the center of the trapping region,
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3. Engineering internal states of neutral atoms in an optical lattice

the axial field gradient along the z-axis is thus twice as large as the gradient in the
xy-plane. Including the homogeneous guiding field By along the lattice axis, the
total magnetic field in the trapping region reads:

B, 0 —x/2
B(r,I)=|B, | =Bo+ Baqua(r,I)=| 0 | +B'(I) | —y/2|, (3.59
Bz Bo z

where B’(I) denotes the magnitude of the gradient field along the symmetry axis
for a preset coil current I. Due to the linear Zeeman effect, the |0) <+ |1) transition
frequency depends linearly on the modulus of B(r,I), yielding

wo(r,I) = AHFS + ’Y|B(T,I)|

B'(I)?
~ Aprs +7 | Bo + B'(I)z + ()P2
8By

W)

83, I
where v = (393 — 4g4)pup/h =~ 2w x 2.5 MHz/G is the gyromagnetic ratio, 6y = By
denotes the contribution of the guiding field (see Sec. 3.2.3), W'(I) = vB'(I) the
position-dependent shift and p = \/x2 + y? the radial distance from the symmetry
axis of the coils. Finally, |B(r,I)| has been approximated to second order in p,
valid for (By + B'(I)z)? > B'(I)?p?/4. Note that, due to misalignment, the optical
lattice axis can be radially offset by a small amount pg relative to the axis of
symmetry. While linear dependency of wy(r,I) on the axial position z is still
maintained, this offset imposes a dominant obstacle to single-site addressability,
see Sec. 3.4.4.

The resonance frequency of an atom as a function of its position along the lat-
tice axis is inferred from a calibration measurement, in which atoms themselves
are used as a probe [47]. This measurement can be regarded as microwave spec-
troscopy in position space. The corresponding sequence is therefore similar to that
of recording a microwave spectrum (see Sec. 3.2.3), except that the frequency is not
swept but preset to a fixed value wy and the field gradient Bquaq(r) is additionally
switched on and off together with a guiding field. By this, frequency dependency
of the microwave spectrum is mapped onto position space, whereas its amplitude
is simultaneously probed and directly inferred from acquired images in each step of
the sequence.

= Ayps + 0o + w'([)z + (3.60)

3.4.2. Microwave spectroscopy in position space

Recording a microwave spectrum in position space requires a large cloud of atoms
(Npet > 50) homogeneously distributed over the lattice sites rather than a countable
ensemble. For this, the MOT and the optical lattice are overlapped during a time
interval of 500ms.® Due to light-induced collisions, atoms occupying the same

5The time interval strongly depends on the amount of cesium atoms in the background gas, which
can be roughly regulated by the flow from the cesium reservoir.
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Figure 3.13.: Microwave spectroscopy in position space. (a) Intensity distribution of an
atomic cloud loaded into the optical lattice, as inferred from an average of 50 initial
images; (b) the corresponding digitizer offset and background corrected binned intensity
distribution. (c) Averaged intensity distribution of atoms remaining in the lattice after
application of a rectangular m-pulse with a pulse duration of 10 us and the state-selective
push-out. The corresponding binned distribution (d) reveals regions in which atoms in
state |1) can be found. By dividing the distribution of (d) by the initial distribution (b)
the normalized intensity distribution is inferred (e), revealing a microwave-spectrum in
position space. The count ratio is directly related to the population transfer in state |1).
A solid line shows a fit of the expected spectrum convolved with the LSF of the imaging
system. The frequency scale is inferred from a calibration measurement.
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lattice sites are removed, subsequently recaptured by the MOT and reloaded into
the lattice [67], resulting in a broad distribution of atoms over almost the entire
detection region, see Fig. 3.13(a). After initializing the atoms in state |0), applying
a m-pulse with a preset frequency wy and the state-selective push-out, only those
atoms remain in the lattice, for which the |0) <> |1) transition frequency has been
tuned resonant to the microwave frequency by the position-dependent Zeeman shift.
The region comprising these atoms is revealed by a subsequently acquired (final)
image, see Fig. 3.13(c).

To increase the signal-to-noise ratio, the above sequence is repeated up to M = 50
times. Then, we calculate the average of binned intensity distributions of all initial
(Fig. 3.13(b)) and all final images (Fig. 3.13(d)), respectively, all of them digitizer
offset and background baseline corrected, see Sec. 2.3.6. Dividing the averaged
final distributions by the averaged initial distribution yields a distribution which
corresponds to a convolution of a Fourier-limited spectrum with the LSF of the
imaging setup (Fig. 3.13(e)). From a fit of the expected spectrum shape to the
resulting distribution, the axial position z of the atom region corresponding to the
preset microwave frequency wo(r, I) in Eq. (3.60) is inferred.

In Figure 3.13(e), a microwave spectrum in position space of a rectangular 7-
pulse with a duration of 10 us is shown. From a fit of Eq. (3.16) comprising the
calibration discussed below, an approximation of the stray light background” and
a convolution with the LSF of the imaging setup, we infer a Rabi frequency of
Q¢ = 21 x (57 £ 1) kHz and a pulse duration of ¢ = (10.6 £ 0.3) us. The pulse du-
ration agrees reasonably well with the preset value. Even though the spectrum
amplitude Pyax = (77 £ 5)% is significantly reduced, the frequency-dependent am-
plitude modulations are accurately reflected.

Microwave spectroscopy in position space is therefore a useful tool, which im-
mediately and quickly reveals information encoded in the frequency domain with
a high resolution, controlled by the strength of the field gradient. This method is
much faster than a usual scan in frequency across the resonance in a homogeneous
field to map out the full spectrum. The time to obtain a spectrum with a compatible
signal-to-noise ration is reduced from approximately 3h for the homogeneous field
method to 12...20s for the gradient method. Furthermore, using microwave pulses
with a narrow-band spectrum, it allows us to monitor the evolution of the transition
frequency arising from changes of experimental parameters from shot to shot. The
“shot rate” is mainly limited by the time interval required to switch the coils and
acquire the images. We stress that the shape of the microwave spectrum in position
space is broadened due to the optical imaging when the features in frequency space
become smaller than the optical diffraction limit. A further broadening may exist
due to a radial offset of the lattice axis with respect to the symmetry axis of the
coils, see Sec. 3.4.4. This effect, however, becomes only significant for narrow-band

"In this measurement, the density of cesium atoms in the UHV cell was increased, resulting in
an increase of stray light, which disturbs the uniformity of the background base line. We have
incorporated this fact in the fit by modeling the background by a Gaussian function.
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pulses with a high spectral selectivity

3.4.3. Calibration of the frequency shift

To calibrate the position-dependent frequency shift due to the magnetic field gra-
dient, we employ a microwave spectroscopy in position space for different values of
microwave frequencies and gradient strengths (coil currents), each time determining
the central position of the remaining atoms. To simplify the subsequent analysis,
we use Gaussian-shaped m-pulses (see below) with a typical pulse 1//e half-width
of o; = 15 us rather than rectangular m-pulses. The frequency spectrum of the for-
mer comprises a nearly Gaussian shape,® which provides a better selectivity and is
easier to fit. Since for calibration purposes, the amplitude of the spectrum in posi-
tion space is irrelevant, we usually skip the acquisition of initial images to reduce
the duration of the calibration measurements. This, however, can only be done in
detection regions, in which the initial atom distribution is assumed to be nearly
homogeneous.

The resulting calibration curves are shown in Fig. 3.14(a). They reveal a linear
position-dependency on the preset microwave frequency, irrespective of the coil
current. From the fitted slopes of all measured curves, we deduce the frequency shift
dependency on the coil current I, see Fig. 3.14(b). This dependency is confirmed
to be also linear. A fit of its slope yields a frequency shift of

W'(I) Hz Hz Hz

ol (197 +£ 1) = (291 + 2)W = (671 +3)—— (3.61)

pixel A pumA’

where for unit conversion, we have employed the calibration of the image scale, see
Sec. 2.4.2. This frequency shift corresponds to a strength of magnetic field gradient
along the lattice axis of B'(I)/I = —(274 + 1) uG/pm A, which agrees reasonably
well with the value measured with a Hall-probe, see Sec. 1.1.4.

In the ideal case, i.e. for a perfect coincidence of the optical lattice axis with the
symmetry axis of the coils, the calibration curves for different coil currents should
intersect at a common point at a frequency of Aprs + g, which corresponds to the
resonance frequency of the atoms in absence of the magnetic field gradient. This,
however, does not apply for the measured data due to a radial offset of the optical
lattice axis relative to the symmetry axis of the coils. To estimate this offset, we
determine the positions of the atoms at the frequency Apps + dp from the fitted
curves, see Fig. 3.14(c). By this, Eq. (3.60) may be reduced to
W'(I)* W' (I) 5

0=w(I)(z—2)+ 850 " = z=2)— s, P (3.62)

where zg has been introduced to incorporate an axial offset of the zero position of
the detection region from the center of the quadrupole field. Knowing the guiding

8The Gaussian shape of the spectrum only applies in the ideal case of a perfectly isolated two-level
quantum system with 77,75 — oco. Nevertheless, for calibration purposes, this shape provides
a sufficiently good approximation to the measured spectrum.
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Figure 3.14.: Calibration of the |0) +» |1) transition frequencies in the presence of a mag-
netic field gradient. (a) Central position of atoms for different microwave frequencies and
coil currents I = {10, 20, 30,40,45} A. Error bars are smaller than the size of the data
points. From the slopes of the fitted linear curves (solid lines), the respective frequency
shifts w’(I) are inferred and plotted as a function of I in (b). A linear fit to the data
yields the frequency-current dependency of Eq. (3.61). (c) Estimation of the radial offset
of the lattice axis relative to the symmetry axis of the coils: The central positions of
the atoms for different values of I, are inferred from wg(r,I) = Aprs + 0o (indicated by
the dashed line in (a)) and plotted in (c). A solid line in (c) shows a fit of Eq. (3.62),
yielding a radial offset of pg = (168 + 6) um.

field contribution ¢y from a recorded microwave spectrum (see Sec. 3.2.3) and the
frequency shift w’(I) from the calibration measurement, we finally infer a radial
offset of pg = (168 & 6) um from a fit of Eq. (3.62). It should be noted that the
radial offset value may vary from one to day another, but also within a measurement
due to thermal expansion of the coils or radial drifts of the optical lattice.

3.4.4. Preparation of predefined patterns of atoms

Microwave spectroscopy in position space employs a simple concept: In presence of
a magnetic field gradient, only those lattice sites remain occupied after the state-
selective push-out, at which atoms have been shifted resonant to the microwave -
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pulse. In the following, we will show that the same concept can be used to prepare
arbitrary patterns of atoms, i.e. initial atom distributions with atoms occupying
predefined lattice sites. By this, rearranging of atoms, as proposed in Refs. [89,111],
becomes redundant, while the preparation precision is strongly increased.

The experimental sequence to generate a predefined pattern structure is similar
to that of recording a microwave spectrum in position space. The only difference
is the number of applied m-pulses. Instead of a single w-pulse, a pulse train of N
successively applied m-pulses with different frequencies w; is used. By incorporating
the periodicity of the optical lattice using

|wi — wy

ith 4,j=1,...,N,i#j .
w’(I))\/26N with 4,5 =1,...,N,i#j, (3.63)

these frequencies define the pattern structure. To ensure high selectivity in the
position-dependent population transfer, the maximum available strength of the
magnetic field gradient is used, providing a frequency shift of up to w'(I = 45A) ~
21 x 13kHz/(A\/2). Furthermore, Gaussian m-pulses with a 1/4/e spectral half-width
down to o,,/2m = 6kHz are employed rather than rectangular m-pulses in order to
suppress side lobes. For the maximum available frequency shift, these pulses are
in principle capable of manipulating individual atoms with almost single-site reso-
lution. To increase the selectivity in the preparation of the pattern structures, we
optionally use several iterations of state initialization, application of w-pulses and
the state-selective push-out, see below.

Before proceeding with technical details and limitations, we first demonstrate the
versatility of our method. In Figure 3.15, two exemplarily generated patterns are
shown: A string of eight almost equidistant atoms (Fig. 3.15(a,b)), for instance,
is ideally suited for a quantum register [47]. Such a register has previously been
implemented using atoms randomly distributed over the lattice sites, in which case
the position of each atom needed to be determined and fed back to the microwave
source prior to quantum state manipulation on the atoms. For a predefined string
of atoms, this feedback is not required, since the frequency of each individual atom
of the string is defined by the preparation sequence itself.

So far, strings of atoms have been realized by rearranging randomly distributed
atoms using two crossed movable one-dimensional lattices [111]. This method
turned out to be technically demanding, not to mention the lower limit for the
minimum achievable atom separation imposed by the waist of the crossed lattice
beams. At this point, the advantage of our method becomes apparent: It allows
us to prepare strings of atoms separated by only two (Fig. 3.15(c,d)) or four (see
Chap. 7) lattice sites. These small separations are essential for an efficient imple-
mentation of controlled two-atom collisions using the state-selective transport, see
Chap. 7. Despite of all advantages, the method presented in this thesis also has
some major drawbacks, which will be discussed below.
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16\./2 2)\/2

Figure 3.15.: Strings of atoms in an optical lattice: Greyscale images show a single im-
age acquired after application of the patterning sequence (a) for a predefined string of
equidistant atoms with separations of 17A/2 and (c) for a predefined string of three
atom pairs of next-nearest neighbors. Corresponding averages over 50 acquired images
are shown as the false color images, (b) and (d), respectively. Atoms deviating from
predefined positions are indicated by an arrow, the deviation by a boxed value. Missing
atoms in (c) are mostly attributed to the limited preparation efficiency (see text).

Limit of the initial atom distribution

Efficient preparation of patterned structures by removing the undesired atoms re-
quires that predefined lattice sites are initially occupied by a single atom. For this
reason, initial atom distributions with ideally unity filling factor (i.e. one atom per
lattice site) in the region of interest are highly desirable. Such distributions, how-
ever, have not yet been achieved for optical lattices loaded from a MOT due to
light-induced inelastic two-body collisions [58,136] during the transfer process. In
presence of the near-resonant molasses light, two atoms are expelled from a com-
monly occupied lattice site. Part of the inelastic collisions, however, lead to losses
of one atom only, see e.g. Chap. 7. These one-atom losses are attributed to so-called
radiative escape, which has been investigated and observed in Ref. [63].

Suppose that two-atom losses dominate the loss process at commonly occupied
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Figure 3.16.: Microwave spectra of two commonly used Gaussian 7-pulses with a 1/+/e
pulse half-width of oy = 15 us (open dots) and oy = 20 us (filled dots) and a pulse duration
of t = 150 us. Solid lines show theoretical spectra as obtained from the optical Bloch
equations with damping, employing the measured relaxation times 77 and Ts. Dashed
lines show a Gaussian fit to the measured data.

lattice sites. The resulting steady-state distribution of atoms in the lattice will
show either only one or no atoms, resulting in a filling factor of about 0.5, yielding
a probability of finding an atom at one selected lattice site of p, ~ 50%. This
probability imposes an upper limit for the efficiency of generating the entire pattern
structure: for a pattern of N atoms, the probability that all desired lattice sites
are initially populated is given by piy = p, yielding pi; ~ 0.4% for a string of
eight atoms, whereas for a single atom pair, pin; &~ 25%. Since our atom detection
is restricted to sparsely filled lattices (see Sec. 2.3.1), a detailed investigation of the
loading process with high atom densities could not be performed so far. Further
investigations aiming at the increase of the filling factor are required in the future.

Selectivity of microwave pulses

For an atom at a predefined lattice site, the selective microwave operation, a w-pulse
for instance, should fulfill two conditions. First, it should operate on the selected
atom with high fidelity. The selectivity of this m-pulse, in turn, specified by its
spectral width and its shape in the frequency domain, determines to what extent
neighboring atoms are affected by this pulse and whether neighboring atoms are
completely removed from the lattice or remain trapped with a certain probability.
For efficient preparation of pattern structures, this probability should ideally be
zero. Therefore, we use microwave w-pulses with a Gaussian envelope resulting in
a Rabi frequency of

(t' —t/2)*

QR(t,) = Qmax €Xp |:_ 952
t

}, for 0<t <t, (3.64)
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3. Engineering internal states of neutral atoms in an optical lattice
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Figure 3.17.: Sequence for preparation of pattern structures involving multiple application
of the inner sequence core of state transfer and push-out (blue shaded blocks).

where the maximum amplitude Q. is adjusted to fulfill the w-condition, m =
fot Qg (¢)dt’, for a preset pulse duration ¢ and the 1/y/e pulse half-width oy. Ex-
perimentally, the modulation of the amplitude is voltage controlled using the PIN
diode attenuator, see Sec. 3.2.2. The advantage of Gaussian pulses over rectangular
pulses is their exponential decay from the carrier frequency and the missing sinc-like
contributions in the frequency spectrum.

In Figure 3.16, frequency spectra of two Gaussian m-pulses with a 1/4/e pulse half-
width of o; = 15 us and oy = 20 us, and a pulse duration of ¢ = 150 us are shown,
both plotted as a function of frequency detuning relative to the atomic resonance.
Since the envelope of both spectra is well approximated by a Gaussian, we infer the
maximum population transfer and the 1//e spectral half-width o, from a Gaussian
fit, yielding

Prax = (94 +£ 1%, 0,/27 = (7.51 = 0.06) kHz for o, =15us, (3.65a)
Prax = (84 £ )%, 0,/2m = (6.4 +0.1)kHz for o, =20pus. (3.65b)

For o, = 15 us, the spectrum agrees reasonably well with the numerical solution
of the optical Bloch equations with damping (see Eq. (3.28)) in which the mea-
sured relaxation times 77 and 75 have been employed. The same applies for the
1/4/e spectral half-width of both spectra. For oy = 20 us, however, the measured
maximum population transfer slightly deviates from the theoretical expectation.
This deviation becomes even more dominant for larger 1/4/e pulse half-widths. By
recalculating the dephasing time 75 directly from the measured spectrum using
the optical Bloch equation with damping, we obtain 75 = 100 us for o; = 20 us.
This value significantly deviates from that inferred from the Ramsey measurement
by 51%. Furthermore, the recalculated dephasing time is not compatible with the
measured spectrum for g; = 15 us. Since both spectra have been reproduced several
times, sudden changes of experimental parameters can be excluded from a possi-
ble explanation. It remains to conclude that for selective pulses the optical Bloch
equation cannot entirely explain the measured data.

The decreasing in the maximum population transfer for o; > 15 us suggests that
the selectivity of the Gaussian pulse cannot be infinitely improved by increasing the
pulse half-width o;. For this reason, we employ a simple technique, which at least
for generation of pattern structures presented in this section, effectively improves
the selectivity performance of the Gaussian w-pulses. The underlying idea is to
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3.4. Position-dependent quantum state manipulation

utilize the probabilistic and destructive nature of our state-selective push-out.
Suppose that a single application of the microwave spectroscopy sequence with a
Gaussian m-pulse provides a spectrum given by

Pp1y(6) = Paax exp <—ﬁ> : (3.66)

Then, by repeatedly applying the inner sequence core comprising state initialization,
application of the m-pulse and the push-out by a total of M times (see Fig. 3.17),
we expect again a Gaussian-shaped spectrum

~ - 52 M " o 52
P|1) (5) = [PmaX exp <_%>} = (Pmax)"" exp _W M)g ) (3.67)
with a 1/4/e spectral half-width o'*(M) = 0,,/v/ M, however, with a rescaled max-

imum population transfer P (M) = (Ppayx)™.

In Figure 3.18, the scaling behavior of both quantities is exemplarily shown for a
Gaussian pulse with o; = 20 us, where the spectra have been taken in the frequency
domain rather than by position-dependent spectroscopy. The scaling is perfectly
reproduced by the measured data, for both quantities inferred from a fit. The same
applies for the microwave spectroscopy in position space. Considering the measured
data of Egs. (3.65) and the scaling behavior, the following conclusion can be drawn:
For efficient generation of pattern structures it is rather preferable to repeat the
inner sequence core with a m-pulse of oy = 15 us by a total of two or three times
rather than a single application of the sequence with a pulse of o; = 20 us. The
former scheme results in

P (2) = (88+2)%, 07(2) = (5.31 +0.03) kHz, (3.68a)
P (3) = (83+3)%, 07(3) = (4.34 4+ 0.03) kHz, (3.68D)

providing a higher selectivity and comparable maximum population transfer com-
pared to the latter scheme, see Eq. (3.65).

To investigate the efficiency, resolution and possible imperfections of our pat-
terning method, we generate a pattern of three pairs of next-nearest neighbors, see
Fig. 3.15(c,d). Each atom pair is separated by 16 lattice sites from another, to reli-
ably determine the distances of the atoms using the parametric deconvolution, see
Sec. 2.4.1. The internal sequence core employs a pulse train of six subsequent ap-
plied Gaussian 7-pulses with o; = 20 us,” t = 150 us, {w1,...we} = do + w'(45A) x
{—19,-17,-1,1,17,19})\/2 and a pulse separation time of ¢, = 200 us. This pulse
separation time ensures accurate settling of the voltage controlled frequencies from
the list.! The inner sequence core is repeated by a total of M = 2 times. Con-

sequently, we expect a maximum population transfer of P (2) = (71 & 2)% at

9Despite of a maximum population transfer of only Prax = (84 +=1)%, this pulse provides a
reasonable 1/,/e spectral half-width to reduce unwanted population transfer of adjacent atoms.
108ince the pulse separation time is of the order of the T> dephasing time, the population transfer of
the atoms at lattice sites affected by more than one pulse of the pulse train adds up incoherently.
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Figure 3.18.: (a) Microwave spectra for different numbers of applications M of the inner
sequence core. Solid lines show Gaussian fits, from which (b) the dependency of the in-
ferred maximum transfer efficiency ﬁffjx(M ) (logarithmic plot) and (¢) the 1,/e spectral
half-width ¢f°(M) (double-logarithmic plot) on the number of applications is inferred.
Both dependencies perfectly agree with the expected trend.

the predefined sites and a 1/4/e spectral half-width of 0[%5(2) /27 = (4.5 + 0.1) kHz.
The latter corresponds to a 1/4/e half-width in position space of
o5 (2) =(0.34 £0.01))\/2, (3.69)

Z,eXp

specifying the selectivity region for a single atom.

The entire patterning sequence is repeatedly recorded 500 times. From fluores-
cence images of the atoms, each acquired with an exposure time of 800ms,!!' the
positions and the distances of the atoms are determined. For a survival probability
of a single atom of psy, = (95 + 1)% and an assumed filling factor of pi,; = 50%, the
number of pairs correctly prepared with the predefined distance is expected to be

Nexp = 3K (pini)? (Psur) 2 (PLE(2))% = 171 £ 10. (3.70)

max

In Figure 3.19 a histogram of measured distances between atoms forming the pairs
is shown. It reveals a Gaussian-shaped distribution centered at the predefined sep-
aration of two lattice sites. From the histogram, we infer Npye.s = 40 £ 6 correctly
prepared pairs and a 1//e half-width of the distances of ¢% (2) = (0.85 £ 0.08)\/2
from a Gaussian fit. The corresponding selectivity region of a single atom is thus
specified by

0% as(2) = 055 (2)/V2 = (0.60 + 0.06)\/2. (3.71)

z,meas

Both, the number of correctly prepared pairs and the 1/4/e half-width of the se-
lectivity region deviates from the expected values of Egs. (3.69) and (3.70). These

"Even though the exposure time is shorter than that used in Sec. 2.4.1, the fluorescence signal
of the atoms is comparable. Therefore, we expect the same reliability of inferring the correct
number of sites separating two atoms as for an exposure time of 1s
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Figure 3.19.: Histogram of distances between two atoms forming the atom pairs shown in
Fig. 3.15(c,d). A solid line shows a Gaussian fit to the histogram, from which the 1//e
half-width of the distances and the selectivity region of a single atom is inferred, see
Eq. (3.69).

deviations can be attributed to the axial drift of the optical lattice and the radial
offset of the lattice axis relative to the symmetry axis of the coils, see below. Never-
theless, the method has proved itself highly useful for the generation of predefined
patterns.

Effect of axial drift of the optical lattice

In Section 2.4, the axial drift of the optical lattice with respect to the microscope
objective has been investigated. Due to position-dependent frequency shift in the
field gradient, an axial drift of the lattice also affects the 1/y/e half-width of the
selectivity region. Because the total measurement time, i.e. the time for measuring a
full data set including up to 500 individual experimental sequences, is much longer
than the time interval in which the lattice axially drifts over a distance of \/2,
the effect of this drift on the spectrum in position space can be described by a
convolution equation

2/X for |2 < \/4,

0 else,

oo
ﬁ\l),drift(z) = / R(z/)ﬁm(z —2)d',  with R(z') = {
—0o
(3.72)
where the rectangular function R(z") comprises the periodicity of the optical lattice,
including the fact that only drifts modulo A\/2 are distinguishable and relevant. By
inverting the convolution equation, we infer a “drift-free” 1/4/e half-width of the
selectivity region of

o™%5(2) = (0.52 £ 0.07)\/2. (3.73)

This value explains part of the deviation between measurement and expectation
mentioned above.
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3. Engineering internal states of neutral atoms in an optical lattice

Effect of a radial offset of the lattice axis

In the following, we investigate the effect of a radial offset of the lattice axis with
respect to the symmetry axis of the coils on the maximum population transfer and
the selectivity region of a Gaussian m-pulse with o,,/27 = 6.4 kHz — the same pulse
as used for the preparation of the string of atom pairs. All experimental parameters
entering the calculations, including frequency shifts due to the guiding field dg
and the gradient field w’(I =45 A), the temperature T', and the axial and radial
trapping frequencies €, and ,,q of the atoms, are based on the typical values
of the patterning sequence employed above. Experimental imperfections arising
not from the field gradient itself are incorporated in the shape of the measured
spectrum and its 1/4/e spectral half-width o,,. For simplicity, we set the origin of
the coordinate axes z’, ¥/ and 2’ to the spatial center of the lattice site in which
the |0) <> |1) transition frequency is shifted resonant to the pulse frequency by the
field gradient. For this coordinate system, the spatial detuning in the presence of a
radially offset field gradient is given by

(5(’)"’, 7“0) = WQ(’I"/ — Ty, I) - wo(—’l"o, I) (374)

with 7/ = (p’ cos ¢, p'sin ¢/, 2’), the offset vector rg = (pg cos o, po sin g, z9) and
wo(r, I) from Eq. (3.60).

In Figure 3.20, calculated regions addressed by the pulse (addressing regions) for
which [6(7,r0)| < o, and |6(r',7r0)| < 20, in the presence of the field gradient
are shown for different values of radial offset py. Atoms located in these regions
experience a minimum population transfer of ]Bmin > 0.6]5maX and ]Bmin > O.l3§max,
respectively, whenever the Gaussian m-pulse is applied. Because of the quadratic
dependence of 6(r',rg) on the radial component, see Eqgs. (3.74) and (3.60), the
addressing regions are extending over neighboring lattice sites for increasing values
of pg. This yields a decrease of the spatial selectivity of the Gaussian m-pulses.
Furthermore, we observe a decreasing intersection of the Gaussian thermal wave
packet of a trapped atom and the addressing region. This leads to a decreased
effective population transfer at desired lattice sites.

We quantify both observations by calculating the expected position-dependent
spectra, i.e. the population transfer as function of axial displacement 2z’ from the
resonance position ' = 0 for different radial offsets. For this, we average the pop-
ulation transfer specified by the spectrum of the Gaussian m-pulse (see Eq. (3.66))
over all position-dependent detunings, weighted with the axial and radial probabil-
ity density of an atom in the trapping potential of the lattice. The latter read

1 22 kgT
/ JE— _— ‘N 1 =
Pax(?) = V270 ax P ( 219§X> » with - Jax mQ2, (3.75)

and

2
prad(pla ‘10/) = plg eXp | — p; ) with q91"ad = kBiZﬁ ) (376)
27Tﬁrad 2791rad mQrad
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Figure 3.20.: Addressing regions, defined by [6(r',7¢)| < o, and [6(v,70)| < 20, in the

presence of the field gradient for different values of radial offsets pg (lower contour plots).
The displayed plane is the common plane of the lattice axis and the symmetry axis of
the coils. The horizontal axes are along the lattice axis. Ellipses indicate the 1/./e
(solid lines) and 1/e? (dashed lines) spread of the Gaussian thermal wave packets of
atoms trapped in the potential wells (sites) of the optical lattice. Upper graphs show
the corresponding effective spectra in position space, i.e. the population transfer as a
function of axial displacement 2’ from the resonance position 7’ = 0, as obtained from
Eq. (3.77) for a Gaussian 7-pulse with o,, /27 = 6.4kHz and Py.x = 100%.

where ¥, and ¥,,q denote the axial 1/y/e half-width, and 1/,/e radius of the
Gaussian thermal wave packet of the trapped atom, respectively. The position-
dependent population transfer is then given by

0
P ,PO /
—00

yielding again an approximately Gaussian-shaped spectrum in position space, see
Fig. 3.20, from which the effective maximum population transfer P,., and the
effective 1/1/e half-width in position space &, can be inferred. The dependency
of both quantities on the radial offset of the lattice axis is shown in Fig. 3.21 for
an ideal Gaussian mw-pulse with ﬁmax = 100% and o,,/27 = 6.4kHz. It confirms
the expected behavior graphically inferred from the intersection of the thermal
wave packets with the addressing regions. According to this calculation, the mea-
sured drift-free selectivity region for M = 1, specified by 07%:(1) = v/2 207%5¢(2) (see
Eq. (3.73)), corresponds to a radial offset of pg = (64 £ 14) pim, which is of the order
of magnitude of the value inferred from the calibration curves, see Sec. 3.4.3. The

o\=‘w

/pax(C')prad(p',90’)13|1>(5("“’ —(ex,mo)) dp'dp’dd’,  (3.77)
0
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Figure 3.21.: (a) Dependency of the effective maximum population transfer Pax, and (b)
the 1/4/e half-width in position space &, on the radial offset of the lattice axis with
respect to the symmetry axis of the coils. The data points of the curves have been
determined from the numerical evaluation of Eq. (3.77).

deviation can be attributed to the thermal expansion of the coils and the entire
holding construction, resulting in a drift of the coils axis from one day to another.
Note that the calibration curves have been measured on another day. The inferred
radial offset py yields a maximum population transfer of Ppa. = (58 £ 8)%, and
thus, an expected number of correctly prepared atom pairs of

Nexp = 3K (pini)” (psur)” (Priax (2))? = 39 £ 14. (3.78)

This value agrees reasonably well with the measured value Nyeas deduced from the
histogram in Fig. 3.19.

The above investigation has shown that the radial offset of the lattice axis with
respect to the symmetry axis of the coils significantly affects the selectivity per-
formance and the position-dependent population transfer of the Gaussian m-pulses.
By this, it also affects the resolution and the efficiency of generating predefined
atom strings. In the future, methods aiming a precise and reliable alignment of
overlap of both axis prior to an experimental sequence need to be developed.

Selectivity limit of the Gaussian 7-pulse

Due to atomic motion in potential wells of an optical lattice, in the presence of
a magnetic field gradient, atoms inherently experience transition frequency broad-
ening over the course of the experimental sequence. This motion, which has been
incorporated by the spread of the Gaussian thermal wave packet in our calculations,
imposes a limit on the selectivity of the Gaussian m-pulses. To estimate this limit for
our experimental setup, we assume a perfectly aligned setup (pp = 0) and calculate
the effective spectra in position space for Gaussian m-pulses with ﬁmax = 100% and
different values of o, using Eq. (3.77). Analogous to the previous section, from each
resulting spectrum, we infer the effective parameters P, .y and &,. Furthermore, we
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Figure 3.22.: Selectivity performance of a Gaussian m-pulse with Paax = 100% for a per-
fectly aligned system pg = 0 and different values of 1/4/e spectral half-width o, and the
1/4/e half-width of the axial selectivity region in position space 7. Solid line shows the
effective maximum population transfer Py.x of an atom on a lattice site, shifted resonant
to the m-pulse; dashed line, the population transfer of an atom on the neighboring site.

calculate the population transfer of an atom occupying a neighboring lattice site.
A plot of these parameters is shown in Fig. 3.22. It reveals a decay of Ppax with
decreasing o, and &, which is mainly attributed to the axial spread of the thermal
wave packet of the atoms. This axial spread exceeds the addressing region below
a certain spectral pulse width. In case of pg = 0, the radial spread plays only a
marginal role. For increasing o, and &, in turn, the population transfer on the
neighboring lattice sites increases.

Suppose we demand an effective maximum population transfer of Py = 95%
for an atom on a site which is shifted resonant to the pulse frequency. The lower
selectivity limit is then specified by 7, = 0.27)\/2, yielding a population transfer
of <0.1% for atoms on neighboring lattice sites. From this, we conclude that
single-site addressability is in principle possible with the current setup, however,
only for a perfect overlap of the lattice axis and the symmetry axis of the coils.
Otherwise, due to the radial offset, the radial spread of thermal wave packet of
the atoms dominates the degradation of the addressability resolution. This effect
can in principle be reduced by a stronger radial confinement of the one-dimensional
optical lattice.

3.5. Composite pulses

Previously, we demonstrated quantum state manipulation either in the absence of,
or the presence of a magnetic field gradient, each of which has its own benefits.
While the former allows to equally manipulate all atoms of an ensemble by a single
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3. Engineering internal states of neutral atoms in an optical lattice

pulse, the latter is used for selective manipulation. For some applications, both
benefits are required simultaneously. The state-selectively transport of two atoms
in opposite directions (see Chap. 7), for instance, requires both atoms to be initially
prepared in orthogonal qubit basis states. The atoms are then stepwise moved from
site to site, whereas in each step, their qubit states have to be flipped by a w-pulse.
However, since the switching and decay time of the field gradient is of the order of
the T7 relaxation time, after selective state preparation, the state-selective transport
has to be performed in the field gradient. Hence, the atomic resonance frequency
changes during the transport. While for distant atoms this problem could be in
principle solved by stepwise readjusting the pulse frequencies for each transported
atom, the situation becomes more difficult for adjacent atoms. There, a w-pulse
adjusted for one atom may unintentionally affect another adjacent atom. This
situation, however, cannot be avoided in the implementation of controlled two-
atoms collisions where two atoms are prepared at adjacent sites and transported
towards a common lattice site.

Instead, another strategy is followed in this thesis: We employ an efficient state
inversion in a wide frequency range of interest using a broadband composite pulse.
For atoms occupying lattice sites at which the frequency shift lies within the pulse
bandwidth, this composite pulse provides a similar inversion efficiency as a regular
m-pulse in absence of the field gradient. So far, adiabatic passages have been used for
this purpose [48,79], providing a broadband inversion within milliseconds. However,
our experimental sequences require efficient inversions within tens of microseconds.

Composite pulses comprise a small number of contiguous, or near-contiguous
pulses with different phases. They emulate the effect of a single pulse, providing
additional compensatory mechanism which renders them less sensitive to experi-
mental imperfections. By concatenation of several pulses, operations being more
accurate than just for a single pulse can be achieved. Furthermore, systematic er-
rors and other unwanted systematic effects can be selectively canceled. A general
overview of composite pulses can be found in Refs. [21,137] and references therein.
In this thesis, we restrict ourselves to a specific class of contiguous composite pulses,
the so-called broadband composite pulses.

First, we briefly introduce a common pulse notation: A composite pulse sequence
is typically written in chronological order from left to right. The pulse type and
phase of each pulse of the sequence is characterized by degrees rather than radian
units. A single m-pulse with ¢ = 7/2 ((A]mr /2, see Tab. 3.1), for instance, is written
as a 180gp-pulse. A 90¢180gp-pulse describes a composite pulse comprising a 7/2-
pulse with ¢, = 0 subsequently followed by a 7-pulse with ¢, = 7/2, accordingly. It
corresponds to the operator C= UA}W /2 UW /2. Throughout this thesis, we will use the
degree notation whenever sequences of composite pulses are involved. Otherwise,
the standard radian notation will be used.
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Figure 3.23.: Inversion performance of a single rectangular 180y-(7-)pulse and a broadband
9002251803150~ (composite-)pulse of equal Rabi frequency. (a) Theoretical spectrum of
the rectangular 180¢-pulse of 8 us duration. (b) Dynamics of the Bloch vectors (col-
ored arrows with trajectories) on the Bloch sphere, during MW operations for differ-
ent frequency detuning. The colors of the Bloch vectors, correspond to a detuning of
§/2m = {0,1/3,2/3,1} x 50kHz, indicated by the colored dots in the theoretical spec-
trum. (c) Theoretical spectrum of the 909225150315¢-(composite-)pulse of 28 us duration.
The respective Bloch vector dynamics (d) is decomposed into the individual pulses of
the sequence.

The 9002251803150-pu|se

From all researched and experimentally tested broadband pulses, the 907225189315¢-
pulse [138] provides the best performance in our experiment, concerning the band-
width, inversion efficiency and the pulse duration. It is compatible with the con-
straints imposed by the coherence time and the applications presented in this thesis.
The 900225180315¢-pulse comprises three pulses with lengths and phases adjusted
in such a way, that Bloch vectors initialized in ug = (0,0,1) (]0)) are perfectly
refocused near u(t) = (0,0,—1) (|1)) for a wide range of frequency detuning, see
Fig. 3.23. Furthermore, this pulse sequence provides similar compensation per-
formance for pulse amplitude errors to that of a regular 180y-(m)-pulse of equal
Rabi-frequency almost over the entire relevant bandwidth, see Fig. 3.24(c). Due to
a total pulse duration of t = 28 us < Th, the 90¢2251803150-pulse is only marginally
affected by dephasing mechanisms of our experiment.

In Figure 3.24(a), a recorded microwave spectrum of the 9092251803150-pulse is
shown, together with the spectrum of the 180p-pulse. It perfectly fits to the sim-
ulated spectrum, obtained by solving the optical Bloch equations with damping,
employing the measured relaxation times 77 and T5. The spectrum reveals the
expected uniform top-hat shape with a population transfer exceeding 90% over a
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Figure 3.24.: (a) Measured inversion performance of a single rectangular 180¢-pulse with
a pulse duration of 8 us (filled dots) and a broadband 90¢225150315¢-pulse of equal Rabi
frequency (open dots). Solid lines shows the amplitude fitted solutions of the optical
Bloch equations with damping, employing the measured relaxation times 77 and T5. (b)
Calculated inversion performance of a 180g-pulse and (c) a 909225150315¢-pulse in the
presence of amplitude errors, expressed as the relative deviation of the rf-Amplitude €,¢
from the Rabi frequency Qg.

frequency range of Aw/2m = (92+2) kHz — the bandwidth of the composite pulse.
Consequently, in the presence of a maximum available magnetic field gradient yield-
ing a position-dependent frequency shift of w’(I = 45A) ~ 13kHz, this pulse can
efficiently transfer the population of the atoms in a region comprising seven lattice
sites. In the absence of field gradients, this pulse is ideally suited to compensate
pulse frequency errors. Considering the fact that experiments on two-atom colli-
sions are usually performed on atoms which are initially separated by four lattice
sites, this region is sufficiently large.

3.6. Conclusion

In this chapter, I have presented the experimental implementation of methods to
initialize, coherently manipulate, detect and completely characterize the internal
quantum state of a two-level quantum system formed by cesium atoms trapped in an
optical lattice. The required experimental setup, the performance and limitations
of each adopted method have been disused in detail. Using Ramsey and (multiple)
spin-echo spectroscopy, the contributions to the total coherence time of our quantum
system have been measured. Furthermore, dominant decoherence mechanisms of
our setup have been inferred. Polarization distortions of the light field of the optical
lattice introduced by retardation elements of the experimental setup significantly
affect the differential light shift. For the given lattice geometry and temperature
of the atoms, this differential light shift and its fluctuations, provide the most
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dominant source of decoherence.

Besides collective manipulation on atomic ensembles, selective manipulation of
individual atoms employing a position-dependent frequency shift in the presence
of a magnetic field gradient has been successfully adopted and demonstrated. Our
modified configuration of anti-Helmholtz coils enables us to coherently manipulate
individual atoms close to single-site resolution. This ability was utilized to prepare
regular patterns of atoms with predefined distances. The preparation efficiency
and strategies to effectively increase the selectivity of the involved pulse trains have
been discussed in detail. Deviations in selectivity and preparation performance from
theoretical expectations have been attributed to the axial drift of the optical lattice
and particularly to the radial offset of the lattice axis relative to the symmetry axis
of the coils.

Finally, we employed a broadband composite pulse to perform efficient quan-
tum state inversion in a field gradient in a region comprising several lattice sites.
All methods and strategies discussed in this chapter, together with the inferred
knowledge on their limitations and technical imperfections will be employed in the
investigation of the state selective-transport and its applications, presented in the
following chapters.
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4. State-selective transport of neutral
atoms

Apart from selective manipulation of individual qubits, the most interesting applica-
tions of quantum engineering and quantum information science require a controlled
interaction between qubits, or a coupling of qubits to an additional, well-controlled
degree of freedom. Controlled interactions between atoms in adjacent lattice sites
can be either realized by photon transfer in a high-fines cavity [31-33], Rydberg
blockade interactions [34-36] or just by bringing two atoms into contact [37]. For
the latter approach, state-selective transport in optical lattices have been proposed
which allows to transport atoms from one lattice site to another, whereby the trans-
port direction of each atom is determined by its encoded qubit state. Such transport
can be used to realize fundamental quantum gates [16,53,55] or create large-scale
entanglement [37,54].

In the last decade, state-selective transport of large ensembles of Rubidium atoms
in a Mott insulating state [38,39] has been realized [40], impressively demonstrat-
ing controlled and coherent delocalization of an atomic wave function over a de-
fined number of lattice sites. Using this technique, large-scale entanglement has
been achieved [41], albeit a quantitative measurement for the size of the entangled
many-body state has been not feasible so far. The question whether such coher-
ent transport can be adopted to a thermal ensemble of atoms and to which extent
coherence properties are then maintained, remained unanswered so far. Inspired
by its versatility and results for large atomic ensembles, new ideas emerged which
aim to adopt the state-selective transport to smaller systems comprising few atoms
only. In contrast to large ensembles, such systems allow full control over each in-
dividual atom. By this, unbiased insights into details of two atom interactions are
anticipated.

Multipath quantum interference of a delocalized single-particle wave function
recently receives more and more attention in the context of so-called quantum walks
[4], which provide an alternative approach for universal quantum computing [5,6].
Recently, realization of quantum walks using coherent state-selective transport of
neutral atoms in optical lattices has been proposed [50]. However, it is initially
unclear whether a thermal ensemble of atoms is eligible for this purpose.

In this chapter, the basic concepts and properties of the state-selective transport
of single atoms in a one-dimensional optical lattice are discussed. I present the
experimental realization and results, from which the transport efficiency is initially
inferred. Coherence properties of the state-selective transport of thermal atoms and
results of some of its applications, including a single atom interferometer, a quan-
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tum walk in position space and controlled collisions between two individual atoms,
employing the new degree of precision in detection and selective manipulations of
atoms, are separately presented and investigated in subsequent chapters.

4.1. State-selective potentials

The state-selective transport extends the concept of dipole potentials, in which
atoms are state-selectively trapped. We briefly introduce this concept initially as-
suming that atoms are prepared in one of the qubit basis states, either |0) or |1),
before focusing on the more interesting cases of superpositions of basis states. The
latter play a decisive role in analysis of coherence properties of the transport and
realization of a single atom interferometer and a quantum walk.

To illustrate the basic concept of state-selective potentials, for the sake of sim-
plicity, we first restrict the discussion to the fine structure representation of qubit
basis states, initially ignoring the hyperfine structure of cesium atoms. In this
representation, the qubit basis states |0) and |1) are replaced by their fine struc-
ture counterparts, |0') =|J =1/2,my =+1/2) and |1") = |J =1/2,mj = —1/2).
In presence of a light field, light shifts of the respective energy levels are assumed
to be dominated by contributions of the first excited states, i.e. those of the 62P; /2
and 62P; /2 manifold, see Fig. 4.1. Their transition frequencies with respect to the
ground state correspond to the Dy and Ds line of cesium.

Consider a linearly polarized light field, decomposed in the basis of o+ and o~
polarization, and detuned between the Dy and D4 line. On the one hand, the light
field is red-detuned with respect to the J =1/2 — J' = 3/2 transition, forming an
attractive dipole potential. Regarding the J =1/2 — J' = 1/2 transition, on the
other hand, the light field is blue-detuned, yielding a repulsive contribution to the
potential. By detuning the light field near to the middle of the Dy and Do line,
both, the attractive and the repulsive contributions from the m/; = £1/2 transitions
cancel. The uncompensated attractive contributions from the outermost states of
the 6*P3/5 manifold (|J = 3/2,m; = £3/2)) form the state-selective potentials,
in which atoms in different fine structure ground states are separately trapped.
Therefore, atoms in state |0') are trapped in a potential generated by o™ polarized
component of the light field, whereas atoms in state |1’) only experience a potential
from the ¢~ polarized component.

Incorporating the hyperfine structure

A more accurate description requires the nuclear spin of cesium I = 7/2 and the
resulting hyperfine structure to be taken into account. For this, we exploit the fact
that states of the hyperfine structure can be decomposed into the fine structure
basis using the following relation

|I, JaF,mF> = Z <I’mIaJamJ|Ia JaF’mF>|IamI> & |J’mJ>’ (41)

mr,mj
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Figure 4.1.: Zeeman sublevels in the fine structure of the ground and the first excited states
of cesium. Possible transitions for o™ and o~ polarized light are indicated by red and
green arrows, respectively. For a characteristic frequency w of the light field, detuned
near the middle of the D; and Ds transition, both light shift contributions from the
m/y = +£1/2 transitions (dashed arrows) to the trapping potential cancel.

where the matrix elements (I, my, J,mj|I, J, F, mp) correspond to the Clebsch-Gor-
dan coefficients [139] of the basis transformation |I,J, F,mp) — |I,m1) ® |J, myj).
For the qubit basis state employed in this thesis, we thus obtain

0) =T =7/2,m3=7/2)®|0), (4.2a)
1) = \/;I =7/2,my;=T7/2)®|1) - \/;I =7/2,my=5/2)®|0). (4.2b)

Therefore, state |0) couples perfectly to the fine structure state |0'), whereas state
|1) has an overlap with both fine structure states, state [1) and |0'), at a ratio of /7
to 1. For the proper detuning of the light field (see above), atoms in state |0) are
still only affected by the o polarized component of the light field. Atoms in state
|1), however, see a mixture of o+ and o~ polarized light, whereas the coupling to
the o~ component prevails. This mixture is unavoidable, yielding secondary effects
which significantly affect the properties of the state-selective transport, see Sec. 4.2.

Characteristic wavelength

Following the illustrative explanation, the proper detuning of the light field, also
referred to as the characteristic wavelength A, is constrained by the condition that
atoms in qubit state |0) are only affected by the o* polarized component of the
light field. In other words, the dipole potential for the o~ polarized component has
to vanish:

U‘0>(q = —1,)\‘()),7‘) =0. (4.3)

Assuming that only the first excited states 6Py /2 and 62P5 /2 significantly con-
tribute to the light shifts of the 62S; /2 ground states, the dipole potential is given
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Figure 4.2.: Wavelength dependency of dipole potential contributions of the o+ and o~
polarized light field in the relevant region A, calculated for both qubit basis states, |0) and
1), using Eq. (4.4). Zero-crossings of U|gy ,— = U)oy (=1, A, 7) and Ujyy o+ = Uy (+1, A, 7)
specify the characteristic wavelengths Agy and A1y, respectively.

by [78]

3e?
2mece

- ' + 1) fija.r <F 1 F >2{J' 1/2 1}2. (4.4)

; /|WJ/,F/|(27TC/)\—UJJ/7F/) mg q —m% F F 7/2
J' F' my

I,(r)(2F + 1)

U|F,mF) (q7 )‘7 T) =

Here ¢ characterizes the polarization of the light field (¢ = 0, £1 for linearly, circu-
larly oF), I,(r) denotes its intensity, wy s the transition frequencies between the
ground states and the manifold of the first excited states and fy /o j» the correspond-
ing oscillator strengths, both taken from Ref. [140]. Brackets (...) and {...} denote
the Wigner 3j- and 6j-symbols, respectively. By solving Eq. (4.3), we obtain a
characteristic wavelength of

Ajoy = 865.9nm . (4.5)

Analogous to Eq. (4.3), a similar condition for atoms in state |1) and the o~ polar-
ized light can be established, yielding a characteristic wavelength of Aj;y = 869.3nm.
At this wavelength, coupling of state |1) to both polarization components is effec-
tively counteracted, resulting in an opposite situation: While atoms in state |1) are
now affected only by the o~ component of the light field, atoms in state |0) are
coupled to both circular components.

In Figure 4.2, the dependency of potential contributions for both circularly po-
larized components and qubit basis states on the wavelength in the relevant region
A € A = [Ap,, Ap,| between the Dy (Ap, = 894.6 nm) and Dy (Ap, = 852.3nm) lines
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4.2. Moving atoms in state-selective potentials

is shown. Zero-crossings of these contributions specify the characteristic wave-
lengths Ajgy and Ajpy, respectively. Since Uj)(¢ = —1,\,7) # Uj1y(qg = +1,A, ) for
A € A, there is no characteristic wavelength at which both qubit basis states couple
solely to a different circular component. Note that, in principle, each wavelength in
A is suitable for the realization of state-selective potentials. Differences with regard
to the state-selective transport arise merely from different couplings of qubit basis
states to the undesired polarization component. For technical reasons, we prefer
the characteristic wavelength A = ). Possible benefits of other wavelengths are

discussed in Ref. [78].

4.2. Moving atoms in state-selective potentials

Employing the idea of state-selective potentials, a state-selective transport can
be achieved by a light field comprising orthogonally circularly polarized standing
waves, each forming an optical lattice, which can be spatially shifted with respect to
each other in a controlled manner. This can be realized by two counterpropagating
linearly polarized laser beams in a lin-0-lin configuration with a continuously varied
polarization angle 6 of one of the beams. Let

Eiy(r,t) = A(r) cos(wt — f(r)) - ep=0 , (4.6a)
E, i (r,t) = A(r)cos(wt + f(r)) - eg (4.6b)
be the electric fields of two counterpropagating identical Gaussian beams, an inci-
dent and a returning beam with an amplitude A(r) and a phase f(r), both intro-

duced in Sec. 1.2.2. By decomposing the linear polarization vector ey in a circular
basis

ey = <Z?§g> = % <e*ieea+ + eieef) , with e, + = % (:liz) , (4.7)
the resulting total field can be written as
E(r,t) = Eie(r, ) + Ev(r,t) = Eye (r,) + B, (r,1) (4.8)
with the circularly polarized field components
E,+(r,t) = V2A(r) cos(f(r) T 6/2) - Re {ei(Wthe/Q)eoi} . (4.9)
The intensity of the resulting light field,
I(r) = ceo(E*(r,t)) = e [<E§+ (r,t)) + (Ei, (r,t))] =I,+(r)+ I,-(r), (4.10)
can similarly be decomposed into circularly polarized components with

L= (r) = A%(r) cos®(f(r) F 0/2) = L—x1(r), (4.11)
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4. State-selective transport of neutral atoms

where we used the fact that mixed contributions (E+(r,t)E,+(r,t)) vanish in the
time-average, denoted as (...). These intensity components form two orthogonally
circularly polarized standing waves. By varying the angle 6, each of them is shifted
in opposite direction by a distance of zx = F(A/27)(0/2), resulting in a total dis-
placement of 6z = |z — z_| = (A/2)(0/7) with respect to each other. According to
Eq. (4.4), the shift of the standing waves directly translates into a displacement of
the respective dipole potential components U);y (41, A, r) for j = {0,1}. Consider-
ing the fact that atoms in one of both qubit basis states are trapped in only one, the
prevailing potential component, we finally have realized a state-selective transport.

Effect of undesired polarization components

The general effective trapping potential of atoms in state |7), including those cases,
in which atoms are affected by both circularly polarized components of the light
field, is given by

Udip,m(r, 0) = U|j>7(,+ cos? (f(r)—0/2) + U\j),a* cos® (f(r)+6/2), (4.12)

where U,y ,+ denotes the depth of the respective potential component U (£, A\ 7),
see Eq. (4.4). It can be rewritten as

Uaip. ) ( 0) = Vijy (0) + Wi (0) cos™ (f(r) +}(6)) (4.13)

with an effective phase

95(8) 0 if 6=mn (nez),
‘> — U',0++U',o'7 - - .
j L arctan {—lii,orvﬁi,a- tan (0 — 5)} — T else, »
4.14
an effective contrast
1 if 9:(2714—1)% (neZ)
Wi (®) = (Ujot +Ujjpo) X §__cost e (4.15)
cos(279‘j>(9)) )
and an effective offset
1
Vin(0) = 5 U .o+ + Upjo- = W) - (4.16)

From Eq. (4.13), two characteristic properties of a trapping potential comprising
both circularly polarized contributions (U, i), Uljy,o— # 0) can be deduced: First,
in contrast to the purely circular polarized components, the shift of the effective
potential depends non-linearly on the polarization rotation angle 0, see Eq. (4.14).
This fact has to be taken into account, whenever customized profiles for polarization
rotation to optimize the transport velocity and the acceleration have to be employed.
Second, according to Egs. (4.15) and (4.16), the effective potential depth

U07|j> ((9) = Vm(@) + W|]> ((9) (4.17)
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and the effective potential contrast W); (f) change during the shift, affecting all
related parameters, e.g. the axial and radial trapping frequencies of atoms in the
optical lattice, see Fig. 4.5(b) in Sec. 4.4. By this, excitations of atoms into higher
vibrational states may occur, e.g. when trapping potentials become shallow during
the shift. Avoiding these excitations is of particular importance for applications of
the state-selective transport, especially for those employing interference phenomena
and those imposing high demands on coherence properties, see e.g. Chap. 5 and
Chap. 6. Note that changes of the trapping potential also affect the evolution of
qubit phase during the transport, see Sec. 5.1.

For the characteristic wavelength employed in this thesis, the depths of the dipole
potential components obey Ujgy o+ /U\0>,o— ~ oo and U‘1>,0+/U‘1>70_ ~ 1/7. There-
fore, ideally only atoms in basis state |1) experience changes of the trapping poten-
tial during the state-selective transport.

4.3. Experimental setup

The tilt angle 6 between polarization vectors of the incident and returning beam is
dynamically adjusted through an electro-optical modulator (EOM) and additional
polarization optics, similar to Ref. [40]. The respective setup is schematically show
in Fig. 4.3. Details on optical components and their performance can be found
in Ref. [68]. The polarization control setup comprises a quarter-wave plate and an
EOM, the principal axes of which are parallel and perpendicular to the polarization
vector of the incident, linearly polarized beam respectively, whereas the axes of the
half-wave plate in between are tilted by 22.5°. Note that instead of using a half-
wave plate, the EOM could be just rolled around the beam axis by 45°. However,
for practical reasons, it is much easier to precisely rotate a half-wave plate rather
than to roll the EOM. Both custom-made zero-order! wave plates are housed in
mounts with high-precision, backlash-free micrometer drive for ultra-fine rotational
adjustment. The EOM (Conoptics 350-80BK) is mounted on a self-developed holder
which permits precise adjustment of translational, yaw and pitch degrees of freedom
using micrometer actuators.

In a preparatory step, all retardation components of the polarization control setup
are successively aligned to the minimum extinction ratio using two high-quality
polarizers, which may be temporality placed between the respective components.
This also applies for the polarization of the incident laser beam, the purity of
which is affected by distortion from the glass cell and the vacuum window. We
precompensate these distortions using a combination of a half-wave and a quarter-
wave plate, see Fig. 1.7 in Sec. 1.2.3. The remaining components are then aligned
to the polarization of the incident beam, which defines the reference system (z-axis
in Fig. 4.3). Fine-alignment of retardation components (mainly the EOM) is finally
performed by probing the polarization purity in the trapping region of atoms using
microwave spectroscopy, see Sec. 4.5.

!Specified for (867 & 0.3) nm
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Figure 4.3.: Polarization control setup to dynamically adjust the tilt angle § between po-
larization vectors of the incident and returning beam using an electro-optical modulator
(EOM). The principle axes of the quarter-wave plate are labeled by & and & (fast and
slow axis), those of the EOM as & and &. They are parallel and perpendicular to the
polarization vector of the incident, linearly polarized beam respectively. A half-wave
plate in between is used to rotate the initial polarization vector exactly between both
principal axes of the EOM.

Once the polarization control setup is aligned, the incident beam passes the
trapping region and the quarter-wave plate unaffected. The following half-wave
plate rotates its polarization by 45°, i.e. exactly between both principal axes of
the EOM, so that intensities of light field components along both principal axis
are identical. The EOM introduces a phase shift between its axes, depending on
the voltage V applied. After retro-reflecting the incident beam, it repasses through
the EOM effectively doubling its voltage controlled phase shift. Finally, passing the
quarter-wave plate once again, the polarization vector of the returning beam is tilted
by an angle 6 = mV/V) /o with respect to the initial polarization (see Fig. 4.3), where
V)2 denotes the half-wave voltage of the EOM (Vo ~ 452V at A\ = 865.9nm).

The EOM is driven by a high-voltage amplifier (Conoptics 302RM) which has a
specified bandwidth of 250 kHz. It provides a rise time of 1 us and an output voltage
of Vimax = 750 Vo p, limiting the range of possible tilt angles to approximately 1.77.
For timing-critical applications requiring a high-degree of precision, driving ramps
of the amplifier are voltage-controlled by an external arbitrary wave form generator
(Agilent 33250A) which in turn is triggered by a computer.

In a certain time interval, the polarization control setup can be regarded as
linear and time-invariant.? Therefore, analogous to the imaging system, its dynamic

2Note that both properties are well preserved within a time interval of only 100ms. On longer
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Figure 4.4.: Normalized spectral amplitude (a) and phase (b) of the transfer function,
recorded in a frequency range of 1 MHz. Dashed vertical lines at frequencies of v =
{65, 88, 144, 520,600} kHz indicate positions of noticeable resonances which are mostly
attributed to piezoelectric resonances of the EOM crystals.

performance can be characterized by the respective transfer function. We have
optically measured and recorded the transfer function in the frequency domain,
employing a system of polarization components, a high bandwidth photodiode and
a network analyzer (Hewlett-Packard 3589A). The latter provides a normalized?
spectral amplitude A(v) and phase ¢(v), from which the transfer function can be
directly inferred

O(v) = A(v)e"?™) (4.18)

Both characteristic quantities are also referred to as amplitude and phase response
of a driven system. Details on the measurement and the respective experimental
setup can be found in Ref. [122].

In Figure 4.4, the normalized spectral amplitude and phase of the transfer func-
tion of our setup is shown. From the former, we infer a —3 dB bandwidth of 370 kHz
which exceeds the manufacturer’s specification of 250kHz. Both, the spectral am-
plitude and phase reveal noticeable resonances at v = {65, 88, 144, 520,600} kHZ
which are mostly attributed to piezoelectric resonances of the EOM crystals. In
our special clamped version of the EOM (BK option), these piezoelectric resonances
are significantly suppressed compared to EOMs, previously employed in our setup,
see Ref. [122]. Therefore, no particular attention in choice of driving ramps for
transport sequences is required.

timescales, problems in holding high voltages, which results in drifts of the tilt angle € occur,
see also Ref. [68]. These technical problems have been not solved so far. Strategies to partly
overcome them in applications requiring a precise dynamical polarization control are discussed
in Sec. 4.5.

3The spectral amplitude is normalized to its DC value, i.e. A(v) = A(v)/A(v — 0), where A(v)
denotes the amplitude as inferred from the network analyzer.
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Knowing the transfer function, the polarization dynamics for a preset driving
ramp, feed into the input of the amplifier, can be directly inferred. This allows
us, among others, to estimate and predict the effect of the limited bandwidth on
relevant experimental parameters, see e.g. Sec. 4.4. It turns out that excitations
between motional states of the atoms during the state-selective transport limit the
choice of reasonable driving ramps and ramp times rather than the bandwidth
of our polarization control setup. Optimum driving ramps which provide both,
short ramp times and marginal excitations are almost perfectly followed by the
optical response of our setup, whereas solely the retardation and settling time need
to be taken into account for synchronizing microwave pulses applied between the
transport operation in the sequences, see Sec. 4.5. Consequently, at least for all
driving ramps employed in this thesis, no precompensation of the driving signal
considering the transfer function of our polarization control setup is required.*

4.4. Excitation of motional states in moving potentials

Employing quantum interference of atomic wave functions in applications of the
state-selective transport requires the preservation of both, the motional states of
atoms and coherence of their internal states. At first glance, these requirements ap-
pear to be contradictory: On the one hand, atoms have to be shifted adiabatically
to preserve their vibrational state. On the other hand, shifting of state-selective
lattices should be fast enough so that the entire sequence will finish within the co-
herence time. Note that throughout this thesis we consider the internal qubit state
as being unaffected by changes of vibrational states, hence vibrational contributions
to the atomic wave function can be investigated separately.

To determine a parameter region, which complies the above requirements and
incorporates the specifics of our experimental setup, we calculate the probability
to excite an atom into higher vibrational states using first-order perturbation the-
ory [141]. In this calculation, we assume the atoms being trapped in a harmonic
potential, regarding them as harmonic oscillators with decoupled axial and radial
dynamics. Since lattice potentials are shifted only along the lattice axis (i.e. in
axial direction), it suffices to restrict attention just to the axial dynamics. Radial
dynamics is regarded as unaffected by the lattice shift. By this, the entire problem
is reduced to that of a one-dimensional (1D) harmonic oscillator.

The eigenenergies F,, and eigenfunctions v, (z) of the time-independent Schro-
dinger equation of a 1D harmonic oscillator, Hi,(2) = E,¢n(2), are given by [139]

4Note that the self-developed software “WaveGen” which is used to control the arbitrary waveform
generator (see Sec. A.3), provides a build-in feature to precompensate the generated driving
ramp.
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By = huay <n + —) , (4.19a)

n(z) = \/% (%)1/4 exp (-%) (%) (4.19D)

They characterize the motional component of a trapped atom, being in the nth
axial vibrational state (n € N), where H,(x) denotes the Hermite polynomials of
nth order and a = \/h/mcswax the harmonic oscillator length. Let s(¢) be a shift
function with s(0) = 0 and $(Tirans) = 1, which parameterizes the axial shift of the
trapping potential during a transport time Ti;ans, providing a total shift distance
of A\/4, and thus, a displacement of the state-selective potentials by one lattice site
with respect to each other. Then, the time-dependent wave functions read

Un(2,1) = a2z £ 35(1)), (4.20)

where the sign specifies the direction of the shift. These functions remain solutions
of the time-independent Schrédinger equation.

In first-order perturbation theory, the probability to directly® excite an atom
from an initial vibrational state n to a final state n’ by shifting the optical lattice
is given by [139]

pn%n’(t) = ‘Cnn’ (t)‘Q (421)
with the amplitude coefficient

tl

t
Cnn/ (t) = —/ﬁnn/(tl) exp %/En/ (t//) — En(t//) dt” | dat’ (4.22)
0 0

and the interaction matrix element
T d
T (1) = / Yt (2,0) (2, 1) 2 (4.23)
—Oo

The latter comprises the interaction Hamiltonian of the shift, ﬁ(t) = %, whereas

possible changes of axial trapping frequency during the shift are taken into account
by replacing way in Eq. (4.19) by a time-dependent function. Note that the per-
turbatively derived excitation probability of Eq. (4.21) remain only valid, provided
that p, . (t) < 1. Two properties of the derived excitation probability should be
emphasized at this point: First, the probability to excite an atom from a vibrational
state n to the nearest higher state (n + 1) scales as

Pnosnt1(t) = (n+ 1)po-1(t) . (4.24)

5Here, the contributions of excitations via several intermediate vibrational states are assumed to
be negligible.
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This relation provides an insight into relevant excitation properties of thermal atoms
just by analyzing their properties in the vibrational ground state, see below. Second,
the excitation probability is symmetric with respect to the excitation direction

pn%nJrl(t) = pn+1%n(7§) . (4.25)

Therefore, excitations and deexcitations between neighboring vibrational states oc-
cur with equal probability, increasing the chance that atoms remain in the initial
state after the lattice shift. Both properties are particularly useful to infer the
effect of potential shift on thermal atoms by approximating the time evolution of
the thermal distribution of vibrational states. Let o,(tg) be an initial distribution
of vibrational states, specifying the probability to initially find an atom in a vibra-
tional state n. Then, restricting only to transitions between neighboring vibrational
states, the thermal distribution after a transport time ¢ reads

Qn(tO + t) = Qn(tO) +pn+1—>n(t)9n+1(t0) +pn—1—>n(t)9n—1(t0)
- pn%nJrl(t)Qn(tO) - pn%nfl(t)gn(tO) . (426)

Using Eqgs. (4.24) and (4.25), this expression can be simplified to

Qn(tO + t) = Qn(tO)
+ poss1(t) [(n + D)ons1(to) +non-1(to) — (2n + D)on(to)] . (4.27)

Thus, the evolution of a thermal distribution can be approximately inferred from
the excitation probability of an atom in the ground state.

4.4.1. State-dependent shift dynamics

We first discuss the properties of state-selective potentials resulting from a driving
voltage function V(t) with V(0) =0 and V(7)/2) = V)2 fed to the polarization
control setup, see Sec. 4.3. For an ideal setup with infinite bandwidth and no signal
retardation, the driving voltage directly translates into a tilt angle between the
polarizations of the two counterpropagating beams, yielding 6(t) = 7V(t)/V) 2 and
Ttrans = T)/2- The shift functions which parameterize shifts of the state-selective
potentials Ugsp, 5y(7,0(t)) (j = {0,1}), see Eq. (4.13), then read

s(t) = %0‘j>(9(t)). (4.28)

The axial trapping frequencies depend on the potential contrast which may change
during the potential shift. They are thus given by

2[W;,(0(2))]

. 4.29

wax,m (t) =27
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Figure 4.5.: (a) Parametric plot of the modulus of potential shift and (b) axial trapping
frequency for atoms in qubit basis states |0) (solid lines) and |1) (dashed lines), as inferred
from Egs. (4.30) and (4.31).

For the characteristic wavelength A = A|g), we finally obtain

1
s|0)(t) = ;9(75), (4.30a)
0, if t=0,
sy (t) = % + %arctan [% tan (0(t) — 5)] , if 0<t< T\/2 5 (4.30b)
1 9 lf t — 7—)\/2 5
and
Wax,|0) (t) = an,|0) = const, (431&)
. 1/4
wax7|1) (t) = an7|1) [1 - % Sll’l2 a(t)] / s (431b)

where Q. |y = 27 \/2|U0,U> |/mcsA? denote the trapping frequencies of the unshifted

potentials, i.e. for (t) = 0.

In Figure 4.5, parametric plots of potential shifts and axial trapping frequencies
are shown for both qubit basis states |0) and [1), as inferred from Egs. (4.30) and
(4.31). For atoms in state |0), the trapping frequency is constant during the state-
selective transport and the potential shift is directly proportional to the tilt angle
0(t). The situation is different for atoms in state |1) which experience a light shift
from both circular polarization components. There, the axial trapping frequency
temporarily decreases to a minimum value of an7|1>\/§/ 2 at O(t) = 7/2 while in-
creasing the tilt angle from 0 to m, see Fig. 4.5(b). The nonlinear dependency
of the potential shift on the tilt angle, on the other hand, yields the modulus of
the potential shift to run behind the linear shift for 0 < 6(t) < 7/2, be equal at
0(t) = 7/2 and run ahead for 7/2 < 0(t) < 7, see Fig. 4.5(a). Since both param-
eters, s|;)(t) and w,y |;)(t) enter Eq. (4.21), their state-dependent properties result
in a state-dependent excitation probability of shifted atoms.
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4. State-selective transport of neutral atoms

4.4.2. Excitations for linear and cosinusoidal driving ramps

To estimate the effect of state-dependent shift dynamics on the excitation probabil-
ity of shifted atoms, for the sake of simplicity, we assume the atoms being initially
in the vibrational ground state (n = 0). The interaction element in Eq. (4.23),
describing the excitation to the nearest vibrational state (n’ = 1) is then given by

A [moswax(t)
4\/5 7 S|j>(7f), (432)

whereas for the next-nearest vibrational state (n

7?[01,\]‘)@) =

' = 2), we obtain

_i wax,|j) (t)
2\/5 Wax,|5) (t)

Therefore, direct excitations to the next-nearest vibrational state only occur if the
trapping frequency changes during the lattice shift.

All mathematical expressions derived so far are valid for a general driving volt-
age function V(t) constrained by V(0) =0 and V(7y/2) = V) /2. From here on, we
focus our analysis on two special cases: a linear and a cosinusoidal driving ramp,
parameterized by

ﬁ02,\j)(t) = (4.33)

t
Vin(t) =V L 4.34
lin(t) = Va2 -~ (4.34)
and y
Veos (t) = —L2 [1 — cos <7r- L)} , (4.35)
2 T)\/Q

respectively. These functions can be regarded as borderline cases of a family of
driving functions with point symmetry at V(7y/2/2) = Vy/2/2. The linear ramp
provides a discontinuous velocity at the beginning and the end of the shift, yielding
there a sudden acceleration of the trapped atoms. The cosinusoidal ramp, in turn,
permits a continuous evolution of velocity over the entire shift. For both functions,
analytic expressions for the excitation probability as a function of ramp time can be
deduced, at least for qubit state |0). Therefore, they are ideally suited to analyze
the characteristic properties of motional excitation during potential shifts, including
its dependency on experimental parameters.

For atoms in qubit basis state |0), the respective probabilities to excite an atom
from the axial ground state to the nearest vibrational state are given by

.9
lin mesA? Sin®(Qax, 0y a/2/2)

Po1joy(Tay2) = S . 73/2 , (4.36a)
o mest N Qo oy €08° (D j0) Tay2/2)

Po51,j0)(Tay2) = 32 :

(4.36b)
(w2 — Tf/zgzx,\m)

Their dependency on the ramp time 7, /5 is shown in Fig. 4.6 for a characteristic
wavelength A = Ay and a typical axial trapping frequency of 2, |0y = 27 x 115 kHz.
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Figure 4.6.: Probability to excite an atom from the axial ground state to the nearest vi-
brational state for both qubit basis states |0) and |1) as a function of ramp time: (a)
for a linear ramp (Eq. (4.34)) and (b) for a cosinusoidal driving ramp (Eq. (4.35)). For
state |0), analytic expressions can be derived (see Eq. (4.36)), whereas for state |1) the
excitation probabilities are calculated numerically. Baseline filled graphs show the sum
of both excitation contributions po_1,j0y(Tx/2) + Po—1,/1)(7a/2), describing the excitation
probability of an atom being once transported in both state-selective potentials.

Both excitation probabilities reveal a sinusoidal modulation with a quadratic (linear
ramp) and biquadratic decay (cosinusoidal ramp) with increasing 7y, providing
zero-crossings at

Ty = 2L/ Qay oy (4.37)

and
T§7§ = (2wl + ﬂ)/QaX,m) (4.38)

with [ € Ny¢,% respectively. Considering these zero-crossings and the decay of the
envelopes in Egs. (4.36), we conclude that increasing axial trapping frequencies
allows for reducing the ramp times. This strategy, however, turns out to be in-
applicable, since the currently only way to increase the axial trapping frequencies
requires the lattice depth to be increased. The latter in turn, enhances the dif-
ferential light shift which, in our case, has been identified as the dominant source
of decoherence, see Sec. 3.3. Consequently, increasing trapping frequencies just by
changing the lattice depth would finally result in a decrease of coherence times.

5Note that P50y (Tay2) = MesT>A* Qo 0y /5120 # 0 for Ty /0 — T /Qax |0y -

137



4. State-selective transport of neutral atoms

On the basis of both borderline cases a relevant property applying also for the
intermediate functions becomes apparent: By increasing the “smoothness” of lattice
acceleration at the beginning (f = 0) and the end of the shift (t = 7)/) and thus
reducing the discontinuity of velocity at these points, the zero-crossings of the
excitation probabilities shift to higher ramp times. At the same time, the decay
of the envelope of the probability function becomes stronger, the more the driving
ramps approach a differentiable function. Both properties have been systematically
investigated in Ref. [122,142], using hyperbolic tangent ramps with tunable velocity
discontinuities.

The biquadratic decay of cosinusoidal and related ramps makes them robust
to fluctuations of experimental parameters affecting the axial trapping frequency,
e.g. intensity fluctuation and beam pointing instabilities of laser beams generating
the optical lattice. For sufficiently large ramp times, the excitation probability
becomes marginal, irrespective of whether the ramp time meets the zero-crossing
condition or not, see Fig. 4.6(b). The situation is different for the linear ramp,
where deviations from the zero-crossing condition results in a significant increase
of excitation probability within a large interval of ramp times, see Fig. 4.6(a).
Nevertheless, regarding only the zero-crossing condition, a linear ramp may allow
for shorter transport times.

So far, the excitation properties of atoms in state |0) have been discussed. The
situation becomes more complicated for atoms in state |1) for which the lattice shift
nonlinearly depends on the tilt angle 6(¢) and the trapping frequency changes during
the shift. In that case, excitation probabilities have to be calculated numerically. In
Figure 4.6, results of these calculations are shown. For the linear driving ramp, we
again observe a modulation of the excitation probability with a decaying envelope
for increasing ramp time. Due to a temporarily decrease of the trapping frequency
during the potential shift (see Eq. (4.31)), the initial zero-crossings are smeared
out to almost periodic minima, some of which are more or less shifted to higher
ramp times. The stronger decay of the envelope arises from reduced discontinuity
of velocity (o< $(t)) at the beginning and the end of the potential shift. The same
applies for the cosinusoidal ramp, whereby in this case, the smearing-out of zero-
crossings and the shift of the minima is even more pronounced, while no significant
improvement of the decay is observed. From this, we conclude that regarding
shorter transport times, the linear ramp with ramp times at the first minima in the
excitation probability seems more appropriate than a cosinusoidal ramp. For the
excitation probabilities to the next-nearest vibrational state, in the relevant ramp
time interval, we obtain

P o 1y (Tay2) < 0.7%, (4.39)
Po2, 1y (Tay2) < 0.6%. (4.40)

Therefore, these excitations are negligible.
Transporting atoms in both qubit basis states |0) and |[1) requires a driving
ramp and a ramp time for which both excitation probabilities py_,1 joy(7x/2) and
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4.4. Excitation of motional states in moving potentials

Po—1,1)(Ta/2) are negligible. The same applies for atoms which have to be shifted
over long distances by stepwise flipping their internal qubit-state. These atoms
are equally often shifted in both state-selective potentials, see Sec. 4.5. There-
fore, a reasonable figure of merit should be defined as the sum of probabilities
Po—1,0)(Ta/2) + Po—1,)1)(Ta/2), rather than the individual components, see Fig. 4.6.7
For the linear ramp, we observe then a single pronounced minimum with negli-
gible excitation at a ramp time of T}\% ~ 18 us within the relevant time interval,
whereas for the cosinusoidal ramp, comparable low excitation probabilities only
appear above Ti‘/’; > 34 us. For the intermediate driving functions, we expect this
optimum ramp time to be in between of these borderline cases. Being interested
in shortest transport times, we therefore prefer the linear driving ramp for the
state-selective transport.

4.4.3. Effect of limited bandwidth

For an ideal setup with infinite bandwidth and no signal retardation, the linear
driving ramp with a ramp time of T/l\mQ ~ 18 us has been shown to provide the
shortest transport time with negligible excitation for both state-selective potentials.
The EOM and its amplifier, however, have a finite bandwidth. This finite bandwidth
smoothes the edges of the linear voltage ramp resulting in both, a smearing-out
of minima in the calculated excitation probability and their shift towards larger
ramp times, see above. Furthermore, due to retardation in the response of the
driving signal, the transport time is larger than the preset ramp time (7, /2 < Tirans)-
Therefore, to check whether the linear ramp with a ramp time of T}\% ~ 18 us still
provides a reasonable choice, technical limitations have to be taken into account
in the calculation. For this, we assume the response of polarization rotation on a
driving input voltage V(t) to be linear and time-invariant. In that case, the response
is completely characterized by the transfer function O(t) of the polarization control

system. The tilt angle can be thus deduced from the following convolution relation

400
00 = (0= V) = W/zé Ot — t)V(t') dt'. (4.41)

Since we have measured the transfer function in frequency domain, employing the
convolution theorem, we obtain

0(t) = %ﬁFTl {FT{V(t)} : A(u)ei¢<”>} : (4.42)

"Note that time delay between two lattice shifts may significantly contribute to the excitation
probability. This effect is not included just by the sum of probabilities. Instead, it requires
an analysis of the entire transport sequence, see Sec. 5.1. Nevertheless, the characteristic
properties, including the position of excitation minima are sufficiently captured by the sum of
the respective probability contributions.

139



4. State-selective transport of neutral atoms

100 T T li T T T T T T T T T T T T T T T T T I T T T T
X i i 7
> 80 ‘| — poﬁ1,|om+poﬁ1,|m
2 | o
= L i == Mo_1o0 .
Q 1
S 60 - ——- Po_110 —
[e) 5
a i ]
c 40 !
R L 1
5 ]
x
5 L
0 1 1 1
0

Ramp time Tamp (us)

Figure 4.7.: Excitation probability of atoms in qubit states |0) and |1) from axial ground
state to the nearest vibrational state for a linear driving ramp, driven by a polarization
control system with limited bandwidth, see Sec. 4.3. Baseline filled graphs show the sum
of both probability contributions, po_1,j0y(7x/2) + Po—1,1)(Tr/2), describing the excita-
tion probability of an atom being once transported in both state-selective potentials.

where A(v) and ¢(v) denote the spectral amplitude and phase of the transfer func-
tion, see Sec. 4.3. By this, we finally obtain the response of the rotation angle on
the driving signal comprising the most dominant technical limitations.

We numerically calculate the excitation probability for a linear driving ramp us-
ing 0(t) instead of 0(t), whereby the integration limits in the amplitude coefficient
of Eq. (4.22) are extended to the effective transport time Tirans > 7y/2- The latter
comprises the retardation of the driving signal and possible fading of oscillations of
the signal response. Results of this calculation are shown in Fig. 4.7. The excitation
probability contributions pg_,1,|; (T /2) reveal the expected behavior resulting from
smoothing of the edges of the linear ramp: A smearing-out of zero-crossings form-
ing excitation minima, shifts of these minima to higher ramp times and a stronger
decay of the envelope of excitation probability. Nevertheless, a pronounced mini-
mum in the sum of both contributions at 7/, &~ 18 s is still maintained, yielding
an excitation probability below 2.5%. We will utilize this minimum for coherent
state-selective transport, whereas the optimum ramp time will be experimentally
determined prior to each measurement using Ramsey type sequences, see Sec. 5.1.

Remarks on thermal atoms

Even though the excitation properties have been investigated on atoms in the ax-
ial vibrational ground state, according to Eq. (4.24), the characteristic properties
including positions of excitation minima and decay of the envelope of excitation
probability also apply for atoms in higher vibrational states. The former holds true
for thermal atoms characterized by a thermal distribution, the change during the
transport of which scales with the excitation probability of atoms in vibrational
ground state, see Eq. (4.27). It should be noted that for the typical temperature
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4.5. Transporting atoms over several lattice sites

of atoms in the optical lattice, the atoms populate the axial vibrational states with
a mean quantum number of 7 = 1.2. Therefore, the harmonic approximation em-
ployed in the derivation of the excitation probabilities is well justified, whereas
effects due to the anharmonicity of potentials are expected to be negligible.

4.5. Transporting atoms over several lattice sites

The state-selective transport of atoms over distances of several lattice sites forms the
most basic and relevant module of key applications presented in this thesis. Unfor-
tunately, its properties are very sensitive to experimental parameters. Therefore,
particular care and effort regarding alignment, amount of preparatory measure-
ments and consistency checks are required. For this, several procedures have been
developed which guarantee a high degree of reliability and reproducibility. At first,
for simplicity, we abstract the state-selective transport and its relevant properties
in a Dirac representation.

4.5.1. Dirac representation of state-selective transport

Consider a single atom initialized either in qubit basis state |0) or |1) being trapped
in a state-selective potential. At a tilt angle of § = 0, sites of both state-selective
lattices generated by orthogonally circularly polarized components of the light field,
spatially overlap, see Sec. 4.2. Such overlap configuration is required for fluorescence
imaging (see Sec. 2.3) to determine the number or positions of the atoms. It is also
essential for coherent manipulation of the atoms’ internal states, minimizing fre-
quency broadening of the |0) <+ |1) transition and degradation of the manipulation
efficiency arising from vectorial and tensorial contributions to the differential light
shift. Note that for a perfect overlap, the o™ and ¢~ components of the light field
add up to a purely linearly polarized optical lattice, in which both contributions
to the differential light shift vanish. When increasing the tilt angle up to 0 = 7,
both state-selective lattices are shifted into opposite directions by a distance of \/4
along the common lattice axis, resulting in a relative displacement of one lattice
site (\/2). Consequently, the sites of both lattices overlap again, however, spatially
offset by a distance A/4 from the original position, see Fig. 4.8(c). This process of
re-overlapping periodically continues for § = I (I € N), whereby only for odd [ an
effective offset by A/4 occurs.

Technically, the tilt angle between the polarization of the incident and retro-
reflected beam cannot be infinitely increased. Our polarization control setup, al-
lows for lattice shifts between only two neighboring overlap configurations, the
¢ =0(V=0)and 0 =7 (V =V,/,) configuration (see Sec. 4.3), initially restricting
the transport distance to A/4. Furthermore, due to technical problems, only the
V = 0 configuration permits a long-term stability required for fluorescence imaging.
In general, fast ramping of the driving voltage from V =0 to V =V, , results in
systematical polarization drift. This drift already appears after ~ 100 ms, while
holding the half-wave voltage of the EOM over several seconds. It disappears when
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4. State-selective transport of neutral atoms

the voltage is driven back to the initial value, here ¥ = 0.8 This technical problem
has extensive consequences for our experimental sequences: First, holding the § = 7
configuration over time intervals above 100 ms has to be avoided. Second, fluores-
cence imaging with exposure times exceeding the drift-free holding time has to be
performed in the 6§ = 0 configuration, which from now on is referred to as stable
configuration. Since all sequences employing the state-selective transport comprise
acquisitions of initial and final images, the transport part has to start and finish
in a stable configuration. Otherwise, due to drifts of the state-selective potentials
atom loss would increasingly occur during irradiation of atoms by optical molasses.
Finally, considering the fact that only overlap configurations are useful for subse-
quent operations, we define a single transport step as a discrete operation shifting
the atom by a distance of A/4, i.e. from one overlap configuration to another.

Characterizing the resulting discreetness of atom positions by an integer number
k (kA/4) and neglecting transitions between different motional states during the
transport,? shifts between both possible overlap configurations can be defined by
the operators

. 0,k) — e¥on|0k+1
S : 0, %) e |0,k +1) (4.43)
I1,k) — e¥nn(lk—1)
and
N k Woynl). k—1
g, .4 k) = @m0 k=) (4.44)
1,n) — e¥n|lk+1)

where the qubit Hilbert space Hqpir has been extended by the Hilbert space of
positions Hpos = l2(Z), i.e. Hext = Hapit ® Hpos, and a short-hand notation of the
product states |j, k) = |j) ® |k) € Hext (7 = {0,1}) has been introduced. Arrows in
the subscript of S indicate the trend of the driving ramp, e.g. “1” for 0 — V) ;3 and
“}7 for Vy /2 — 0, respectively, and ;) , the state-dependent accumulated qubit
phase during the transport time Ti;ans. The multiple index vector n = (n,m,m’)
comprises the quantum numbers which specify the axial (n) and both radial com-
ponents (m and m’) of the vibrational states. Since both qubit basis states are
shifted in different potentials, each of them undergoes a different shift dynamics,
see Sec. 4.2. Therefore, in general, it is ¢|gy n # ¢|1),n- Furthermore, a uniform
environment has been assumed, i.e. the accumulated phase does not depend on the
position of the atom in the lattice. Note that accumulation of phase is only rele-
vant for atoms prepared in superpositions of the basis states. Otherwise, it only
contributes to the global phase of the qubit, being indistinguishable by projection

8This technical problem occurs for all tested EOMs and could not be solved so far, neither by
ourselves nor by the manufacturer of the EOMs.

9To incorporate possible excitations between axial vibrational states in this description the Hilbert
space has to be extended by additional subspace of possible vibrational states and a set of
excitation operators introduced. However, since the magnitude of the excitations is expected
to be negligible, we avoid its explicit consideration throughout this thesis. Instead, possible
effects of these excitations are effectively treated as decoherence.
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4.5. Transporting atoms over several lattice sites

measurements. In this representation, a single transport step is defined by the
application of the operator ST or S 1

Using the Dirac representation, it becomes evident how to overcome the initial
restrictions regardlng the limited transport distance: By alternating application of
the shift operators ST and S | with m-pulses in between

T = (0:8,0:8:) " (4.45)

atoms initialized in one of the qubit basis states can be state-selectively transported
over a distance of K € N lattice sites (K\/2)

s 10k = (—1) KK mtemn)|o k4 2K) (4.46)

2K - I1,k) — (—1)KeE@omtenn)|o k- 2K) :

whereby the roles of |0) and |1) are exchanged after each transport step. We stress
that, per definition, the transport operator Thy intentionally comprises an even
number of transport steps so that a transport sequence ends up in a stable overlap
configuration.

In Figure 4.8, a typical sequence of a state-selective transport over several lattice
sites is schematically shown. Regarding experimental parameters, it is similar to
that of recording a microwave spectrum, see Sec. 3.2.3, whereas steps (C) and (D)
are modified or replaced by the multiple shift and resonant 7-pulse operations, see
Fig, 4.8(a). Furthermore, we only load on average eight atoms into the optical
lattice, which are widely spread so that their position can be reliably inferred. For
the latter, typical exposure times of 0.5-1s are employed. The optimum ramp time
7y/2 for a preset ramp function (linear or cosinusoidal) is inferred from a Ramsey
type measurement aiming to minimize excitations between motional states and thus
maintaining maximum coherence, see Sec. 5.1. m-pulses typically start immediately
after the shift operations and vice versa, see Fig. 4.8(b), which are specified by the
transport time Trans = Ty/2 + 6. The latter comprises an experimentally inferred
settling time d¢t which ensures settling of the tilt angle for both overlap configura-
tions 8 = 0 and 0 = 7, taking the limited bandwidth and temporal retardations of
the polarization control setup into account.

4.5.2. Adjusting settling time and half-wave voltage

The geometrical alignment of the EOM, the settling time d¢ and the half-wave volt-
age V) 2 are fine-aligned by iteratively probing the purity of linear polarization in
the trapping region of atoms using microwave spectroscopy, see Sec. 3.2.3. For this,
we initially align the EOM at § =0 (V = 0) to the minimum extinction ratio. In
the subsequent, iterative fine-alignment procedure, we minimize the broadening of
the microwave spectrum, which arises from the vectorial and tensorial contribu-
tions to the total differential light shift. A decrease of the width of the |0) <> |1)
transition peak in the spectrum down to its Fourier limit indicates a reduction of
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Figure 4.8.: (a) Schematic sequence of a state-selective transport of atoms over K lat-
tice sites. Alternating application of the shift operators ST and S | with m-pulses U, in
between, overcomes the restrictions of transport distances initially imposed by the po-
larization control setup. The subsequently applied operations within the loop define the
transport operator Thy, see Eq. (4.46). In some applications, the last w-pulse (dashed
box) is omitted in the sequence. (b) Time sequence of experimental parameters imple-
menting the transport operator Thx, here for a linear driving ramp; (c) the resulting
evolution of state-selective dipole potentials Ugp, |0y (red) and Ugip, |1y (green). A m-pulse
exchanges the roles of |0) and [1), i.e an atom in state |0) initially trapped in Ugsp, o),
continues the transport in Ugjp, 1) At 6 = {0, 7} both potentials overlap.

polarization impurity and thus a perfect overlap of both orthogonally circularly
polarized components of the light field in the trapping region. This fine-alignment
procedure, however, has a substantial disadvantage: Recording microwave spectra
for each alignment iteration makes this method extremely time-consuming.

To infer the half-wave voltage V), and the settling time ¢ to a preset driv-
ing ramp and its ramp time 7 /5, a similar procedure with a modified sequence is
employed. In this sequence, state initialization by optical pumping is followed by
ramping the driving voltage to a level, which is expected to yield a § = 7 configu-
ration. After a preset time delay ¢, we apply a rectangular mw-pulse the frequency
of which is scanned. We ramp the driving voltage back to V = 0 and apply the
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4.5. Transporting atoms over several lattice sites

state-selective push-out. By this, we effectively record a microwave spectrum in
the 6 = 7 configuration. Both, the time delay and the voltage level are succes-
sively scanned until the recorded microwave spectrum approaches again its Fourier
limit. The settling time and the half-wave voltage are then given 6t = min#|,__ and
Va/2 = Vlp—n, respectively. Fine-tuning of the preset ramp time will be discussed
in Sec. 5.1.

4.5.3. Analyzing transport data

From initial 2yef; and final positions . ; of atoms, which are determined from
fluorescence images before and after the state-selective transport, the distances
covered by the atoms Axj = wa5 j — Tper; can be directly inferred. Unless stated
otherwise, we label the initial position of each atom as zero and refer the final
position of the atom relative to its initial position. In this convention, the position
of an atom after the transport is equivalent to the transport distance.

To reduce the statistical error in the subsequent analysis, instead of working
with a single atom and high numbers of sequence repetitions, we prefer to initially
load on average eight atoms in the optical lattice. Unless predefined atom patterns
are generated (see Sec. 3.4.4), the atoms are usually randomly distributed over
the lattice sites. In that case, some atoms have to be discarded from the analysis
of transport distances. Due to experimental imperfections, e.g. possible errors of
m-pulses, the transport direction of each individual atoms can change from one
step to another. In the worst case, such change may occur after each transport
step. Under certain conditions, regarding the initial separations of atoms and the
number of transport steps, paths of atoms cannot be uniquely inferred from the
initial and final image. This may happen if possible paths of nearby atoms can
cross during the transport. A further uniqueness issue arises, if drifts of the optical
lattice in the time period between the acquisition of initial and final images are not
significantly smaller than the lattice periodicity. In that case, it is unclear whether
atoms changed their positions due to state-selective transport or the drift of the
optical lattice.

Two statements of general validity help us to overcome the uniqueness issues:

1. Implementation of the state-selective transport presented in this thesis pro-
hibits the atoms from being transported over distances which exceed a maxi-
mum value defined by the number of transport steps 2K

|Az;| < K)/2. (4.47)

2. Starting and ending in the same overlap configuration (6 = 0), the covered
distances of atoms after the state-selective transport should perfectly repro-
duce the periodicity of the optical lattice. Otherwise, significant drifts of the
lattice during the period between the acquisition of both images occurred.

Following the first statement, it is evident that after a transport sequence compris-
ing 2K transport steps, transport distances of only those atoms can be uniquely
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4. State-selective transport of neutral atoms

inferred, which are initially separated by at least 2K + 1 lattice sites from neigh-
boring atoms, i.e.

|xbef,j — $bef7j/| Z (2K + 1))\/2, with j 75 j, . (448)

Atoms which do not fulfill this condition are therefore discarded from the analysis
of the transport data. We also discard those atoms which leave the optical lattice
during the transport. The latter can be identified just by being missing in the final
image within the expected transport region |zper ;| < KA/2. Following the second
statement, which we refer to as reliability criterion, we discard the entire data
set whenever a histogram of transport distances does not perfectly reproduce the
periodicity of the optical lattice. Employing both conditions, we finally are able
to reliably and uniquely infer the transport distances from pairs of fluorescence
images.

The transport analysis module is part of the self-developed post-analysis software
“Post Deconvolution” (see App. A.4) which enables to automatically analyze huge
data sets comprising several thousands images.

4.6. Transport efficiency

To investigate the efficiency of our state-selective transport over distances of several
lattice sites, we load on average eight atoms into the optical lattice, determine their
initial positions by fluorescence imaging (exposure time of 1s) and prepare them in
the qubit basis state |0) using optical pumping. Since the roles of states |0) and |1)
are successively changed during such a transport sequence, it suffices to investigate
the transport properties on atoms in only one of these basis states. For this, we
subsequently apply the transport sequence defined by Tox for K = {1,2,...,11}.
Each transport sequence comprises an even number of transport steps (2K). For
each transport step, we initially use a cosinusoidal driving ramp (see Eq. (4.35))
with a ramp time of 7,/ = 30 us and a transport time of Tiyans = 32 us, the prop-
erties of which are robust to drifts of experimental parameters and geometrical
misalignment. For 7w-pulses, rectangular pulses with a pulse duration of 8 us are em-
ployed. Alternatively, we use broadband composite pulses (900225150315¢-pulses,
see Sec. 3.5) with a pulse duration of 24 us to exclude possible effects of pulse fre-
quency detuning from the investigation of transport efficiency, see below. After
transporting the atoms, we infer their final positions relative to the initial ones
using fluorescence imaging. These relative positions correspond to the transport
distances.

In Figure 4.9, probability histograms of relative positions for different number
of transport steps K and widths of bins are shown. Each histogram has been
normalized to the total number of analyzed atoms (500-1000) yielding a discrete
probability distribution. Finely sampled histograms with a bin width of A/20 reveal
Gaussian peaks centered at integer multiple of A/2, similar to that of Fig. 2.15 in
Sec. 2.4.1. These peaks clearly reproduce the periodicity of the optical lattice. The
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Figure 4.9.: Probability histograms of relative positions of atoms initialized in state |0) after
a state-selective transport comprising 2K transport steps for (a) K =1, (b) K =4, (¢)
K =7 and (d) K =10. Finely sampled histograms (dark shaded) with a bin width of
A/20 reveal the periodicity of the optical lattice, as required for passing the reliability
criterion, whereas roughly sampled histograms (light shaded) with a bin width of \/2
indicate the relative position of the atoms in terms of lattice sites. Insets show initial
(upper) and final (lower) fluorescence images of efficiently transported atoms.

recorded data sets thus pass the reliability criterion, see above. Roughly sampled
histograms with a bin width of \/2 reveal the probability Py to find an atom,
initially starting from zero position, at a relative position of kA/4 after the transport
sequence. Here, k is an even number, since only even numbers of transport steps
are employed in our sequences. Formally, the probability P is expressed as the
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Figure 4.10.: Transport efficiency Pox as a function of number of transport steps K for a
cosinusoidal driving ramp with 7y /o = 30 ps and Tirans = 32 ps, using rectangular 180 (7)-
pulses with a pulse duration of 8 us (open dots) and 909225150315¢-pulses of equal Rabi
frequency (filled dots), see Sec. 3.5. Solid (dashed) line shows a fit of the model function
of Eq. (4.52) to the data obtained using 180¢-pulse (909225150315¢-pulse) in the transport
sequence.

expectation value Py, = (¥|P,|¥) of the projection operator
Py =10, k) (k, 0] + |1, k) (k, 1] (4.49)

in the product state | ) = Thx|0,0). In the ideal case, starting from state |0,0)
and applying 2K transport steps, we expect only a single peak in each histogram at
a relative position of K'\/2 with a probability of Py = 100%. We indeed observe
dominant peaks at the expected positions, however, with a reduced probability
P which, unless otherwise stated, we refer to as the efficiency of the transport
for 2K transport steps. Note that this definition does not include any statement
about coherence properties of the transport. It solely reveals the aspect of successful
displacement of atoms from one lattice site to another. The efficiency of the coherent
transport of atoms over several lattice sites will be discussed in Sec. 5.2.2.

The transport efficiency stepwise decreases with the number of transport steps,
see Fig. 4.10. It therefore indicates a progressive accumulation of errors during
the sequence. Some atoms most likely change their internal state and thus their
transport direction either once or multiple times during the sequence, resulting in a
distribution of their relative positions within the transport region and thus reducing
the transport efficiency. In the following, we will list and discuss possible processes
affecting the efficiency of the state-selective transport. Since tunneling of atoms
is extremely improbable during shifts of the state-selective lattices, we assume the
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4.6. Transport efficiency

mp= -4 -3 -2 -1 0 1 2 3 4
F=4 0 17 1/3 3/5 1 5/3 3 7 oo
F=3 7 3 5/3 1 3/5 1/3 1/7

Table 4.1.: Ratio of depths of the dipole potential components U, + /U, - for a characteristic
wavelength of A = 865.9 nm and different magnetic sublevels in the 62S; /2 ground state
manifold of cesium.

shift operations ST and 51 to be fully efficient. The only remaining sources of
imperfections can thus be attributed to the internal and the motional states of
atoms. Note that not all effects can be uniquely inferred from the probability
histograms alone.

4.6.1. Effect of state initialization errors and photon scattering

Errors in state initialization by optical pumping at the beginning of the transport
sequence or scattering of photons from the light field of the optical lattice during
the sequence may transfer the atoms into states outside the qubit Hilbert space,
ie. |[F=4,mp#4) or |[FF=3,mp #3). Except for mp =0, at our characteris-
tic wavelength of A = 865.9nm, atoms in these states effectively still experience a
state-selective potential, due to an unequal ratio of depths of the dipole potential
components U,+ and U,-, see Tab. 4.1. These ratios, however, lead to a lower
effective potential contrast for § = 7/2, which at least for atoms in states |mp| < 3
result in atom losses during the transport. Furthermore, once atoms have left the
qubit Hilbert space, their frequencies of possible microwave transitions are far de-
tuned from the preset pulse frequency which is defined by the |0) <> |1) transition
frequency. These atoms are then no longer affected by microwave operations of the
transport sequence. Thus, for an even number of transport steps, they are trans-
ported forth and back to the lattice site at which they left the qubit Hilbert space
for the first time. For these atoms the state-selective transport effectively results
in a standstill.

In our experiment, scattering of photons from the light field of the optical lattice
is negligible on the time scale of typical transport sequences. Because of the high
efficiency of our optical pumping (> 97%, see Sec. 3.1.1), errors in state initialization
at the beginning of the transport sequence are also unlikely. This fact can be
partially inferred form the histograms in Fig. 4.9: A vanishing probability to find
an atom at a relative position of — K A/2, indicates that the number of atoms initially
prepared in state |1) is negligible. The same applies for the number of the atoms
initialized in states outside the qubit Hilbert space, since there is no pronounced
peak at the zero position in the histogram, which should occur if a non-marginal
number of atoms effectively stand still from the beginning. Consequently, errors
in state initialization and photon scattering processes play a marginal role for our
implementation of state-selective transport.
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4. State-selective transport of neutral atoms

4.6.2. Effect of microwave pulse errors

First, we consider coherent microwave operations in the transport sequence with
an error in m-pulse condition and phase, parameterized by € € R and é € R, respec-
tively. Employing both errors we cover a wide range of possible technical problems of
the microwave setup, including systematical drifts of Rabi frequency from one pulse
to another. The microwave frequency is assumed to be resonant to the |0) <> |1)
transition frequency.

To m(:orporate these errors in our transport sequence, we replace the ideal m-pulse
operators U in Eq. (4.46) by their biased counterparts U7T+6 0 and U7r+ej L
where the arrows in the subscript of ¢ and ¢ distinguish between pulses applied in
the 6 =0 (}) and @ = 7 (1) configuration, respectively. The index j incorporates
changes of pulse errors from one pulse to another, e.g. due to systematical drifts of
experimental parameters over time, which are assumed to be reproducible for each
sequence repetition. By this, the transport operator finally reads

K

T;;(r = H <U7I'+Ej’¢75j’¢SiUﬂ'-i-Ej’Tﬁj,TST) . (450)
7=1

The probability to find an atom initially prepared in state |0) at a relative position
K\/2 after 2K transport steps is then given by

K—1
P = Hcos (€j,4/2) HCOS2(€]‘7¢/2) , (4.51)

Jj=1 Jj=1

accordingly. Therefore, the transport efficiency neither depends on the accumu-
lated phase during the transport nor on phase errors of the microwave operations,
as long as these operations are coherent.!! Consequently, dephasing during the
shift operations is irrelevant whenever atoms have just to be transported to a pre-
defined lattice site. The situation is different for errors in m-condition. According
to Eq. (4.51), these errors progressively accumulate with the number of transport
steps.

The experimental setup is usually aligned so that for both overlap configura-
tions, # = 0 and 6 = 7, the microwave spectra are almost identical, including the
amplitudes, positions and shapes of the resonance peak. Thus, neglecting drifts of
experimental parameters which may affect the microwave operations from one pulse
to another, we can assume that €;4 = ;| =: £&. Then, Eq. (4.51) simplifies to

err oy 2K -1 2K -1
Py = [COSQ(&“/Q)] )

= (P)* (4.52)

For definition of these operators see Eq. (3.13) in Sec. 3.2.1.

"Note, that this does not apply for P5i, with —(K — 1) < K’ < K, where quantum interference
of delocalized matter wave components with themself may occur and thus strongly affect the
probability to find an atom on the sites K’'\/2. This effect will be discussed in Chap. 6.

150



4.6. Transport efficiency

where we characterize the pulse error by the mean efficiency of the pulse to transfer
state |0) into |1), given by Py = |<1|Uﬂ+g|0>|2 = cos?(£/2). In this representation,
it becomes evident that from the transport efficiency Psx alone, it is impossible to
distinguish errors of coherent pulses from pulses, the transfer efficiency of which is
reduced by detuning of the microwave frequency from the |0) <> |1) transition fre-
quency or just decoherence during microwave operations. The same holds for the
general expression of Eq. (4.51). To distinguish between resonant and detuned, or
coherent and incoherent operations the probabilities Py}, with —(K — 1) < K’ < K
have to be additionally taken into account. However, since the characteristic fea-
tures in the histograms of Fig. 4.9 are partially smaller than statistical errors, the
recorded histograms are not suitable for a deep analysis aiming these distinctions.
Irrespective of the distinction of errors, the mean transfer efficiency of microwave
pulses can be directly inferred from a fit of Eq. (4.52) to the transport efficiency in

Fig. 4.10, yielding
Py =(95.3+£0.2)%. (4.53)

Deviations of the data points from the fitted curve can be partially attributed to
systematical drifts of polarization over time, resulting in changes of pulse efficiency
from one pulse to another. These drifts cannot be uniquely inferred from the trans-
port efficiency alone, since the number of employed pulses exceeds the number of
data points. Drifting of polarization has been independently confirmed by moni-
toring the polarization (or more precisely, its projection behind a polarizer) of the
retro-reflected beam after passing the trapping region of the atoms.

In comparison, for a “static” optical lattice, a pulse efficiency of (98.9 +0.2)%
has been deduced, see Sec. 3.2.3. The mean transfer efficiency of the m-pulses in
the transport sequence is only marginally worser. However, because of successive
nature of our state-selective transport and its characteristic accumulation of errors,
the impact of reduced transfer efficiency is enhanced. For this reason, whenever
possible, transport of atoms over larger distances should be avoided.

To exclude effects of frequency detuning (frequency errors) of the m-pulses from
the transport efficiency, instead of rectangular 180¢p-pulses, we employ broadband
composite pulses in the transport sequence. For population transfers between both
qubit basis states, the 9092251393159-pulse has been proven to be sufficiently robust
against frequency detuning, see Sec. 3.5. The resulting transport efficiency as a
function of transport steps is shown in Fig. 4.10. It agrees reasonably well with
that of the 180y-pulses, providing a similar decay for increasing number of transport
steps. From a fit of Eq. (4.52) to the transport efficiency, we obtain

Py cp = (95.1+0.2)%, (4.54)

which agrees reasonably well with the value of the regular pulse, see Eq. (4.53).
From this, we conclude that the characteristic decay cannot be attributed to de-
tuning of the microwave pulses, be it due to improper preset frequency or drifts
of the |0) <+ |1) transition frequency. Note that the |0) <+ |1) transition frequency
is usually checked at the beginning and the end of a transport measurement using
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4. State-selective transport of neutral atoms

microwave spectroscopy. In case of significant frequency drifts, the entire data set
is usually discarded.

4.6.3. Effect of decoherence

Spin-relaxation during the entire transport sequence and dephasing during mi-
crowave operations are two more effects which may significantly reduce the trans-
port efficiency. The former is characterized by the longitudinal relaxation time
T1, which has been measured to be of the same order as for sequences without a
transport (100 ms). In this measurement, we prepare atoms in state |0) or |1) and
perform a typical transport, whereby m-pulses are removed from the sequence, and
thus effects of pulse errors as well. Atoms are then only transported forth and back
to the initial lattice site. Finally, we determine the population in state |1) using
the state-selective push-out, deduce the decay of the initial population and infer its
characteristic time constant T7.

The measurement of the total dephasing time 75 which only affects the pulse
operations during the transport sequence turns out to be non-trivial, since the
effect of dephasing during the lattice shifts cannot be excluded by using typical
Ramsey and spin-echo sequences. We therefore estimate the 75 time by solving
the optical Bloch equation with damping (see Eq. (3.28)), for m-pulses employed
in the transport sequence with a mean transfer efficiency of Eq. (4.53), yielding
T5 = 41 ps. Despite the reservations with regard to the precision of this approach,
this dephasing time is considerably shorter compared to that inferred from the
“static” configuration, see Sec. 3.3. However, it should be taken into account that
the microwave pulses are applied in a dynamic configuration, in which settling
to a configuration with constant polarization is hardly expected. Fluctuations of
polarization which in turn directly translate into fluctuations of differential light-
shifts, certainly lead to broadening of the transition frequency and dephasing, see
Sec. 3.2.3 and Sec. 3.3. Employing optimum control techniques [143] might help to
counteract or compensate technical imperfections of our system, either by particular
pulse-shaping or active polarization control, and thus, improve the pulse efficiency
in the future.

4.7. Conclusion

In this chapter, I have presented basic concepts and properties of the state-selective
transport of single atoms in a 1D optical lattice. Employing the idea of state-
selective potentials, I have demonstrated that such transport can be realized for
cesium atoms as well, using two counterpropagating linearly polarized laser beams
at a characteristic wavelength in a lin-A-lin configuration with a continuously varied
tilt angle . The resulting light field comprises orthogonally circularly polarized
standing waves, each forming an optical lattice which traps atoms in one of the
qubit basis states |0) or |1), respectively. By varying the tilt angle, these lattices
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are spatially shifted with respect to each other. The polarization control setup for
dynamically adjusting this angle has been discussed in detail.

I have investigated the state-dependent shift dynamics for a characteristic wave-
length of Ajg) = 865.9nm, incorporating effects of undesired polarization compo-
nents on the respective potentials and related trap parameters. By deriving their
analytical expressions, a basis for quantitative analysis of transport properties for
this and subsequent chapters has been worked out. Based on this, excitations be-
tween axial motional states of the atoms in moving potentials have been estimated
using first-order perturbation theory for both, linear and cosinusoidal driving ramps.
It turns out that the former permit the shortest ramp and transport times of ap-
proximately 20 us, irrespective of whether the limited bandwidth of our polarization
control setup is taken into account or not. A Dirac representation of shift operators
has been introduced to simplify the description and discussion of the state-selective
transport and its applications.

Finally, experimental results of state-selective transport of atoms over several
lattice sites have been presented, alternately applying shift operations and w-pulses.
Apart from a precise geometrical alignment of the polarization control setup, such
transport sequences require well-adjusted settling times and the half-wave voltage of
the EOM. For this, iterative procedures have been employed, which rely on probing
the purity of linear polarization directly in the trapping region of atoms using
microwave spectroscopy. Furthermore, uniqueness issues in analyzing transport
data and strategies to overcome them have been discussed in detail.

The investigation of the state-selective transport has been initially focused on
the transport efficiency, i.e. the reliability of shifting atoms from one lattice site to
another. Our results show that the transport efficiency stepwise decreases with the
number of transport steps, revealing a progressive accumulation of errors during
the sequence. These errors arise from a finite transfer efficiency of microwave -
pulses in dynamic configuration with a mean value of (95.3 £+ 0.2)%. By replacing
the standard pulses with broadband composite pulses in the transport sequence,
I have demonstrated that this value cannot be attributed to improper preset fre-
quency or drifts of the |0) «» |1) transition frequency. Instead, it rather results
from fluctuations of polarization or its improper settling which directly translate
into fluctuations of differential light-shifts, yielding broadening of the transition
frequency and thus dephasing during microwave pulses.
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5. Coherent state-selective transport —
A single atom interferometer

So far, we have focused on the state-selective transport of atoms prepared either in
qubit basis state |0) or |1), moving them as a whole from one lattice site to another.
The most interesting question regarding a generic feature of qubits, however, still
remains unanswered: What happens if an atom is initially prepared in a superpo-
sition of these states? According to Eq. (4.46), for 2K transport steps, we expect
the matter wave of this atom to be split and coherently delocalized over two lattice
sites, separated by a distance of 2K \/2

.1 , e ,

T2Kﬁ (10,0) +i[1,0)) = ﬁ (10,2K) + |1, —2K)) ,
whereby the global phase v = K (9|0 n + ¢j1),n + ) can be neglected as usual. Such
coherent splitting and delocalization of matter waves have been demonstrated for
large ensembles of Rubidium atoms in a Mott insulating state over distances of
up to seven lattice sites [40]. We will show that under certain circumstances, this
works for thermal atoms as well.

By coherently merging and recombining both matter wave components on the
initial lattice site and measuring the difference between their accumulated phase, a
two-arm single atom interferometer can be realized. Since their first realization in
the early 1990’s, atom interferometers have evoked increased interest, especially in
recent years [144-146]. In contrast to photons in light interferometers, atoms exhibit
strong interactions with their environment, providing a remarkable sensitivity to
external fields, including electric fields [147], magnetic field gradients [148] and
gravity [149, 150]. These properties make them ideally suited for high-precision
measurement devices [150-152]. A recent survey of atom interferometer designs
and their applications can be found in Ref. [153] and references therein.

In this thesis, we primarily use single atom interferometer sequences to investi-
gate coherence properties of the state-selective transport. These sequences allow us
to precisely adjust experimental parameters for a coherent transport with marginal
excitations between vibrational states. We show that by counteracting inhomoge-
neous dephasing from the state-selective transport itself using spin-echo techniques,
coherent delocalization of atoms over distances of up to ten lattice sites is possible
even for thermal atoms. This allows us for instance to probe spatial inhomogeneities
of external fields in the trapping region. A quantum walk [3,4], as an advanced
application of multiple path quantum interference is finally presented in the subse-
quent chapter.
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5.1. Coherence properties of state-selective transport

Analogous to the analysis of coherence properties of qubits in a static optical lat-
tice (see Sec. 3.3), Ramsey and spin-echo phase spectroscopy can be also used
to investigate these properties for the state-selective transport. For this purpose,
the respective sequences have to be extended by shift operations. Furthermore,
dephasing mechanisms arising from different shift dynamics of state-selective po-
tentials have to be incorporated into current dephasing models. Ideally, possible
excitations between vibrational states have to be taken into account. Here, we
circumvent a complex quantum mechanical description of excitation processes by
restricting our investigations to a case, in which experimental parameters are ad-
justed for negligible excitations between vibrational states.

5.1.1. Dephasing of thermal atoms

Consider a single atom being axially in a vibrational state n and radially in states
m and m/. At first, we assume that these states are preserved during the entire
sequence. By this, we can build on the previous Dirac representation, remaining in
the usual Hilbert space Hext, see Sec. 4.5. We assign the initial position of an atom
to the lattice site zero. Then, an appropriate Ramsey sequence, which emulates the
dynamics of a transport over several lattice sites comprises the following steps:

(A) The atom is initialized in the qubit basis state |0), i.e. a total initial state
|0) ® |k = 0) =10,0). A subsequently applied 7/2-pulse generates an equal
superposition of |0,0) and |1,0).

(B) The driving voltage of the EOM is (linearly) ramped to V =V, within a
preset ramp time Ty 3. During the transport time Trans = 7 /2 + 01, the atomic

matter wave is split and delocalized over two neighboring lattice sites, see
Fig. 5.1.

nstead of a m-pulse subsequently applied in a typical transport sequence (see
C) Instead of 1 b tl lied in a typical t t
Sec. 4.5), the atom is kept delocalized over a time period of the corresponding
pulse duration 7.

(D) The driving voltage is then ramped back to its initial value (V = 0), merging
both delocalized matter wave components on the initial lattice site.

(E) Finally, a 7/2-pulse with a preset Ramsey phase ¢t recombines both matter
wave components, removes the which-way information and probes the accu-

mulated phase difference between them.

This Ramsey sequence provides therefore one of the simplest implementations of a
Michelson type, single atom interferometer.
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Figure 5.1.: (a) Ramsey sequence comprising splitting and delocalization of atomic matter
waves over two neighboring lattice sites. Solid circles indicate the atom, dashed circles, its
state-dependent matter wave components. Colors indicate the qubit states |0) (red) and
[1) (green), semicircles their contributions to the superposition state —= (|0 0) +14|1,0)).
Colored paths indicate the displacement of state-selective potentials Ua+7|0> and Us- |1y,
respectively. A sequence of operations is listed on the right, including the respective
operators. (b) Calculated Ramsey contrast as a function of ramp time 7/, for a linear
driving ramp (solid line) as inferred from Eq. (5.3). The single dot shows the measured
Ramsey contrast in a region, in which excitations between vibrational states are negli-
gible. The dashed line shows the calculated Ramsey contrast for an atom in the axially
cooled to the vibrational ground state.

Analogous to Eq. (3.33), the contribution of a single atom to the Ramsey fringe
of an atomic ensemble can be calculated by

Py (s, 7a2) = (<0 026,180 72211 Urngel0.0)|
=5 {1 + cos[¢et — 2(©j0)n — P|1y,n) — PalTr2)]} (5.1)
where T/ = 2Tgrans + 7 = 27y /2 + 20t + 7 denotes the Ramsey time, i.e. the time
period between both 7/2-pulses and n = (n,m,m’). Incorporating the energy-

dependent light shift by a weighted ensemble average, see Eq. (3.38a), we again
obtain

1
Boyn(ért; Taj2) = 3 {1+ C(7r)2) cos|drs — 2(10)n — ©1yn) — P(Trp2)]} (5.2)
with the transport-independent contribution to the fringe contrast C(7, /2) and

the phase contribution ®(7,/,) defined in Egs. (3.39) and (3.40), respectively. In
the absence of vibronic excitations, the Ramsey fringe of thermal atoms can be
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estimated from a weighted sum of all their initial vibrational states

Py(dut, aj2) = ZQ Z o p Py n(@et, Tas2) 5 (5.3)

m,m’=0

with the axial and radial occupation probabilities [154]

() _ _ Max 5.4
B (L i)™ (5.4a)
ax
_ +m’
(m.m’) _ Mad
Qrad (1 +m z)m+m/+2 ) (54b)
ra

where T1.x and m.,q denote the average axial and radial occupation number, respec-
tively. Thus, the resulting Ramsey fringe possesses again a cosinusoidal shape

Py (e, Tay2) = % {1+ Cuin (10 2) C (77 2) cos[us — 25(Tnj2) — B(7r/2)]}  (5.5)

with an additional contrast contribution Cy;p,(7y/2) and a phase o(Ty /2), both result-
ing from the weighted sum of vibrational states. In the ideal case, for |g) n = ¥|1) n;
it is Cyin(Tas2) =1 and @(7y/2) =0. The Ramsey fringe is then unaffected by
the state-selective transport. However, due to different shift dynamics of the
state-selective potentials, it is ¢jo)n # ¥|1),;n a0d Yoy n — P|1),n # Plo)n’ — P|1).0’
for n # n’, see below. Consequently, for thermal atoms our implementation of
state—selective transport introduces an additional inhomogeneous dephasing, yield-
ing Cyip(7y/2) < 1 and thus a decrease of the total Ramsey contrast.

To estimate Cyip,(7y/2) for typical experimental parameters, we model the phase
evolution of each wave packet during the state-selective shift. For typical average oc-
cupation numbers 7, = 1.2 and m;,q = 200, the trapping potentials of the optical
lattice can be regarded as harmonic and the axial and radial motional dynamics as
decoupled. For a single transport step in a spatially homogeneous environment, the
accumulated phase difference between both delocalized matter wave components is
then given by

Ttrans

1
o) = Plyn = 7 / [(Uj0).n(t) = Upo) n(0)) = (Upn) n(8) = Uy n(0)] At (5.6)
0
with the state-dependent energy contributions (j = {0,1})
Ujyn(t) = U 5(0(t)) + d50hwo
+ hwax,\j) (t) (TL + %) + hwrad,|j) (t) (m + m/ + 1) s (57)

where ;0 denotes the Kronecker delta, wp the |0) <> |1) transition frequency, Uy |;(t)
and wiy | j>(t) the state-selective dipole potentials and their axial trapping frequen-
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cies, defined in Egs. (4.17) and (4.31), respectively, and

Wrad \0>( )= Qrad ,Joy = const, (5.8a)

Wrad \1) = rad\l \/ + 2 1- _Sln 0( ) (58b)

the corresponding radial trapping frequencies.! By incorporating these relations in
Eq. (5.3), the Ramsey contrast for an ensemble of thermal atoms can be directly
calculated, whereas the sums over the vibrational quantum numbers in Eq. (5.3) are
truncated at n = 10 and m,m’ = 1000, taking into account that the remaining con-
tributions to the sums are negligible (>°°° |, ol ~ 1073 and D ! =1001 ggzlm ) ~
107%). At this point, the origin of inhomogeneous dephasing during the trans-
port becomes evident: It is the state-dependent evolution of potential depths and
trapping frequencies during the shift. Therefore, it would be valuable to remove
the state-dependency of these parameters by employing those hyperfine Zeeman
states as qubit basis states, for which couplings to undesired polarization compo-
nents are identical while maintaining the selectivity of both potentials. In principle,
this can be achieved for states @) =|F =4,mp =3) and |1) = |[F = 3,mp = 3) at
a characteristic wavelength of A = 869.4nm. Technical modifications and further
investigations concerning the suitability of these states are required in the future.

In Figure 5.1(b), the estimated Ramsey contrast as a function of ramp time 7 /2
for a linear driving ramp is shown. For simplicity, imperfections arising from the po-
larization control setup have not been considered in the calculation. The transport-
independent contribution to the contrast, C(7;/3), is calculated from Eq. (3.39) for
a dephasing time 7%, as inferred from a regular (transport-free) Ramsey sequence,
see Tab. 3.2 in Sec. 3.3.2. Since our dephasing model a priori excludes excitations
between vibrational states, the calculated contrast can be only verified for ramp
times, for which this condition is met. Unfortunately, due to technical limitations
this can be only ensured for 7, /5 ~ 19 us, see Sec. 4.4 and discussion below.

The measured Ramsey contrast agrees reasonably well with the calculated value,
albeit it is expected to be underestimated by the harmonic approximation. Our de-
phasing model seems therefore to sufficiently capture the dominant inhomogeneous
dephasing mechanisms of the state-selective transport. Unlike the static case, we
abstain from defining a custom inhomogeneous dephasing time for each sequence
employing the state-selective transport. Apart from the sequence itself, this dephas-
ing time would depend on the driving ramp and the ramp time, which both affect
the probability of excitations between vibrational states, see Sec. 4.4. These exci-
tations provide additional homogeneous dephasing, which is indistinguishable from
a Ramsey phase spectroscopy alone. Instead, we will rather use the measured or
estimated Ramsey contrast to quantify dephasing for a given driving ramp and its
ramp time. Since the Ramsey contrast is equivalent to the polarization of a quan-

'Note that the contribution of |0) <+ |1) transition frequency wp is just noted for completeness. As
a constant term, it has no influence on the accumulated phase since it cancels out in Eq. (5.6).
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5. Coherent state-selective transport — A single atom interferometer

tum state, see Eq. (3.25), it is ideally suited to characterize coherence properties of
a qubit.

As an alternative approach to choosing different hyperfine Zeeman states as qubit
basis states, cooling of atoms to the motional ground state could be used to elim-
inate the modeled inhomogeneous dephasing. Recently, one-dimensional sideband
cooling of atoms to the axial vibrational ground state has been successfully imple-
mented in our experimental setup [68,129]. According to our dephasing model, such
cooling would significantly improve the Ramsey contrast, see Fig. 5.1(b), even if the
average radial occupation number m,,q cannot be currently reduced. Therefore, by
incorporating sideband cooling into the experimental sequences presented in this
thesis, some improvements in performance of the interferometer are expected in the
future.

Finally, since our dephasing model predicts a low Ramsey contrast in the ramp
time regions of interest, we finally conclude that the above Ramsey sequence is
not suitable to experimentally infer optimum ramp times with high reliability. In-
stead, analogous to qubits in a static optical lattice, spin-echo techniques have to be
employed to reverse inhomogeneous dephasing and thus extract homogeneous de-
phasing contributions of the transport which mainly arise from excitations between
vibrational states.

5.1.2. Detecting vibrational excitations

Similar to inhomogeneous dephasing of qubits in a static optical lattice, inhomoge-
neous dephasing which arises from the state-selective transport of thermal atoms
can be in principle reversed by extending the Ramsey sequence by a rephasing 7-
pulse. The resulting spin-echo sequence, which comprises delocalization of a matter
wave over two neighboring lattice sites, is schematically shown in Fig. 5.2. After
splitting, delocalizing and merging the atomic matter wave (steps (B-D)), a rephas-
ing m-pulse is used to exchange the roles of states |0,0) and |1,0). Consequently,
by repeating all three sequence steps once again, in total, both matter wave com-
ponents will ideally accumulate identical phases before being recombined by the
final 7/2-pulse. The latter again removes the which-way information, providing
just another implementation of a single atom interferometer.

The resulting single atom contribution to the Ramsey fringe recorded for an
atomic ensemble is given by

. J a4 . 2

Py 1y n(bes Tay2) = ‘(07 1\Un/z,¢rf5¢,2Qq>a,2(Tﬂ)ST,2UWS¢,1Q<1>%1(T,T)SmUn/z!070>‘

= % {1 + COS[(brf — Q(Atp‘())’n — A(P\l),n) — Aq)a(Tﬂ) + 7'(']} s (59)

with Agjjy n = @) n2 = ©|j)n,1 and AD,(Tr) = o 2(Tr) — Pa,1(7x), see Sec. 3.3.3.2
The additional indices “1” and “2” are introduced to distinguish between operations
and phase contributions before and after the rephasing pulse, respectively. In the

2We stress that for the derivation of this relation ideal pulses are assumed.
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Figure 5.2.: Spin-echo sequence comprising splitting and delocalization of an atomic mat-
ter wave over two neighboring lattice sites, used to determine the optimum ramp time
Tr/2 = Ttrans — 0t. Symbols, paths and colors are identical to those in Fig. 5.1. A se-
quence of operations is listed on the right, including the respective operators.

ideal case, i.e. in absence of drifts of polarization and excitations between vibra-
tional states, each transport step can be regarded as identical, yielding Ag);y ,, = 0.
In that particular case, shift-induced inhomogeneous dephasing becomes completely
rephased and the contrast unaffected by the transport. Deviations from the ideal
case manifest themselves as a decrease of the spin-echo contrast. Because drifts of
polarization are negligible on the time scale of typical transport sequences, excita-
tions between vibrational states remain the only dominant source of such decrease.
The spin-echo contrast provides therefore an indirect insight into excitation pro-
cesses of thermal atoms. It can thus be used to determine the optimum ramp time
at which such excitations are suppressed. In the following, we will qualitatively dis-
cuss the effect of excitations between vibrational states on the spin-echo contrast,
distinguishing two dominant cases:

(I) Only one of the matter wave components changes its vibrational state before
being recombined: Since vibrational components of the matter wave form
an orthonormal system, interference terms which contribute to the spin-echo
contrast vanish or at least are reduced.® In both cases the spin-echo contrast
is expected to decrease.

3Note that excitations between vibrational states can indeed be coherent, generating superposi-
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5. Coherent state-selective transport — A single atom interferometer

(IT) Both recombined matter wave components change their vibrational state: If
both components are in different vibrational states before being recombined
by the 7/2-pulse, the same applies as for case (I). Otherwise, the spin-echo
contrast remains only unaffected for Apjg) n — Apj1y n = 0. According to our
dephasing model, this can only apply if both, Apjg , =0 and Apj1y, =0
holds. Fulfilling both relations, however, is only possible, if both matter wave
components are temporarily excited to the same intermediate vibrational
state before the rephasing pulse is applied, and subsequently deexcited to
the initial state before being recombined. In the interesting region of low
excitation probabilities, according to Eqs. (4.24) and (4.25) such excitation
can never be entirely reversed. Thus, even in that case a decrease of spin-echo
contrast should occur.

Following the qualitative discussion, we conclude that the above spin-echo sequence
is in principle sensitive to both, axial and radial excitations between vibrational
states of thermal atoms, while being unbiased by any reversible dephasing. We
therefore employ this sequence to determine the optimum ramp time for the pre-
ferred linear driving ramp, see Sec. 4.4.

5.1.3. Determining the optimum ramp time

To determine the optimum ramp time for a linear driving ramp, we perform a spin-
echo phase spectroscopy employing delocalization of the matter wave for different
ramp times Ty /p. The settling time of 6t = 2 us and a w-pulse duration of 7 = 8 us
correspond to typical values employed in our transport sequences, while trap depth,
trapping frequencies and exposure times of fluorescence images are similar to those
used in microwave (see Sec. 3.2.3) and static spin-echo spectroscopy, see Sec. 3.3.3.
Similar to the latter, the spin-echo contrast C(7y/2) and the deviation of the fringe
phase §®(7)/2) from the expected macroscopic phase are inferred from a fit of

Psur (Timg

P|1>(¢rf,T>\/2) = 9 ) {1+C(T)\/2) COS[(brf—i-?T—(SCI)(T)\/Q)]} (5.10)
to the Ramsey fringes, where pgu(Timg) denotes the survival probability of the
atoms in the optical lattice during the time period between the acquisition of the
initial and final image. We stress that C(7) /) and 6®(7y/2) incorporate both, the
contributions from the excitations between vibrational states and the transport-
independent (static) contributions discussed in Sec. 3.3.3. For the ramp times of
interest, the latter play only a marginal role. Furthermore, since some excitation
processes yield deviations of the fringe phase rather than a significant decrease
of the spin-echo contrast, both quantities are equally considered for deducing an
optimum ramp time.

tions of these states. The latter may comprise a contribution from the initial state. In that
case, there is a finite overlap with the unexcited matter wave component.
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Figure 5.3.: Spin-echo contrast and deviation of the macroscopic phase (open dots in (b)
and (a)) as a function of ramp time for a spin-echo sequence comprising splitting and
delocalization of atomic matter waves over two neighboring lattice sites. Shaded curve in
(b) indicate the probability to excite a matter wave component from the axial vibrational
ground state to the next higher state, as inferred from a calculation which takes the entire
sequence into account.

In Figure 5.3, the resulting spin-echo contrast and deviation of the macroscopic
phase from the expected zero value as a function of ramp time are shown, together
with the theoretical excitation probability based on the first-order perturbation
theory, see Sec. 4.4. In contrast to Sec. 4.4, in which the analysis has been fo-
cused on a single ramp, here, the entire sequence has been taken into account for
the calculation, including delays between both ramping up and ramping down op-
erations. In general, these delays significantly affect the excitation probabilities.
On the other hand, we abstain from incorporating technical imperfection of the
polarization control system by employing the measured transfer function for two
reasons: First, the transfer function has been only measured for a frequency range
of 2MHz. Therefore, numerical artifacts due to truncation of the frequency range
in the numerical calculation of the inverse Fourier transform may introduce un-
physical artifacts. Second, artifacts in the measured transfer function arising from
the measuring process itself may additionally bias the theoretical results. While for
a single ramp, such artifacts marginally affect the numerical result, they become
increasingly noticeable for sequences composed of several piecewise defined ramps.
Finally, since we are mainly interested in the parameter regions of excitation min-
ima, it suffices to restrict our calculation to atoms in the axial vibrational ground
state.

The positions of the maxima of the measured spin-echo contrast reasonably co-
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5. Coherent state-selective transport — A single atom interferometer

incide with the position of the minima of the calculated excitation probability, see
Fig. 5.3. We conclude from this fact that excitations between axial vibrational
states during the shift indeed destroy the matter wave interference and thus may
give rise to homogeneous dephasing. Deviations for increasing ramp times and the
systematical shift of the maxima positions towards higher ramp times can be at-
tributed to the limited bandwidth of the polarization control setup, see Sec. 4.3.
The same applies for some minima in the excitation, which most likely are smeared
out and thus suppressed in the measured spin-echo contrast. Besides a maximum at
the predicted excitation minimum at 7/, ~ 19 us, a further maximum in the spin-
echo contrast surprisingly occurs at 7y /o ~ 10 us. This maximum can be most likely
attributed to coherent excitations of both matter wave components to the same vi-
brational state, as discussed in case (II), see above. This hypothesis is partially
supported by a finite macroscopic phase §®(7y/2), see Fig. 3.10(a), which reveals
an imperfect rephasing process at this ramp time. Perfect rephasing (6®(7)/2) ~ 0),
in turn, can be observed for 7)o & 19 us, restricting our search for optimum ramp
time to this region.

To precisely adjust the optimum ramp time, we usually scan the region of inter-
est with a higher resolution. Once an optimum ramp time is found, a spin-echo
contrast of up to 84% is typically obtained, which is lower than for a static optical
lattice. Analogous to the reduced transport efficiency (see Sec. 4.6), this fact can
be partially attributed to a limited transfer efficiency of the rephasing m-pulse and
the recombining 7/2-pulse in a dynamic configuration.

5.2. Delocalizing of a matter wave over several lattice sites

The spin-echo sequence employed so far allows to completely reverse inhomoge-
neous dephasing of shifted thermal atoms while the homogeneous dephasing due
to excitations between vibrational states remains. However, by repeating the en-
tire delocalization process after the rephasing m-pulse also the position-dependent
accumulation of phase is reversed, see below. Consequently, one of the most in-
teresting application of a single atom interferometer, namely the probing of spatial
differences in external fields in the trapping region, cannot be performed by such
a sequence. Instead, just another interferometer sequence is required which is sen-
sitive to position-dependent changes in environmental fields, while still reversing
inhomogeneous dephasing by employing spin-echo techniques.

Following the idea of Sec. 4.5, such sequence can be realized by delocalizing the
atomic matter wave only once, but over distances comprising an even multiple of
lattice sites, see e.g. Fig. 5.4. This sequence inherently comprises the required
number of rephasing m-pulses to reverse position-independent inhomogeneous de-
phasing. To investigate the properties of this class of interferometer sequences, for
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Figure 5.4.: Extended spin-echo atom interferometer sequence to probe spatial changes of
external fields in the trapping region for distances of next-nearest lattice site. Symbols,
paths and colors are identical to those in Fig. 5.1. w-pulses in the sequence rephase
position-independent dephasing arising from both, the state-selective transport and free
evolution of the phase. After being delocalized over the maximum preset distance both
matter wave components are immediately remerged by reversing the order of the initially
applied operators, see list on the right. Note that in the ideal case, at the position
of maximal delocalization and just prior the recombination by the final 7/2-pulse, all
position-independent dephasing contributions are completely rephased.

simplicity, we redefine the shift operators ST and S | as

(k,k+
. 0,k) — eXom |0k+1
g 108 > U ok 611
I1,E) — eMun 1,k—1)

and
X(k k—
A 0,k) — e™on |0k —1
S, 0, %) Cen ’ ) , (5.12)
1, k) — Xt 11,/<;+ 1)
where in contrast to Egs. (4.43) and (4.44), the phase X(k> 2 comprises both
position-dependent and position-independent phase contnLutlons including the
free phase evolution ®(7¢ans) and the contribution from state-dependent evolu-
tion of trapping frequencies and potential depth, see Sec. 5.1. The same is done for
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5. Coherent state-selective transport — A single atom interferometer

the m-pulse operator

- (k)
o 0,k) — el |1,k
UW:{"> e 1Lk (5.13)

LK) — e (0, k)

taking into account that position-dependent changes of |0) <+ |1) transition fre-
quency lead to a finite detuning from the preset pulse frequency. Here, we restrict
to detunings much lesser than the Rabi frequency which primarily affect the phase
rather than population transfer efficiency between states |0) and |1). The effect of
the latter on the Ramsey contrast is discussed in Sec. 5.2.2.

5.2.1. Accumulation of phase

To illustrate the process of phase accumulation in both interferometer arms defined
by paths of the matter wave components, we first focus on a simple interferometer
sequence in which atoms are temporarily delocalized over two next-nearest lattice
sites (2A/2), see Fig. 5.4. The starting point of this sequence is again a single atom
initialized in |0,0) and prepared in a superposition state L(|0 0) +|1,0)) using a

7/2-pulse. After applylng a sequence of operations, comprising a shift ST, a m-pulse
U, and finally a shift S 1, we obtain

%(]0,@ +1|1,0))

(\o 1) 4 de~ Do T 1, 1y

U i (0, 1) — [ ( ) (86 )

5 2 ﬁ(\O,—2> el () = (o i) - (e -6l 1)>]\1,2>)
=: |tbael) , (5.14)

where for the sake of clarity, global phases are factored out and ignored while
remaining contributions have been ordered according to the qubit state. Particular
attention should be paid to the alternating signs in the amplitudes and phases
introduced by the rephasing m-pulse. After being delocalized over two next-nearest
lattice sites, the atomic matter wave is immediately merged, i.e. the sequence is
reversed by applying the respective operators in a reverse order, see Fig. 5.4. We
obtain

[ ge1) RN %(yo,m + et |1,0)) =: |mer) (5.15)

with a total accumulated phase difference

Zior(2) =+ | (g + Xlopon) = Ol + X5 )]
(=1,-2) (=2,-1) (1,2) (2,1)
{(X|0) T Xjo)n ) —(x Xj1y.n T X1, )] . (5.16)
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5.2. Delocalizing of a matter wave over several lattice sites

Note that in the absence of temporal drifts of experimental parameters, the phase
contributions fﬁ,ﬂ) arising from possibly detuned m-pulses ideally cancel out since
each contribution appears twice but with a different sign in this sequence. Finally,
a m/2-pulse with a preset Ramsey phase ¢¢ recombines again both matter wave
components and probes its accumulated phase difference, yielding a Ramsey fringe
contribution of

1
Poyiy(¢rs) = [0, 1Up o, [tmer) |* = 5 11+ cos (¢ — Zer(2))} - (5.17)

The results obtained so far can be generalized to a sequence in which the mat-
ter wave is split and delocalized over 2K \/2 (K € Ny) lattice sites before being
subsequently merged and recombined at the initial lattice site. The contribution to
the Ramsey fringe is then given by

. PO 2
P, 11y (e, 2K) = [0, 1{Up j2,4,, D2 Uz 1210, 0)| (5.18)
1
= 5 {1+ cos (vt — ot (2K)) } (5.19)
with K« .
Do = (810510 (0,10;1) (U810281) (5.20)

where the inverse operators (7; ! ((7; 1(Af7r = 1) have been artificially introduced to
shorten the notation. Note that there is no 7m-pulse between the end of the delocal-
ization sequence and the beginning of the reverse process. By direct calculation, it
can be shown that the accumulated phase difference is given by

2K—1
B 2K) = D (8 [t g = T Xy )] 21
k=0

with the starting and final position index o), = (—1)*k and o}, = (—1)*(k + 1), re-
spectively.

In absence of temporal drifts of experimental parameters, all remaining phase
contributions can be regarded as time-invariant. This means that, even though they
depend on the transport time 7i;aps, it is irrelevant at which time they appear in the
sequence. In that case, according to Eq. (5.21), position-independent contributions
to the phase cancel out, including those from the free evolution and those from
shifting of atoms.? Consequently, it suffices to focus only on position-dependent
contributions. The latter can be written as

Ttrans

0,0 1 0,0
X = 3 / AU (=47 (0)
0
Ttrans
41 [Au (2707 (1)) — AU (z((.f’“’a;“)(t))] dt (5.22)
3 10),n %)) 1)n1%5)
0

4This fact becomes immediately obvious just by removing the position-dependent indices in
Eq. (5.21).
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with the energy difference
AUj)n(2) = Upj),n(2) = Upj,u(0), (5.23)

and the position of the matter wave component during a shift from o, to o}, given
by

A
1
where the shift is parameterized by a continuous function s;(¢), similar to that of
Eq. (4.28).° The first term in Eq. (5.22) considers changes in the energy offset of
each matter wave component in a state-selective trapping potential and a position-
dependent environment, characterized by U j>7n(z). The second term, in turn, takes
the evolution of the |0) <» |1) transition frequency of each individual component
into account.

Zl(;kvaé)(t) = ok + (01, — on)s); (1)] (5.24)

Possible spatial inhomogeneities in external fields in the trapping region of our
experimental setup are expected from magnetic field or light shift gradients. The
latter, for instance, may be attributed to the intensity profile of the light field
generated by two counterpropagating Gaussian beams, especially if the trapping
region is displaced from the common focus, see Sec. 5.2.2. To demonstrate the
effect of such gradients on the accumulated phase, for simplicity, we assume the
slope of this gradient being constant over the trapping region, yielding a linear
position-dependence of the energy contribution along the lattice axis

Ujyn(2) = Bjz (5.25)

with an arbitrary constant f);y € R. The resulting accumulated phase difference
can be directly calculated. It is given by

ATtrans

h )

Bt (2K) = K*(3B10y — B1y) (5.26)
irrespective of the choice of the shift function s;y(¢), as long as excitations between
vibrational states are negligible. Consequently, it quadratically scales with K and
thus with the maximum delocalization distance 2K \/2 between both matter wave
components. Results for further basic energy contributions are listed in Tab. 5.1.

5.2.2. Experimental results

In the following, we experimentally investigate coherence properties of the interfer-
ometer sequence for different number of transport steps (4K) defining the delocal-
ization distance (2K\/2), and determine the accumulated phase difference between
both matter wave components. To reveal temporary drifts of experimental param-
eters which may affect the |0) <+ |1) transition frequency, we apply this sequence
for K = {1,2,...,7} in a random order. Since an interferometer sequence of 4K

ssm : [0, Ttrans] — R constrained by s);,(0) = 0 and sy (Ttrans) = 1.
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Energy contribution Accumulated phase difference
Ujyn(z) = ajy = const  Zgor(2K) = 0

- 2 ATtrans
Ujyn(2) = Bjz Etot (2K) = K*(38)0) — Bpny) —

- >‘27—trans
Uy n(2) = 372 Bt (2K) = K* () — ’Y|0>)T

Table 5.1.: Accumulated phase difference for basic energy contributions as obtained for the
interferometer sequence of Eq. (5.20) for an arbitrary choice of shift function s|;(t).

transport steps comprises 2(2K — 1) m-pulses, such drifts may not only affect the
accumulated phase difference but also decrease the fringe contrast by reducing the
population transfer efficiency of the m-pulses, see below. Finally, we check the relia-
bility and reproducibility of our results by repeating our measurements on a random
basis. To reduce errors in determining the accumulated phase difference, especially
for Ramsey fringes with a low contrast, all fringes are recorded on an equidistantly
sampled phase interval of [0,67] comprising 50 sampling points, see Fig. 5.6(c).
Each sampling point is measured on an atomic ensemble with on average 20 atoms
using six repetitions.

Pulse amplitude or pulse duration errors in the initial and final 7/2-pulse of the
sequence do not only affect the amplitudes of delocalized matter wave components
and their recombining, they also may suppress the measured fringe contrast. Anal-
ogous to Sec. 4.6, such errors can be represented by biased operators (Afw /2+e and

A~

Ur j2+e ¢, With [e] < 7/2 and || < 7/2. For € # &', the Ramsey fringe contrast of
the interferometer sequence decreases by a factor of

err  cos(e)cos(e)

w/2

1 —sin(e) sin(e’) (5:27)

Otherwise, in case of € = ¢, it is C*'f, = 1, and the fringe contrast remains effec-
tively unaffected, even if the fringe amplitude

A@K) = 3 (Bt 2K) — Py in2K) (5.29)

decreases by a factor of Afrr/rQ = cos?(g). In other words, as long as both “r/2”-pulses
of the sequence are identical, the fringe contrast does not depend on the amplitudes
of the delocalized matter wave components which in turn define the balance between
both interferometer arms. For practical reasons, however, large fringe amplitudes
should be always preferred since they provide a better “signal-to-noise ratio” and
thus simplify the subsequent analysis. Consequently, we aim to reduce pulse errors
e and ¢ down to a marginal value.

Imperfect transfer efficiency of m-pulses, ]5|1>, on the other hand, affects not only
the rephasing process, but also the transport efficiency (see Sec. 4.5) and thus as
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Figure 5.5.: Average over 50 initial (a) and final images (b) of atoms delocalized over 6/2
lattice sites (K = 3). The respective probability histogram of relative positions (c) shows
two dominant peaks at +3A/2, from which the pulse error ¢ and the balance between
both interferometer arms can be inferred. Result of the erroneous pulse operation is
indicated by the Bloch vector (red arrow) in the vw-plane of the Bloch sphere. For an
ideal 7 /2-pulse the Bloch vector should coincide with the v-axis.

such, the probability to merge both matter wave components on the initial lattice
site. It therefore imposes an upper limit on the fringe contrast, which can be
estimated by

C(2K) < CZT(2K) = (Ppyy)*K—D. (5.29)

For this reason, fine-aligning of both, pulse parameters and settling time of the
state-selective transport require particular care, utilizing the entire spectrum of
preparatory calibration measurements discussed in Sec. 4.5. The same applies for
fine-alignment of the optimum transport time (see Sec. 5.1), taking into account,
that the probability to excite an atom or its matter wave component to a different
vibrational state increases with the number of transport steps. Here, we use a linear
driving ramp (see Eq. (4.34)) with a measured optimum ramp time of 7 /o = 18.6 s
and a settling time of 0t = 2 us, resulting in a total transport time for a single shift
of Tirans = 20.6 us. For a m-pulse duration of 7 = 8 us and K < 7, the time elapsed
between splitting, delocalizing and recombining of the matter wave is still far below
the elongated homogeneous dephasing time T;’ of a static lattice configuration,
see Sec. 3.3.4. Thus, homogenous dephasing mechanisms already appearing in a
static lattice configuration should only marginally affect coherence properties of
the employed interferometer sequence.

To check the balance between both interferometer arms, infer the transport ef-
ficiency and the related population transfer efficiency of m-pulses in the dynamic
configuration, in a preparatory measurement, we apply a truncated version of the
interferometer sequence. In this sequence, both matter wave components are max-
imally delocalized but not merged on the initial lattice site. Instead, a fluorescence
image is subsequently acquired, yielding a collapse of the delocalized matter wave
to a single site of the optical lattice, ideally at a relative distance of +K\/2 or
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5.2. Delocalizing of a matter wave over several lattice sites

—K\/2. From images acquired at the beginning and the end of the sequence, we
determine the relative positions of the atoms, see Sec. 4.5.3.

In Figure 5.5(c) a probability histogram of relative positions in terms of lattice
sites is exemplarily shown for K = 3. The histogram clearly reveals two dominant
peaks of almost equal heights at the expected delocalization positions £K\/2. The
same becomes apparent just by averaging over all final fluorescence images centered
at the initial position of the atoms, see Fig. 5.5(b). Both, the histogram and the
averaged fluorescence images nicely demonstrate the splitting and delocalization of
the matter wave over distances which can be resolved by our imaging optics (here
6A/2 =~ 2.6 um). Even though no conclusions regarding coherence of this process
can be drawn from such a histogram, the m/2-pulse error ¢ or the balance between
both interferometer arms can be directly deduced from the ratio of the measured
probabilities P_ox and Pri (see Eq. (4.49)):

P ok — P2K>

5.30
P_ox + Pox (5.30)

€ = arcsin (
From the probability histogram in Fig. 5.4(c), we deduce a 7/2-pulse error of
e = (0.07 £ 0.05) providing a balance of 54 : 46 between the “negative” and “posi-
tive” interferometer arm. The pulse amplitude or pulse duration error is therefore
sufficiently small, decreasing the fringe amplitude by only 0.5% assuming that the
error of the final recombining 7 /2-pulse is identical.
The transport efficiency is given by the sum of probability contributions at
+K\/2 in the histogram. From this, the population transfer efficiency of the 7-
pulses can be estimated, using

_ 1
Pm = (P_og + Py )?2K-T. (5.31)

Here, we obtain ]5|1> = (96 + 1)%, which agrees reasonably well with the value in-
ferred in Sec. 4.6.

Once the transport efficiency and the balance between both interferometer arms is
checked, we proceed with the main interferometer sequences, by recording Ramsey
fringes for different delocalization distances 2K A/2. Some of them are exemplarily
shown in Fig. 5.6(c). From each Ramsey fringe, we determine the fringe contrast
C(2K) and the fringe phase, corresponding the total accumulated phase difference
Etot(2K), from a fit of

ﬁ o 5sur(7-img) -

) (2K) = =" {1+ C(2K) cos|¢rt — Eeot (2K)]} - (5.32)
Note that in case of imbalanced interferometer arms, either intended or due to
7 /2-pulse errors, the survival probability psur(Timg) inferred from a fit is biased. Its
proper value is rather given by psur(Timg) = Dsur(Timg){1 — sin(e) sin(e’)}, supposed
that both parameters ¢ and ¢’ are known. Since we are mainly interested in the
fringe contrast and the phase, the biased survival probability can be regarded just
as a free parameter of the fit.
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Figure 5.6.: (a) Fringe contrast of Ramsey fringes recorded for interferometer sequences
with K = {1,2,...,7}, corresponding to delocalization distances of 2K \/2. Some Ram-
sey fringes and the respective fits (solid lines) are exemplarily shown in (c¢). For illustra-
tion purposes, fluorescence images of two atoms separated by the respective delocalization
distance are shown on the right side. The dotted line in (a) indicates the fringe contrast
as inferred from the elongated homogeneous dephasing time TVQ' in a static lattice config-
uration, see Sec. 3.3.4. The dashed line shows the upper limit of the contrast imposed by
the probability to merge and recombine both matter wave components, see Eq. (5.29).
The latter has been estimated from the measured transfer efficiency of the m-pulses. The
solid line shows a fit of Eq. (5.33), from which the fraction of coherence after two trans-
port steps is inferred. (b) Accumulated phase difference as inferred from the phase of
the Ramsey fringes. Since the phase is a modulo 27 quantity, for fitting purposes, an
offset of 27 and 47 is subtracted from the inferred values for K = {4,5,6} and K =7,
respectively. The solid line shows a fit of Eq. (5.35), revealing a characteristic quadratic
dependency.

In Figure 5.6(a,b), fit results of the fringe contrast and the accumulated phase
difference are shown, both plotted as a function of maximum delocalization dis-
tance. As expected, the fringe contrast decreases with the delocalization distances,
always remaining below the limit imposed by the probability to merge both matter
wave components for imperfect m-pulses (see Eq. (5.29)) and the elongated coher-
ence time fQ’ We primarily attribute the additional decrease of fringe contrast
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5.2. Delocalizing of a matter wave over several lattice sites

to excitations between axial vibrational states (homogeneous dephasing during the
transport) and imperfect rephasing. The latter may be additionally affected by spa-
tial inhomogeneities of environmental fields in the trapping region, see below. Both,
the effect of excitation and imperfect rephasing cannot be distinguished from the
fringe contrast alone. Modeling of the former turns out to be non-trivial, especially
if both coherent and incoherent excitations over intermediate states are involved.
For this reason, we abstain from a heuristic model of the fringe contrast. Instead,
analogous to the pulse error model of Eq. (4.52), it appears obvious to assume the
contrast to decrease progressively every second transport step

Ciot (2K) = (Ciwo)?X (5.33)

where Ciyo denotes the fraction of coherence after two transport steps. This quan-
tity may be regarded as coherence fidelity of the state-selective transport for an
even number of transport steps. For odd numbers of steps in turn, besides tech-
nical limitations (see Sec. 4.5), inhomogeneous dephasing of thermal atoms arising
from different evolution of state-selective potentials during the shift would strongly
suppress the fringe contrast, see Sec. 5.1. From a fit of Eq. (5.33) to the measured
fringe contrast, we finally infer

Ciwo = (81.3 +0.3)%. (5.34)

Because the measured fringe contrast always refers to a delocalized and merged
matter wave, its value at the maximum delocalization distance of both matter wave
components is rather given by /Ciot(2K). From this, we infer a fraction of coher-
ence of 23% at a delocalization distance of 14\ /2 ~ 6 ym, whereas for 10A/2 ~ 4 pm,
even a fraction of 36% ~ 1/e is obtained. Since the latter value has been used to
define our dephasing times (see Sec. 3.3), following this convention, our measure-
ment reveals a coherent splitting and delocalization of a single atom matter wave
over distances of up to 10 lattice sites. This fact should be kept in mind in the
context of the quantum walks, see Chap. 6.

The total accumulated phase difference on the other hand, reveals a quadratic
dependency on the delocalization distance, see Fig. 5.6(b). At first sight, according
to preliminary considerations summarized in Tab. 5.1, such trend indicates spatial
differences in the trapping region with at least a linear position-dependency of the
relevant energy contributions. From a fit of

Bt (2K) = aK? (5.35)
to the measured fringe phase, we infer a = —(0.206 £ 0.007), yielding
(3ﬂ|0> — ﬂ|1>)/h = 27 X (1.83 + 0.06) kHZ/Mm . (5.36)

This value, however, is too large to be solely attributed to spatial gradients of the
light field or magnetic field in the trapping region, see below. Irrespective of this
fact, in the following, we list and specify some possible contributions which can in
principle be investigated using the above interferometer sequence.
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5. Coherent state-selective transport — A single atom interferometer

Magnetic field gradient along the lattice axis Suppose there is a magnetic field
gradient B, along the optical lattice axis, which is permanently present dur-
ing the entire interferometer sequence. Its position-dependent energy contri-
butions to the accumulated phases in Eq. (5.22) can be written as

Um,n(z) = ﬁmz + 9;,0hwo (5.37)

with
Blj) = 1BYga—; By, (5.38)
where g3 and g4 denote the Landé factors for the F' =3 and F' =4 ground
states, respectively, and pp the Bohr magneton. Assuming that the result in
Eq. (5.36) is solely attributed to this field gradient, its strength would be given
by B, = —(3.5+0.1) G/cm, which turns out to be too large to be unnoticed
otherwise. Such gradient would result in a position-dependent |0) <+ |1) tran-
sition frequency in the trapping region with w’(z)/27 = (0.86 + 0.02) kHz/pm,
see e.g. Sec. 3.4.1. Therefore, it would be rather noticed in a broadening of
any preparatory microwave spectrum, while significantly decreasing its maxi-
mum population in state |1). We conclude from this fact that a magnetic field
gradient cannot solely explain the measured difference in accumulated phase.

Light shift gradient along the lattice axis Suppose the trapping region does not
coincide with the position of the waist w, of both superimposed counterprop-
agating Gaussian beams, generating the optical lattice, but is axially offset
by a distance Az. Depending on this offset, the divergence of the Gaussian
beams may yield a noticeable intensity gradient of the light field in the trap-
ping region. This gradient directly translates into a position-dependent light
shift, affecting both, the trap depth and the trapping frequencies. To estimate
the effect of such gradient, we first restrict to the dominant contribution —
the trap depth, the position-dependency of which can be written as

2 Us s
(2 = ) Wo _ 0,]5)
U07|J>(Z) UO’|J>w2(z+Az) 1+ (z+Az)2/zS (5.39)
~_ Yo —2Wo Az (5.40)
1+ Az2/22 (14 A22/23)2 7 '
=) =85

where Uy |;, denotes the depth at the waist and 2, the Rayleigh length. Fur-
thermore, we have used a Taylor series expansion, employing z < zg, so that
the position-dependent energy contribution can be written in the well-known
from

Ll|j>7n(z) = o) + 5|j>z + d;.0hwo - (5.41)
According to Tab. 5.1, only the linear term contributes to the total accumu-
lated phase difference. For perfectly overlapping Gaussian beams, a maximum
slope in the intensity gradient is expected at Az = +z,/ V3, yielding

|(3Bj0y — By)/h| < 27 x 1.5kHz/um (5.42)
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5.2. Delocalizing of a matter wave over several lattice sites

for typical experimental parameters of the interferometer sequence. Hence,
irrespective of the axial displacement, the measured value in Eq. (5.36) can-
not be reached. By incorporating state-selective potential dynamics in the
calculation, including vibrational contributions with position-dependent axial
and radial trapping frequencies

Wy

an,\j>(z) = an,|j>m ) (5.43)
wg
Qrad,\j>(z) = Qrad,|j>m ) (5.44)

analogue to the dephasing model of Eq. (5.3), the deviation from the mea-
sured value becomes even larger. Furthermore, in the presence of a light field
gradient, dephasing arising from state-selective transport becomes position-
dependent, and thus for this reason alone, it cannot be fully reversed by
rephasing m-pulses in the interferometer sequence. Consequently, the Ram-
sey contrast is expected to decrease. For the maximum intensity gradient at
Az = tz,/ V3, our simulations provide a Ramsey contrast which is inconsis-
tent with the measured data, falling far below the measured values. Irrespec-
tive of this fact, similar to the magnetic field gradient, such intensity gradient
would be rather noticed in any preparatory microwave spectrum. Therefore,
axial displacement of the trapping region from the position of the beam waist
and the resulting intensity gradient cannot solely explain the measured dif-
ference in the accumulated phase.

Gravity in a tilted optical lattice Another eligible external field, which in principle
may contribute to the measured phase difference, is earth’s gravity. Even
though this field does not affect the |0) <+ |1) transition frequency, for an
optical lattice, whose axis is not perpendicular to the field direction, but
tilted by an angle ¢, it provides a phase difference between both components
of the delocalized matter wave. The respective energy contribution can be
written as

Ll|j>7n(z) = ﬂmz + 5]‘70710.)0 (5.45)

with
Bljy = mcsgsing, (5.46)

where mcs denotes the mass of the atom and g the local acceleration due to
gravity. Suppose that the result in Eq. (5.36) is solely attributed to the tilted
optical lattice, we would deduce a tilt angle of ¢ = —(16.1 +0.5)°. Such tilt
angle, however, is unrealistic, not least by the limited optical access. Since
all mounting elements for the lattice beams optics are fixed to a preset height
of 5cm above the optical table, the optical lattice axis can be assumed to
be parallel to the table. The latter in turn is well balanced by a spirit level.
From a geometrical estimation, a maximum reasonable tilt angle of +2° is
inferred. Consequently, gravity cannot solely explain the measured difference
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5. Coherent state-selective transport — A single atom interferometer

in the accumulated phase. It should be noted, that gravity neither affects
the |0) <> |1) transition frequency of both matter wave components nor the
dephasing or rephasing process. Therefore, unlike the above field gradients,
its contribution cannot be noticed in a microwave spectrum or a decrease of
Ramsey contrast.

In summary, from the quantitative analysis, it can be stated that non of the dis-
cussed field gradients can solely explain the accumulated phase difference shown in
Fig. 5.6. Furthermore, since for all discussed field gradients the phase difference
depends quadratically on the delocalization distance, their individual contributions
cannot be distinguished from the phase alone. Therefore, further investigations
are required, which aim to clarify and identify the origin of the measured phase,
especially for applications requiring full control over the phase.

There are some characteristic features which may be solely attributed to a certain
class of field gradients: Field gradients which spatially change the trap parameters
may noticeably affect the Ramsey contrast, since they disturb the rephasing process
in our sequence. The same applies for field gradients which introduce a significant
spatial change of the |0) <» |1) transition frequency and thus a spatial detuning
from the initial preset pulse frequency. They would decrease the contrast due to a
reduced population transfer efficiency of the rephasing m-pulse, see Eq. (5.29).

In general, high-precision atom interferometers are highly customized, i.e. de-
signed from scratch to measure only one selected field gradient while being shielded
or compensated against other fields [153]. Our single atom interferometer, in turn,
can be regarded as an versatile but open system, which may suffer from system-
atical drifts, see below. Therefore, it is only suited to deduce the fields of interest
from relative changes of the respective parameters, assuming that remaining (un-
shielded) contributions are constant over the course of the measurement. The local
gravity, for instance, could be deduced from the dependency of 3, on the tilt angle
¢. Similar applies for magnetic field gradients, the strength of which can be tuned
by external coils.

Drifts of experimental parameters

So far temporal drifts of experimental parameters affecting the trapped atoms have
been neglected, allowing us to derive simple analytical expressions for the accu-
mulated phase difference of the interferometer sequence. However, such drifts can
never be completely excluded and may indeed indistinguishably affect the measured
phase. In the worst case, they can even provide a quadratic dependency of accumu-
lated phase difference on the delocalization distance 2K \/2, and thus be wrongly
assigned to a spatial field gradient in the trapping region. While random long-term
drifts of experimental parameters can be identified by checking the reproducibility
of the measured data at certain time intervals and thus excluded for the obtained
results, contributions from systematical drifts, i.e. those which are reproducible
in each iteration of the interferometer sequence are indistinguishable from other
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contributions to the measured phase, unless these drifts can be noticed otherwise.

The only reasonable systematical drift with a well-defined dependency on the
number of transport steps and thus the transport distance is expected from the
polarization control setup. Suppose that the overlap of both orthogonally circularly
polarized standing waves during application of rephasing pulses decreases with the
number of transport steps (e.g. due to a drifting offset voltage of the high-voltage
amplifier). Then, the |0) <» |1) transition frequency is expected to shift from one
transport step to another. In that case, each detuned m-pulse would introduce an
additional phase contribution which would not be cancelled anymore. Such stepwise
changing detuning, however, would also affect the population transfer efficiency and
the rephasing properties of the microwave pulses which would be rather noticed in
the measured Ramsey contrast. Our simulations reveal that it is impossible to
model a “drift function” which can reproduce both, the measured fringe contrast
and the accumulated phase difference of Fig. 5.6. Furthermore, using microwave
spectroscopy in dynamic configuration, similar to that for adjusting the settling
time and the half-wave voltage of the EOM (see Sec. 4.5.2), we have checked that
the polarization purity and the transition frequency is identical in each step of the
sequence.

5.3. Conclusion

In this chapter, I have investigated coherence properties of the state-selective trans-
port using two types of single atom interferometer sequences: A Ramsey-type se-
quence comprising splitting and delocalization of atomic matter wave components
over two neighboring lattice sites, and its spin-echo extended version which uses a
rephasing 7-pulse to reverse inhomogeneous dephasing including that from state-
selective transport of thermal atoms. I have introduced a simplified dephasing
model which takes the different potential dynamics during the transport into ac-
count. This model sufficiently captures the dominant inhomogeneous dephasing
mechanisms of the state-selective transport and reasonably explain the measured
Ramsey contrast in regions in which other decoherence sources are negligible. Two
approaches to overcome or decrease inhomogeneous dephasing during the transport
have been proposed.

By extending the Ramsey-type sequence by a spin-echo, I have demonstrated that
shift-induced inhomogeneous dephasing can be in principle reversed. The resulting
atom interferometer sequence is then sensitive to irreversible homogeneous dephas-
ing. By comparing calculated excitation probabilities to the measured data, I have
shown that excitation between axial vibrational states during the state-selective
transport disturb interference between two initially delocalized matter wave com-
ponents and the rephasing process giving rise to homogeneous dephasing. The
spin-echo sequence is therefore ideally suited to experimentally determine optimum
ramp times in which such excitations are marginal.

Finally, I have investigated coherence properties of a two-arm single atom inter-
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ferometer in which matter wave components of a single atom are delocalized over
distances of up to 6 um and subsequently merged on the initial lattice site. This
interferometer sequence can be used to probe spatial differences in external fields
in the trapping region. I have investigated the effect of experimental imperfec-
tions on the measured Ramsey contrast. From the latter, a coherence fidelity of
the state-selective transport for an even number of transport steps has been in-
ferred. Our measured data reveal a coherent splitting and delocalization of a single
atom over distances of up to 10A/2 ~ 4 um lattice sites with a coherence fraction
of 1/e ~ 36%. Furthermore, the measured accumulated phase difference between
matter wave components quadratically scales with the maximum delocalization dis-
tance or the number of transport steps. I have derived analytical expressions for
the accumulated phase difference, showing that already a linear energy gradient
along the lattice axis may explain the measured scaling. A list of possible energy
gradients has been compiled and discussed in detail, albeit non of the them can
solely explain the measured phase difference. Further investigations are thus re-
quired to clarify and identify the origin of this phase difference. For this purpose,
two possible directions should be followed in the future: First, the contribution of
possible excitations between vibrational states to the accumulated phase difference
should be investigated in detail. Suppose that each of the two delocalized matter
wave components changes its vibrational state during the interferometer sequence.
Then, if both of them end up in the same vibrational state or in a superposition
of vibrational states with a final overlap before being recombined, we expect a sys-
tematical contribution to the measured Ramsey phase. Since excitation processes
are expected to gradually increase with the number of transport steps they may
indeed introduce a quadratic scaling of the accumulated phase difference even for
a thermal ensemble of atoms. To theoretically check this hypothesis, an extended
model incorporating both, coherent and incoherent excitation processes is required.
It would be also preferable to repeat the interferometer measurements with atoms
cooled to the motional ground state. By this, potential models could be simpli-
fied while the number of model parameters reduced. Second, we should look for
potential geometrical phases which are also referred to as Berry phases [155].
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Interference phenomena with microscopic particles are a direct consequence of their
quantum-mechanical wave nature [156-160]. The prospect to fully control quantum
properties of atomic systems has stimulated ideas to engineer quantum states that
would be useful for applications in quantum information processing, for example,
and also would elucidate fundamental questions, such as the quantum-to-classical
transition [161]. A prominent example of state engineering by controlled multipath
interference is the quantum walk of a particle [3,4]. Its classical counterpart, the
random walk, is relevant in many aspects of our lives, providing insight into diverse
fields: It forms the basis for algorithms [8], describes diffusion processes in physics
or biology [8,10], such as Brownian motion, or has been used as a model for stock
market prices [11]. Similarly, the quantum walk is expected to have implications
for various fields, for instance, as a primitive for universal quantum computing [5],
systematic quantum algorithm engineering [50], or for deepening our understanding
of the efficient energy transfer in biomolecules for photosynthesis [162].

Quantum walks have been proposed to be observable in several physical systems
[50, 163, 164]. Special realizations have been reported in either the populations
of nuclear magnetic resonance samples [165, 166] or in optical systems, in either
frequency space of a linear optical resonator [167], with beam splitters [168], or in
the continuous tunneling of light fields through waveguide lattices [169]. Recently,
quantum walks in the phase space of trapped ions have been reported [51,52].
However, the coherent walk of an individual quantum particle in position space
with controllable internal states, as originally proposed by Feynman [170], has so
far not been observed.

In this chapter, I present the experimental realization of such a single quantum
particle walking in a one-dimensional lattice in position space. This basic example
of a walk provides all of the relevant features necessary to understand the fundamen-
tal properties and differences of the quantum and classical regimes. For example,
the atomic wave function resulting from a quantum walk exhibits delocalized coher-
ence, which reflects the underlying quantum interference. Simultaneous detection
of internal state and the atomic position in the lattice by our imaging techniques
allows for local quantum state tomography of the wave function. This is an impor-
tant requirement to realize applications in quantum information science, such as
the quantum cellular automaton [17,18,171].
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6.1. Random walk and quantum walk on a line

The quantum walk is a quantum mechanical analogue of the classical random walk
with remarkably different properties [3,4], which arise from its particular ability
of quantum interference. This characteristic ability is primarily used to design
quantum algorithms which mostly outperform their classical counterparts for the
same problem [7,172]. Both, random and quantum walks can be defined either
in continuous or discrete time. An overview of the distinct types of walks and
their properties can be found in Ref. [173] and references therein. Throughout this
chapter, we only focus on a subclass of walks, namely random and quantum walks in
discrete time on a line. We shortly introduce both walks, highlight their substantial
differences and compile their characteristic properties and quantities, which will be
used later to discuss experimental results.

6.1.1. Random walk on a line

Consider an infinite line with allowed integer positions k& € Z and a particle — the
“walker”, which is initially located at position kg = 0. In the classical random walk
on a line, a coin is tossed in each time step. Depending on the outcome (heads or
tails), the walker takes one step to the left or to the right. Let p. be the probability
of tossing head, and 1 — p. the probability of tossing tail, accordingly. After N time
steps, the probability P}\)}(k:) of finding the walker at a certain position k on the line
follows then a binomial distribution

1 1
PR(k) = {(a&k))w(“’fkl —p)2 ™Y for §(N+k) €{0,1,... N},
0 else,

(6.1)
with an expectation value (mean) E(N) = (2p. — 1)N and a variance o?(N) =
4p.(1 —pe)N. Note that if N is even (odd), only even (odd) positions are occupied.

For a fair (unbiased) coin, p. = 1/2, the probability distribution in Eq. (6.1)
becomes symmetric, i.e. Pi(—k) = PR(k), with E(N) =0 and 0?(N) = N. The
standard deviation of this distribution is thus o(N) = VN, implying a spreading
time of the walk proportional to v/N. The most probable position of the walker
after N time steps is its initial position, whereas the probability of finding the
walker at a distance of order N from the origin decreases exponentially with V.
Furthermore, it can even be shown that for this particular one-dimensional random
walk the walker returns with probability 1 to its initial position and hence to every
possible position infinitely many times, if the random walk continues indefinitely.
We refer this particular walk as symmetric random walk.

The random walk is obviously a stochastic process. It is also a Markov chain, i.e.
each step depends only upon the immediately previous step, and not on any of the
earlier steps [12].
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6.1.2. Quantum Walk on a line

In a quantum-mechanical analogue of the classical random walk on a line, the quan-
tum walker evolves in a coherent superposition of going to the left or to the right.
Since quantum mechanics requires this evolution to be deterministic and unitary,
an internal state has to be added to the walker [174], providing an additional degree
of freedom, which can be used to control the system. Regarding our experimental
system, we consider the walker to be a two-level quantum particle with internal
qubit basis states |0) and |1) spanning the Hilbert space Hqpit = C2. The walker
is moving in position space on an infinite line with allowed integer positions, e.g.
sites of an optical lattice. The corresponding total Hilbert space of its states is thus
given by Hext = Hqbit ® Hpos With Hpes = l2(Z) spanned by position basis states
{|k)|k € Z}, see Sec. 4.5.1. In this Hilbert space, the quantum walk can be de-
scribed as follows:
Consider the quantum walker to be initially located at position kg and prepared in
a general qubit state [1g) (not necessarily a basis state), resulting in an initial state
|Wo) = [1ho) @ |ko) on Hext. Analogous to the random walk, in every time step of the
quantum walk, the unitary coin operator C , which acts on Hqpit and takes on the
coin toss of its classical counterpart, brings each qubit basis state into a coherent
superposition of the two states. Each coin operation is subsequently followed by a
conditional shift, the unitary operator of which is defined by!
{ 0.k) = [0k+1) 62)
I1,k) — |L,k—1)
moving the walker in state |0) (|1)) one step to the right (left) or delocalizing its
matter wave components and thus entangling the internal state with the position
of the walker. Finally, after N time steps, the quantum state of the walker reads

£ A AN
W) = [S(C@ D] o). (6.3)
The probability of observing the walker at position & is then given by
PRI (k) = (W | Bl O) (6.4)
with Py, = [0, k)(k, 0| + |1, k) (k, 1].

To expose the differences between the quantum walk and its classical counterpart,
we illustrate its evolution for few time steps with a concrete example:
Consider the walker in a qubit state |¢9) = |0), which is initially located at position
ko =0, i.e. [¥g) = |0,0). From the variety of unitary coin operators acting on Hqpit,
we chose a frequently used, unbiased coin — the so-called Hadamard coin, which is

defined by

. 0) — (o) +1
G [0 = o) o)
) = —0) = 1)
"Here, again a short-hand notation of the product states |7, k) = |5) ® |k) € Hext (j = {0,1}) is

used.
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Random walk Quantum walk
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Figure 6.1.: Left: Probability of finding the walker at position k after N time steps of the
classical, symmetric random walk on the line starting in £ = 0. Empty fields indicate zero
probability. Right: The respective probability of a quantum walk using a Hadamard
coin and starting with the initial state |¥o) = |0,0). Shaded fields indicate deviations of
the probabilities from the classical counterpart.

Then, the quantum state of the walker for the first three time steps reads

0y) = % (11, 1) +[0,1)) , (6.62)
W) = % (=[1,=2) + [1,=2) +[0,0) + |1,0) +[0,2)) , (6.6D)
W) = — (11, =3) — [0, —1) +2(0, 1) + [1,1) +0,3)) . (6.6¢)

2V2

The corresponding spatial probability distributions are listed in Fig. 6.1 up to the
sixth time step and compared to the respective distributions of the classical sym-
metric random walk.

After the first step, the probability of finding the walker at &k = 41 is given by
PlQ"O’m(il) = 1/2, and thus identical to that of the symmetric random walk, see

Eq. (6.1). The same applies for the second step, i.e. PZQ"O’m(k:) = PR(k) for all
k € Z. After the third step, however, the distribution induced by the quantum
walk partly differs from the classical one, due to quantum interference, which af-
fects the walk for the first time: Two initially delocalized parts of the walker are
recombined at a common position (k = 0). Being in different internal states, they
cannot interfere. The next coin operator, however, deterministically mixes the in-
ternal states and removes the which-way information, which gives rise to quantum
interference of the two overlapping parts. Further steps result in a multipath inter-
ference, which then alters the properties of the quantum walk as compared to the
classical random walk.

One of these characteristic and distinguishing properties is the influence of in-
ternal states on the quantum walk. While the spatial probability distribution of
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0.3

»

Probability

o ©

s [N
L I T T T 7T I L
| I - I 11 1 I | I -
L I T T T 7T I L
| I - I 11 1 I | I -
L I T T T 7T I L
L1 1 1 | L1 11 | L1 1 1

1 | 1 1 1 | 1 | 1 1 | 1 | 1 | 1
0
-20 -10 0 10 20 -20 -10 O 10 20 -20 -10 O 10 20
Position k Position k Position k

Figure 6.2.: (a) Probability distribution Pi(k) of a symmetric random walk starting at
ko = 0 after N = 24 time steps, plotted only at the even points, since the odd points have
probability zero. (b) The respective probability distribution PJ(\?"%>(k) of a quantum
walk with Hadamard coin starting in |¥() = |0,0), and (c) in |¥o) = \/ii(|0, 0) +4|1,0)).

The latter initial state yields a symmetric distribution, see text.

the random walk is fully determined by the balance of the coin (see Eq. (6.1)), the
quantum walk distribution depends also on the initial qubit state |¢) of the walker
and can be either strongly asymmetric, as shown in our example (see Fig. 6.1
and 6.2(b)) or symmetric for one and the same coin operator, see Fig. 6.2(c).
In case of the Hadamard coin, the asymmetry for |¢)p) = |0) arises from a dif-
ferent treatment of the qubit basis states [4], multiplying the phase by —1 only
in the case of |1) (see Eq. (6.6)), and thus inducing more cancellations for paths
going rightwards (destructive interference), whereas particles moving to the left
interfere constructively. A symmetric distribution is obtained using the initial
qubit state |1g) = %(|0> +4|1)). In this particular case, the contributions from

the qubit state |0) to the walker’s state remain real, whereas those from [1) are
purely imaginary. Hence, they do not interfere with each other. The total prob-
ability distribution is then given by the sum of the individual distributions, i.e.
P (k) = S[PFO (k) + PO (R)]. Because of PE"% (k) = PRI (<),
this distribution is symmetric as shown in Fig. 6.2(c).

Besides the influence on the initial qubit state, there are further characteristic
properties which distinguish the quantum walk from its classical counterpart. In
particular, the standard deviation of the probability distribution of a quantum walk
scales proportional to N, as in a ballistic transport, in contrast to the diffusive v’ N
scaling of the random walk, see Sec. 6.1.1. Consequently, the quantum walk propa-
gates quadratically faster. Furthermore, in the symmetric case, it spreads roughly
uniformly over the positions in the interval [~ N/+/2, N/v/2] as shown in Ref. [175],
whereas the symmetric random walk is peaked at the initial position. Unlike the
classical random walk, the quantum walk is fully deterministic and unitary. Hence,
the multipath interference can be in principle reversed by inverting coin and shift
operations, see Sec. 6.3.3.
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6. Quantum walks in position space

Finally, it should be noted that neither the random walk nor the quantum walk on
the line are restricted to a single particle, a single coin or position space. Quantum
walks on a line, for instance have been also investigated for two entangled parti-
cles [52,176], a sequence of different coins [177] or in frequency space [51,52,163].
All of them provide signatures of quantum interference, deterministic and unitary
evolution in time and noticeable differences in probability distributions or related
quantities compared to their classical counterparts. We will focus on these key
properties in the investigation of experimental results of our quantum walk.

6.2. Experimental realization

The first proposal to implement a discrete time quantum walk on a line using neu-
tral atoms in state-selective optical lattices appeared in 2002 [50]. In contrast to
other proposals at that time, which relied on ion traps [163] and microwave cav-
ities [178], it provided a quantum walk in position space as originally proposed
by Feynman [170] and augured implementations with up to several hundred steps.
Being able to determine positions of atoms in an optical lattice, coherently manipu-
late their internal states, and finally, coherently and state-selectively shift the atoms
from one lattice site to another, all ingredients are in principle available to imple-
ment such a walk. However, technical limitations, decoherence and experimental
imperfections require modifications of the originally proposed sequence, resulting
in some deviations from the previously presented textbook example.

6.2.1. Effect of limitations imposed by the state-selective transport

Our realization of a quantum walk mainly faces two problems, both arising from
our implementation of the state-selective transport, which takes over the role of
the conditional shift: The first problem arises from the state-dependent shift dy-
namics, resulting in a state-dependent accumulation of phases of the matter wave
components, which need to be given special consideration. The second problem
arises from the polarization of the retro-reflected beam forming the optical lattice,
which cannot be rotated infinitely, see Sec. 4.5. Hence, instead of only one, two
shift operators ‘§T and S |, defined in Eqgs. (4.43) and (4.44), respectively, need to
be alternately applied in a quantum walk sequence. Under certain circumstances,
both problems may affect the quantum state and the probability distribution of a
walk, significantly changing its sensitivity to inhomogeneous dephasing as discussed
in Sec. 5.1.1.

Suppose that there is solely the problem of state-dependent accumulation of phase
while polarization of the retro-reflected beam is assumed to rotate infinitely so that
the shift operator can be written as

; (6.7)

p-

g . )10k = e f10m 10,k + 1)
IL,E) — e®n|lk—1)
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6.2. Experimental realization

where excitations between vibrational states contributing to shift-induced homo-
geneous dephasing are neglected. Then, the spatial probability distribution of the
corresponding quantum walk is identical to that of the textbook example with the
shift operator S defined in Eq. (6.2), irrespective of the phases ©j0),n and @1y n,
albeit the quantum states of both walks are different [179]. Consequently, possible
inhomogeneous dephasing arising from shifting of thermal atoms (see Sec. 5.1.1)
would not affect the distribution of the walk.? The situation, however, is different
if both problems arise simultaneously and two shift operators, ST and S 1, have to
be alternately applied in a sequence. The quantum state of the walker then reads

Wik =[S (C @ D)8 (C o i) v, (6.8)

where technical limitations restricting the walk to even numbers of transport steps
(see Sec. 4.5) have already been taken into account. In that case, the probability
distribution may indeed become sensitive to the accumulated phase during the
shift. With regard to the experimental data presented later in this chapter, we
demonstrate this fact by evolving such quantum walk for 2N’ = 6 steps for the
initial state |¥g) = |1,0) and the coin operator

{10 = 20— )
Cg: V2 . .
. {m S o)+ ) (09

The contributions to the resulting spatial probability distribution

b 7\p ~
Pt (k) = (Wl 1Pl (6.10)
are shown in Tab. 6.1 and compared to those of a textbook example Pfj\}l,qj())(k:)

with the same coin operator Cg and a single shift operator S. In the following, we
distinguish between two cases: Apn = Qo n — ¢j1y,n = 0 and Apy, # 0.

For Ay, = 0, we can write ST — ¢®on . § and 51 — ¥ . §~1 Consequently,
both shift operators only introduce a global phase, which however, is indistinguish-
able in a measurement of the resulting quantum state W};\]i\f» Hence, neither the
quantum state nor the corresponding probability distribution provide a measurable
dependency on the accumulated phase ¢|gy », making the walk insensitive to inho-
mogeneous dephasing discussed in Sec. 5.1.1. For this reason, it would be valuable
to avoid a state-dependent accumulation of phase during the shift, e.g. by using
other qubit basis states and a different characteristic wavelength, as proposed in
Sec. 5.1.1. Irrespective of this fact, the probability distribution of a quantum walk

2Throughout this chapter, we focus mainly on shift-induced inhomogeneous dephasing discussed
in Sec. 5.1.1, which is expected to be the most dominant dephasing source. Each atom of the
thermal ensemble performs thus an quantum walk with undisturbed quantum interference for
all time steps, whereas homogenous dephasing, e.g. from excitations between vibrational states
would destroy this interference with a certain probability. Homogeneous dephasing has been
extensively studied in Refs. [50,180,181] and references therein.
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6. Quantum walks in position space

& P(?’Il’())(k) x 26 PGQ,TMLO)(]{:) % 26 P(?’TLILO)(]{) x 26
(Apn #0) (Apn =0)
—6 1 1 1
—4 26 6 + 4 cos(2A¢y) 10
-2 13 11 — 2 cos(4Apyn) — 4cos(2Apy) 5
0 8 12 — 4 cos(4Apn) 8
+2 5 19 4+ 6 cos(4Apy) — 12 cos(2Apn) 13
+4 10 14 + 12 cos(2A¢n) 26
+6 1 1 1

Table 6.1.: Contributions to the spatial probability distribution of various quantum walks,
the coin operator Cg (see Eq. (6.9)) and initial state |¥o) = |1,0) of which are identical,
while their shift operators differ. For details, see text.

with two alternately applied shift operators ST and S | differs from that with a single
operator S or S,. For our particular case with the initial state |¥g) = |0,0), the
distribution is mirror-inverted, yielding

,4511,0 ,[1,0 ,0,0
PO () = pQILO gy — pQI00) (1 (6.11)

for all k € Z and M € N. The same applies for the initial state |¥g) = |0,0), so
that
,14,(0,0 ,10,0 ,11,0
P00 gy = pRIOON gy = PRI (1) (6.12)

Even though this mirror-inversion is not universally valid, as can be exemplarily
shown for |¥g) = %UO, 0) 4+ |1,0)), it should be kept in mind when discussing ex-
perimental results.

For Ay, # 0, which rather corresponds to our experimental implementation,
both the quantum state and the corresponding probability distribution depend on
the accumulated phases ¢|g) , and ¢|1) n, see e.g. Tab. 6.1. In that case, the quantum
walk is sensitive to inhomogeneous dephasing during the shift. According to our
dephasing model of Sec. 5.1.1, we expect the measured probability distribution to
be given by

D | ¥ v = n . m,m/ T4 1\
PQQNTH 0>(k:) — E ng) E erad )PQQNTi | O>(k:) (6.13)
n=0

m,m/=0

with the axial and radial occupation probability gg? and gl("zzi’ml) defined in Eq. (5.4).
For the particular case, presented in Tab. 6.1, such dephasing would partially smear
out the characteristic features of the distribution and shift its weight from the outer
to the inner positions. The same applies for the initial state | o) = |0,0) and there-
fore also for the superposition state |¥g) = %(\O, 0) 4 4|1,0)), since the distribution
of the latter is just given by the sum of the contributions of the individual basis

states, see Sec. 6.1.2.
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6.2. Experimental realization

An alternative approach to directly reverse inhomogeneous dephasing, not only
that arising from shifting of thermal atoms, involves an extended version of the shift
operator which comprises two shifts ST and S 1, and a rephasing spin-echo m-pulse
in between

. A 0.k Pl n TP m) |1 k4 2
o siUﬂsT:{ 0.k = e L.k +2) (6.14)

Sext = I1,k) — ie®Pontemn)ig k— 2)
Since this operator introduces only a global phase, the same statements as for
Ay =0 can be made, albeit the matter wave components are transported over
twice as large distances. Because 5’&% swaps the qubit basis states, the probability
distributions of a walk with the coin operator Cg, are mirror-inverted for both, the
initial state |0,0) and |1,0). This mirror-inversion, however, can be in principle
fixed by extending the shift operator by an additional w-pulse, yielding

S8 = 0,8 = —/@ontemna) . 52, (6.15)

Apart from a scaled position axis, the resulting distribution is then identical to that
of the textbook example. This statement is valid irrespective of the choice of the
coin or the initial state. Furthermore, using S’S(i or S’gi, quantum walks with an
odd number of time steps can be realized. However, besides all the advantages,
there is a major drawback of this approach: Shift operators employing additional
rephasing pulses suffer from their imperfect population transfer efficiency which al-
ready has been shown to limit the transport efficiency. This problem has thus to be
weighed against the inhomogeneous dephasing problem of the previous approach.
Preliminary measurements have shown that imperfect m-pulses are far more prob-
lematic than dephasing arising from shifting of thermal atoms. For this reason, we

oppose the use of extended shift operators in our quantum walk sequences.

Remarks on the random walk

So far, we have investigated the properties of a particular quantum walk with al-
ternately applied shift operators ST and S |- For the random walk, this situation
corresponds to an alternately changed moving direction for the outcome of a coin
toss. Although such changes obviously do not affect the probability distribution for
a fair (unbiased) coin, i.e. P;{]\’,T,i(k) = PX;/(k) for p. = 1/2, the situation changes
for the biased coin (p. # 1/2). In general, it is then PQRA’,T,i(k) # PX;/(k) while the
resulting distribution is symmetric (PQR ]\’,T,i(k) = PQR ]\’,T,i(—k)). This fact is immedi-
ately obvious when two alternated coins instead of alternated shifts are equivalently
used, which corresponds to a random walk with a single three-sided dice tossed ev-
ery second time step, providing three outcomes: walk two steps to the left, walk two
steps to the right, each with a probability of p.(1 — p.), and remain on place with
a probability of p2 + (1 — p.)%. In that sense, the dice is symmetric since walking in
both directions is equally probable, yielding a symmetric spatial distribution, the

width of which is defined by the bias of the initial coin.
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6. Quantum walks in position space

The above considerations only hold for an ideal coin toss which does not de-
pendent on the walker’s internal “state”. Experimentally, such coin toss is difficult
to implement using microwave pulses which rather induce a unitary evolution of
the quantum state. To mimic a stochastic process a measurement destroying the
state after each time step of the walk is required which can be realized by photon
scattering. After each measurement, however, the atom has to be brought back to
the qubit’s Hilbert space again using optical pumping prior to the next microwave
operation.? In case of a random walk with more then ten time steps, only a small
fraction of atoms would survive such procedure. For this reason, we follow another
approach: Instead of destroying the qubit state by photon scattering, we merely
destroy its phase relation by introducing a delay of the order of the homogeneous
dephasing time. The evolution of the walk must therefore be described by a density
operator

plt+1) =Gy oG, + Gy p(0)G (6.16)
with the time evolution operators
Gy = | P @D)S(C@ L) forteven (6.17)
’ (D4 ®1)S (C®1) fortodd

and the projector operators

- o) = ia+id)o)
Dﬂ'{ oo laEan (015)

which remove all off-diagonal entries of /() emulating decoherence. For an unbiased
coin (p. = 1/2), the resulting spatial probability distribution recovers a symmetric
binomial distribution of the random walk, irrespective of the initial state. Other-
wise, for p. # 1/2, the distribution indeed depends on the initial state of the walker
and can even be asymmetric. Hence, for our experimental realization of a random
walk, errors in the coin manifest themselves in deviation of the measured probability
distribution from the classical distribution of a random walk.

6.2.2. Experimental sequence

To reduce the statistical error in subsequent analysis, the experimental sequence of a
quantum walk is usually applied on multiple atoms which do not overlap during their
walk. The sequence basically consists of three parts: In the first part, the initial
state |Wo) = |vo) ® |ko) = |0, ko) of each walker is prepared. For this purpose, we
load on average eight atoms into the optical lattice, adjusting the parameters of the
MOT in such a way that atoms are widely distributed over the lattice sites ensuring
a sufficiently wide walking space on both sides. From an initial fluorescence image,
the initial position of each atom (the walker) is extracted, defining its reference zero

3Since optical pumping involves photon scattering, it can also take over the role of the destructive
measurement at the same time.
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6.2. Experimental realization

position in the lattice (|ko) =|0)). The atoms are subsequently molasses cooled
before the lattice depth is adiabatically lowered to kg x 80 uKK — the typical depth
for initializing and manipulating the atom’s qubit states, see Sec. 3.1.1. Finally, the
atoms are optically pumped into the qubit basis state [ig) = |0), whereas for other
initial qubit states, a microwave pulse is subsequently applied, e.g. a 7/2-pulse for
|1o) = %(|0> +i|1)) or a m-pulse for |¢pg) = |1), see Tab. 3.1 in Sec. 3.2.1.

In the second part of the sequence, the actual quantum walk for a preset num-
ber of time steps (2N ") is performed by alternately applying the coin and the shift
operators Sy and S|, the order of which is defined in Eq. (6.8). The shift opera-
tors are implemented by the state-selective transport with a linear driving ramp,
an adjusted optimum ramp time of 7)/5 = 18.5 us and a settling time of §t = 2 us,
resulting in a total transport time for a single shift of 7yans = 20.5 pus. For demon-
stration purposes, we use the unbiased coin operator Ck defined in Eq. (6.9), which
is implemented by a 37 /2-pulse with a pulse duration of 12us and a phase of
¢rf = /2 with respect to the first pulse, i.e. Cp = Ugﬂ/z x/2, see Tab. 3.1. In-
tuitively, an implementation of an unbiased coin employing a m/2-pulse, which
corresponds to the Hadamard coin Cy = UA'W/Q,,T/Q of Eq. (6.5), would be a more
appropriate choice, since 7/2-pulses are in general more robust to frequency detun-
ing than 37/2-pulses of equal Rabi frequency. However, preliminary experiments
have shown that quantum walks employing such coin implementation experience
more decoherence than those using 37 /2-pulses. We thus suspect additional rephas-
ing processes when 37 /2-pulses are used, which however cannot be explained just
from evolution of the respective operators. The presence of rephasing processes
is partially supported by experimental results which reveal comparable coherence
properties to those obtained with spin-echo techniques employed in the sequences.
Further theoretical investigations are planed in the future, taking a more extensive
decoherence and dephasing model into account compared to that presented in this
thesis. Finally, to emulate an unbiased coin toss of a random walk, a 7/2-pulse
with a phase shift of ¢ = /2 is used to intentionally omit possible rephasing.
Furthermore, an additional delay of 400 us between each coin and the subsequent
shift operation is introduced, so that the phase relation between subsequent steps
of the walk is destroyed.

In the third part of the sequence, the final atom distribution is probed by flu-
orescence imaging, determining the relative position of each atom with respect to
its initial (zero) position, see Sec. 4.5.3. Optionally, we extract information on the
internal state populations and relative phase by local quantum state tomography.
The latter is based on site-resolved, state-selective detection combined with single-
particle operations and projection measurements employing the push-out technique.
For details, see Sec. 3.2.4. The local state tomography provides a population distri-
bution for each eigenstate of the Pauli spin operators defining the u-, v- and w-axis
of the Bloch sphere. From these distributions, the final state (the Bloch vector) at
each relative position of the walker can be reconstructed providing a partial insight
into coherence properties of the walk, see below.
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Figure 6.3.: Spatial probability distribution of a six-step quantum walk for (a) the initial
state |¥q) = %GO, 0) +¢|1,0)) and (b) the initial state |¥o) = |1,0), each inferred from
approximately 800 identical realizations. Measured data are shown as a histogram. Solid
lines show the theoretical expectation for the ideal case; dashed lines results of the
dephasing model of Eq. (6.13). Error bars indicate the statistical error. (c) Spatial
probability distribution of the analogous random walk.

6.3. Experimental results

We apply the quantum walk sequence for 2N’ = 6 time steps on atoms initialized
in state |¥g) = |1,0) and |¥q) = %(\O,m +i|1,0)), respectively. In addition, for
comparison, we perform an analogous random walk in which the phase relation
between subsequent steps is destroyed by intentionally introducing decoherence,
see Sec. 6.2.2.

In Figure 6.3, the resulting spatial probability distributions are shown and com-
pared to the theoretical expectations for an ideal case (no decoherence), character-
ized by Ay, = 0 for the quantum walk, and p. = 1/2 for its random counterpart.
Both measured quantum walk distributions reasonably well reproduce the theo-
retical results: For |Ug) = %(|0, 0) 4+ 4|1,0)), the characteristic two-peak splitting
of the quantum walk is recovered, see Fig. 6.3(a), albeit both peaks are partially
smeared out while the distribution reveals a slight asymmetry. Smearing-out of the
characteristic peaks can be attributed to decoherence introduced through either
the coin or the shifting operations, whereas the slight asymmetry and especially
the transferred weight of the distribution to the outermost positions (£3X/2) most
likely arise from systematical errors of the coin. The measured distribution for
|Wo) = |1,0) in Fig. 6.3(b), reveals the characteristic asymmetry with a pronounced
peak at +2X/2, and a smaller peak at —2\/2, in good agreement with the theoret-
ical prediction. Here as well, a smearing-out of the peaks and a transfer of their
weight to the outermost relative positions can be observed.

Both measured distributions seem to better match with the theoretical results for
the ideal case rather than the estimations from the dephasing model of Eq. (6.13).
This fact may have various reasons: First, the real experimental values of the av-
erage vibrational occupation numbers in the model may be lower than our typical
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values Ni,x = 1.2 and Myraq = 200 which have been used for the calculation. This is
the case when the temperature of the atoms lies below the typical value of 10 uK.*
Second, the shift dynamics of the state-selective potentials which enter the dephas-
ing model may improperly describe the real experimental situation. This can be
the case, when retardation components in the polarization control setup introduce
additional distortion which may partially decrease differences in potential dynamics
and thus the amount of inhomogeneous dephasing as well. Third, possible rephasing
processes may appear which are not considered in our model. Fourth, pulse errors
in frequency duration and phase affecting the coin operation, excitations between
motional states affecting the interference properties and position-dependent accu-
mulation of phase due to an inhomogeneous environment (see Sec. 5.2) may affect
the spatial probability distributions. Coin and shift operations can even change
from one time step to another due to drifts of experimental parameters over the
course of the measurement, giving rise to homogeneous dephasing. Finally, external
perturbations such as fluctuations of the ambient magnetic field, laser power, beam
pointing, or spontaneous emission processes, introduce additional decoherence even
in the absence of a quantum walk sequence, see Sec. 3.3. In general, it is nearly
impossible to unambiguously extract coin or shift errors or estimate the amount
of decoherence just from a single measured distribution, since the number of un-
known parameters exceeds the number of data points. The interplay of different
decoherence sources together with systematic errors makes it also difficult to model
experimental imperfections and quantitatively extract the respective contributions
from the measured data. Consequently, throughout this thesis, we abstain from a
quantitative analysis of these imperfections and rather qualitatively discuss their
possible effects.

By intentionally introducing decoherence in the quantum walk sequence (see
Sec. 6.2.2), the spatial distribution of the random walk is recovered, see Fig. 6.3,
irrespective of the choice of the initial qubit state |¢)g). The measured distribu-
tion is well symmetric and agrees reasonably well with the binomial distribution of
Eq. (6.1) for p. = 1/2. We observe merely a slightly increased weight at the initial
position which may arise from atoms wrongly initialized into internal states lying
outside the qubit’s Hilbert space before the walk starts. In that case, atoms are
insensitive to microwave operations. Hence, for an even number of time steps, they
are shifted back and forth to the initial position, see Sec. 4.6.

6.3.1. Quantum-to-classical transition

Reproducing spatial probability distributions of a quantum walk with its charac-
teristic features and dependency on the internal state of the walker, but also the
ability to recover its classical counterpart just by introducing decoherence, provides

“Note that this temperature value relies on a measurement which has been performed long before
quantum walks have been investigated. Since then, several methods improving alignment of
experimental setup and fine-adjusting experimental parameters, including molasses cooling have
been developed.
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Figure 6.4.: (a) Scaling of the standard deviation of the measured spatial probability dis-
tributions on a linear and double logarithmic scale (inset) for a quantum walk (red) and
random walk (green). The solid lines indicate the expectations for the ideal cases. Error
bars are smaller than the size of symbols. The measured quantum walks follow the ideal
linear behavior until, because of decoherence, they gradually turn into a random walk.
The dashed line in the inset indicates an offset shifted square-root scaling. The proba-
bility distributions for 2N’ = 12 (b) and 2N’ = 20 (c) show a gradual change from the
quantum to a classical shape. The theoretical prediction is shown as a solid line for the
pure quantum walk and as a dashed line for the random walk.

strong evidence of multipath quantum interference. There are, however, further
characteristic properties distinguishing the quantum walk from the random walk,
see Sec. 6.1.2. The most prominent of them is the scaling of the standard devi-
ation of the probability distribution with the number of time steps. From this
scaling, we anticipate an insight into the quantum-to-classical transition initiating
the breakdown of multipath quantum interference.

To investigate the scaling of standard deviations for the random and quantum
walk, we again apply both sequences for 2N' = {2,4,6,...,24} time steps on atoms
initialized in |¥g) = %(\O, 0) +|1,0)). For each resulting distribution P, (k), we
calculate the standard deviation using

N
2Ny = | D> kA4 piyp ]’ Pyyi(k) (6.19)
k=—N’
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with the expectation value defined by

N’

Hon' = Z (kA/4) - ﬁQN'(k)- (6.20)
k=—N'

In Figure 6.4(a), standard deviations for both walks and different numbers of
time steps are shown. For the quantum walk, the standard deviation follows closely
the expected linear behavior for up to ten time steps. The subsequent deviation is
due to decoherence, which asymptotically turns the quantum walk into a classical
random walk. This quantum-to-classical transition is particularly noticeable in the
double logarithmic plot (see inset of Fig. 6.4(a)), revealing a transition from one
straight line to another, the slopes of which correspond to the expected exponents
one and one-half, respectively. For the random walk, the typical square-root scaling
is recovered. The fact, that the measured values lie slightly below the theoretical
curve is most likely attributed to atoms the internal states of which lie outside the
qubit’s Hilbert space before the walk starts. These atoms give rise to an increased
probability of finding an atom at its initial position (see above), which in case of
a symmetric distribution do not contribute to the standard deviation. Further-
more, a bias of the coin can also decrease the standard deviation of the probability
distribution. Both effects, however, cannot be distinguished from the probability
distribution of a random walk alone.

The quantum-to-classical transition can be partially observed in the measured
spatial probability distributions of the walk, see Fig. 6.4(b,c). They reveal a grad-
ual recovering of the characteristic central peak of the random walk with increased
number of time steps, while the characteristic two-peak distribution of the quan-
tum walk is stepwise suppressed. Similar transitions in spatial distributions have
been theoretically predicted for various decoherence models relying on homoge-
neous dephasing, see e.g. Refs. [50,180,181] and reference therein, albeit not for the
particular case of alternating shift operators.

6.3.2. Quantum state reconstruction

To get a more detailed characterization of the wave function prepared by a six-
step quantum walk sequence for atoms initialized in |¥g) = %(|0, 0) +1[1,0)), we
extract information on the internal state populations and relative phases by lo-
cal quantum state tomography. For this, after the second part of the quantum
walk sequence, we apply a series of projection measurements in the qubit states
luy) = %(|0> +11)), |vy) = %(|0> +1i|1)) and |wy) = |0), and their orthogonal
complements |u_) = %(\O) — 1)), Jvo) = %(\m —|1)) and |w_) = |1), respec-

tively. From the resulting, state-dependent probability distributions

6,Ju+)
P(?l’;i;wo)(k), etc., at each lattice site, the internal quantum state is reconstructed

and represented by a vector on the Bloch sphere. For details on reconstructing the
Bloch vector see Sec. 3.2.4.

ﬁQ,N,\‘I’(ﬁ(kj),

193



6. Quantum walks in position space

o
w

2
N
T

o
T
-
H

Probability

N i
T
L s

-4 -2 0 2 4
Position (A/2)

Position (A/2)

Figure 6.5.: Local quantum state tomography of the atomic wave function after a six-step
quantum walk for |¥o) = %(|0,0> +14|1,0)). The distributions show the contributions
of the qubit states |wy) (a, +w-axis), |v_) (b, —v-axis), |us) (¢, +u-axis), |w_) (d,
—w-axis), |vy) (e, +v-axis), and |u_) (f, —u-axis). Reconstructed Bloch vectors at each
relative position in the lattice are shown below. The tips of the reconstructed and ideally
expected Bloch vectors are shown as black and red dots, respectively. The lines for Bloch
vectors extend to the surface of the Bloch sphere to guide the eye; deviations from the
surface illustrate the effect of decoherence and measurement errors.

In Figure 6.5, the state-dependent probability distributions (a-f) and the re-
constructed Bloch vectors at each relative position are shown, together with the
theoretical prediction for the ideal case. The measured distributions qualitatively
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recover the main features of the theoretical results, including symmetry and posi-
tions of the characteristic peaks, albeit noticeable deviations are visible. The same
applies for the reconstructed Bloch vectors which fit well to the theoretical predic-
tion at the edges of the distribution, but they show increasing deviations in a region
close to the initial position of the walk. In this region, matter wave interference
occurs at almost every step during the sequence, which makes the respective posi-
tions more sensitive to decoherence compared to those further apart. Such behavior
can partially be inferred from the calculated contributions of the distribution for
Apy # 0 in Tab. 6.1, which reveal an increasingly dominant dependency on Ay,
close to the initial position,® indicating a higher sensitivity to inhomogeneous de-
phasing in this region. The increasing decoherence close to the initial position can
be read out just from the decreasing length of the respective Bloch vectors (see
Sec. 3.2.4). Deviations in their pointing directions are partially attributed to sys-
tematical coin and shift errors but also to technical limitations of our experimental
setup, in particular concerning the long-term stability as the measurement of each
spatial probability distributions takes approximately 30 minutes in our case. Strik-
ing evidence for long-term instabilities manifest themselves by the lengths of the
reconstructed Bloch vectors which at —3\/2 is larger than one.

Finally, to check whether the measured tomography data is consistent within
itself, we calculate the sum of probability distributions for each pair of complemen-
tary states. This sum should obey

~Q, 1L, =SQ,| T S5Q M, |
P00 () = BT (k) + PR (k) (6.21)

with the overall, independently measured probability distribution ﬁé’g’u"%)(lﬂ).
However, we infer merely an agreement within 2.5, 3.0, 2.1 times the statistical
error for X = u, v, w, respectively, indicating problems in long-term stability of
the experiment over the course of the tomography measurement.

In order to perform not only local but full quantum state tomography, also the
off-diagonal elements of the position space density matrix of the final state have
to be measured. This can in principle be done by applying j shifting operations
prior to the last coin operator which then allows to perform local measurements of
the off-diagonal elements which have the form |k)(k + j|. This scheme, however, is
challenging in our case, as the sequence involves several shifting operations even for
small quantum walk distributions, leading to significant decoherence.

6.3.3. Reversing the quantum walk

The local tomography does not yield information about the off-diagonal elements
of the position space density matrix, which essentially contain information about
the phase relation between the wave function at different lattice sites rather than
at each site. To demonstrate the spatial coherence of the state over all populated

®Even though the distribution in Tab. 6.1 has been calculated for |¥o) = |1,0), similar conclusions
can be drawn for the initial state |¥o) = %(|O7 0) +¢|1,0)).
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lattice sites, we aim to reverse the multipath interference by (partially) inverting
the respective operations in the sequence. For this, we invert the coin operation

S

: 0 = H(0)+ 1) 622)
—

Cl=0U : 2
B {|1> 700~ 1)

Sl

and swap the shifting directions of the shift operations. Note that full inversion of ST

N N 1 N
and S| is only possible for Ag, = 0, since in that particular case it is (St ;) =S5 4.
Otherwise, unequal accumulation of phases cannot be reversed in our particular
sequence, preventing a full inversion of the shift operators. We continue then the
previous walk for six additional time steps, so that

3

T3 = [(Cpt @ 1)S,(Ct @ 1)S] - [9,(Cr @ 1)8;(Cr @ 1) W) . (6.23)

Being only interested in the spatial probability distribution of this “reversed” walk
_17 b \Il >
Pyl T () = (X351 B 0L5) (6.24)

the very last coin operation can be omitted in the sequence. In the ideal case, for
Aypy = 0, negligible drifts of experimental parameters defining the coin and shifts,
and perfect inversion of the coin operations, the quantum walk is expected to be
perfectly reversed, i.e. all matter wave components of the walker are merged on the
initial lattice site, yielding a refocused distribution PQ(E\}TM%) (k) = k.0

In Figure 6.6, the measured “refocused” distribution is shown, revealing a pro-
nounced spike at the initial position superimposed with a binomial-like distribution.
To explain the shape of the measured distribution, we distinguish two possible types
of dephasing considering each of them separately: Pure, homogeneous dephasing
of the coin while Ap,, = 0, following the model of Refs. [177,181], and inhomoge-
neous dephasing arising from shifting of thermal atoms in state-dependent poten-
tials (Agy # 0) using our dephasing model, see e.g. Eq. (6.13).

Suppose that our reversed quantum walk suffers solely from homogeneous dephas-
ing of the coin. Following the dephasing model of Refs. [177,181], which considers
decoherence in the form of randomly-occurring uncorrelated non-unitary events
characterized by the probability pqec and added to the quantum walk dynamics,
the calculated probability distribution reveals then a characteristic shape: a spike
at the initial position superimposed with a binomial-like distribution, which we
refer to as the background. By increasing the amount of dephasing (pgec), the
central spike is gradually suppressed, its weight is transferred to the background
which becomes increasingly dominant, until finally the binomial distribution of the
random walk is fully recovered. In that extreme case, both the coin operator Ci
and its inverse C’E_ L act identically as a classical unbiased coin toss. Hence, there
is no reversion at all and the random walk is just continued with one omitted coin
toss. To incorporate possible systematical errors of the coin, we consider the most
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Figure 6.6.: Measured spatial probability distribution of time-reversing sequence to refo-
cusing the delocalized state of a six-step quantum walk. The distribution shows a pro-
nounced peak at the center, to where, ideally, the amplitude should be fully refocused,
surrounded by a binomial-like background. Solid line shows a fit of the homogeneous
dephasing model of the coin. Dashed line shows a calculated distribution which solely
assumes inhomogeneous dephasing due to shifting of thermal atoms.

general coin on Hqpjt,
RIS B Ul VPe - 10) + VT =pc - e|1)
P, - ’1> N 1 — De - 626’0> — \/p_c . ez(a+5)’1>

with 0 < p. <1 defining its bias and 0 < «a, 8 < w. In the dephasing model of the
coin, the refocused distribution for the initial state |¥() = %(lm + i|1)) is sym-

, (6.25)

metric for any choice of pgec and p¢, and does not depend on 3 at all. For pgec > 0
and p. # 1/2, the coin bias gradually transfers weight from the background to the
central peak until finally for the trivial cases p. =0 or p. =1, i.e. no pulses or
m-pulses, respectively, only the central peak remains, irrespective of the dephas-
ing since there is no multipath interference at all while m-pulses only introduce a
global phase. Asymmetry in the background appears for 5 # 0 and 8 # 7. For our
particular coin C’E, it is p. = 1/2, =0 and a = . From a fit of the distribution
inferred from the homogeneous dephasing model to the measured data, we obtain
pe = (0.78 £0.01) and o = (0.90 £ 0.01)7 with a coherence fraction of (66 + 1)%
per time step (pgec = (34 £1)%). The inferred bias of the coin, however, seems to
be too large to be unnoticed in the preparatory measurements. It is also strongly
correlated to the coherence fraction, i.e. fixing the parameter to p. = 1/2 would
result in a coherence fraction of (76 4+ 1)%, which, albeit still too small, would be
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6. Quantum walks in position space

rather consistent with the scaling of the standard deviation, see Sec. 6.3.1. Hence,
even though the model seems to reasonably fit our measured data, it is unclear
whether it can solely explain the dominant decoherence process of the walk, see
below.

Neglecting homogeneous dephasing, for 0 < Ap, < 7% the distribution still re-
veals a spike at the initial position. However, the distribution is asymmetric while
the background provides a complex shape comprising sub-peak features. The refo-
cusing process is therefore distorted just by the accumulation of phase during the
shift. Taking additionally inhomogeneous dephasing by averaging over the thermal
ensemble into account, we obtain a probability distribution which seems to per-
fectly recover the measured data, see Fig. 6.6. This agreement, however, should
be regarded with reservations: First, we have solely considered inhomogeneous de-
phasing of the shift in this calculation while the duration of the inverted quantum
walk sequence (390 us) already exceeds the inhomogeneous dephasing T3 & 200 s
(see Tab. 3.2) in the absence of any walk. Thus, if no rephasing processes are in-
volved, we would rather expect a stronger deviation from the measured data. Even
in the presence of rephasing processes, the extended homogeneous dephasing time
T;’ ~ 900 ps is still of the order of the duration of the sequence (in the static case, i.e.
without transport, see Tab. 3.3). For this reason, homogeneous dephasing cannot
be ignored and should noticeably affect the measured distribution. Taking addi-
tionally excitations between motional states and drifts of experimental parameters
into account, we would rather expect a more binomial-like refocused distribution.
Since bias of the coins can be excluded,” we conclude that the dephasing contribu-
tion from the shift is overestimated by our model since it should not solely explain
the measured data. Furthermore, rephasing processes must be present during the
measurement. Finally, since each of the two different dephasing models alone fits
to the measured distribution, we can hardly distinguish between both dephasing
processes. Further investigations and extended theoretical models are therefore
required in the future.

6.4. Conclusion

In this chapter, I have experimentally demonstrated a discrete time quantum walk
on a line using single neutral atoms in a one-dimensional optical lattice. I have dis-
cussed substantial differences between the typical textbook example of a quantum
and random walk on a line and our particular implementation of both walks. Due
to technical limitations imposed by the state-selective transport, our quantum walk
sequences require application of alternating shift operations which among others
make the spatial probability distribution of the walk sensitive to inhomogeneous

5We focus only on the relevant interval. The same applies for A}, = Apn + jm with j € Z.

"We have carefully measured the coin operators and performed several consistency checks, in-
cluding Ramsey and single atom interferometry sequences in dynamic configuration besides the
standard method of recording the Rabi oscillations.
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dephasing. On the other hand, the limited population transfer efficiency of the mi-
crowave pulses prevents the use of spin-echo pulses in each shift which in principle
could counteract the inhomogeneous dephasing.

For a six-step quantum walk sequence, the measured spatial probability distri-
butions recovers the characteristic distributions of a quantum walk, revealing the
dependency on the initial state and the characteristic two-peak structures. They
agree reasonably well with the theoretical results, indicating the presence of quan-
tum interference. We also observe clear signs of experimental imperfections and
decoherence. By intentionally introducing decoherence in the quantum walk se-
quence, quantum interference is destroyed and the spatial probability distribution
of the random walk is recovered, irrespective of the initial state.

By increasing the number of time steps, we observe a quantum-to-classical tran-
sition in the scaling of the standard deviation of the measured distributions but
also in their characteristic features. The former shows a clear transition from a lin-
ear scaling of a quantum walk to a square-root scaling of the random walk, clearly
supporting the presence of quantum interference. For the random walk sequence,
the typical square-root scaling is recovered.

To get a more detailed characterization of the wave function prepared by a six-
step quantum walk sequence, I have extract information on the internal state popu-
lations and relative phases by local quantum state tomography. The reconstructed
Bloch vectors at each final position of the walker fit well to the theoretical pre-
diction at the outermost positions, but they show increasing deviations in regions
which are particularly sensitive to inhomogeneous dephasing.

Finally, I have investigated the spatial probability distribution of a (partially) re-
versed six-step quantum walk. The resulting distribution reveals a pronounced spike
at the initial position in which the delocalized walker is expected to refocus. This
spike is superimposed with a binomial-like distribution, which can be attributed to
both inhomogeneous and homogeneous dephasing. Both, a model solely considering
homogeneous dephasing and our dephasing model which takes only inhomogeneous
dephasing during the shift into account, can in principle explain the measured data.
The fact that the distribution does not fully recover the binomial distribution of
the random walk provides a striking evidence of high fraction of coherence of the
walk.

All results presented in this chapter make one thing clear: From the measured
data, it is nearly impossible to unambiguously extract experimental imperfections,
distinguish between homogeneous and inhomogeneous dephasing and estimate their
amount. For this reason, further investigations are required relying on sequences
with much higher number of time steps and advanced theoretical models. Both
strategies are planed in the future.
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7. Controlled two-atom collisions

Controlled on-site interactions between individual atoms or their matter wave com-
ponents in an optical lattice allow for a variety of applications ranging from efficient
production of ultracold molecules [182-185], realization of fundamental quantum
gates [16,53,55] to creation of large-scale entanglement [37,54]. In the last decade,
the respective experiments have been usually performed on large atomic ensembles
starting from a Mott insulating phase of an ultracold atomic quantum gas. Apart
from ideal starting conditions, this approach, however, currently suffers from the
lack of control and detection of individual atoms in the lattice.

In another approach, which has also been systematically followed in our research
group over the past years, systems of atoms are designed atom-by-atom, aiming
on full control over each individual particle [43,46,47,89] and their interactions
[34-36]. Parts of this “bottom-up” approach have been perfected during this thesis,
permitting single-site detection and generation of arbitrary patterns of atoms, see
Sec. 2.4 and Sec. 3.4.4. Inserting two selected atoms into a common lattice site
has so far been only achieved using optical tweezers [186]. The success rate of this
approach has been indirectly inferred from light-induced atom losses, appearing
when two atoms are irradiated with near-resonant laser light on a common site.
Such light-induced atom losses have been partially observed in Sec. 2.4.3.

In this chapter, I follow an alternative approach which uses the state-selective
transport to bring two atoms together to a single lattice site. In contrast to optical
tweezers, the state-selective transport offers additional advantages which enlarge its
range of possible applications: First, once two atoms have been brought together,
it allows us to subsequently separate and displace them to adjacent lattice sites
where their quantum states can be separately manipulated or detected. The entire
process, however, has to be performed within the coherence time. Second, utilizing
the delocalizing capability of the sate-selective transport (see Sec. 5.1), it addition-
ally allows us to investigate on-site interactions between delocalized matter wave
components. This ability has been proposed to generate multi-particle entangle-
ment [37,54] and has been recently demonstrated on a large scale [41], albeit the
initial and resulting state of the large atomic ensemble could not be fully charac-
terized so far. We aim to close this gap in the future getting a detailed insight on
a variety of on-site interactions at the most fundamental two-atom level.

In the following, I experimentally demonstrate how previously introduced tech-
niques, including generation of atom patterns, position-dependent manipulation of
qubit states and state-selective transport can be used to bring two atoms together
into contact. The success rate of this approach is inferred from atom losses due to
light-induced collisions. The purpose of this chapter is to give an overview over the
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experimental realization and its limitations rather than investigating different colli-
sion processes. The latter have been extensively studied in the past [63,67,112-114].
For a general review see Ref. [187] and references therein.

7.1. State-selective transport in a magnetic field gradient

To state-selectively transport two atoms towards each other, both atoms have to
be prepared in orthogonal qubit basis states, i.e. one atom in |0), the other in |1).
Furthermore, because of the limited transport efficiency (see Sec. 4.6), high success
rates in bringing two atoms together are only achievable if both atoms are initially
separated by only few lattice sites. For this reason, position-selective manipulation
of their qubit states requires a strong magnetic field gradient. Such field gradient,
however, cannot be switched off just before the transport since the decay time of
the magnetic field is of the order of the 7T} relaxation time. Hence, all transport
operations have to be performed in a magnetic field gradient, imposing some limits
in practice.

Transporting atoms over several lattice sites requires microwave m-pulses, the
frequencies of which have to be resonant with the |0) <+ |1) transition of the respec-
tive atom, see Sec. 4.5. For regular m-pulses employed in this thesis, already small
detuning from this frequency would significantly decrease the population transfer
efficiency and thus, according to Eq. (4.51), the transport efficiency as well. In pres-
ence of a magnetic field gradient, the transition frequency is position-dependent and
thus changes while atoms are shifted along the lattice. However, since atoms are
stepwise shifted from site to site, knowing the axial gradient strength B’(I) and the
shift direction, the microwave frequency could be in principle stepwise adjusted,
once the initial position of the atom and the corresponding |0) <> |1) transition
frequency wq(r, I), see Eq. (3.60), are known. Alternatively, by employing the pat-
terning sequence prior the state-selective transport, this initial position and the
transition frequency can be even preset, see Sec. 3.4.4. For 2K transport steps the
adjusted frequency would then read

wp = wo(r, I) k- (I)A/4, (7.1)

where £k =1,...,2K — 1 denotes the number of completed transport steps and
W' (I) = vB'(I) is defined in Eq. (3.60). The sign in Eq. (7.1) has to be inferred from
preliminary measurements, since it depends on a number of parameters, including
the initial qubit basis state, the direction of polarization rotation and the sign of
B'(I) in Eq. (3.60).

There are several technical problems facing the above approach: First, to step-
wise adjust the microwave frequency within a typical transport time of =~ 20 us,
the RF signal generator (see Sec. 3.2.2) has to be operated in frequency mod-
ulation mode. This operation mode, however, provides a lower frequency sta-
bility compared to the usually used fixed frequency operation. Second, since for
B'(I =45A) = —123G/cm the pulse bandwidth of a regular 7-pulse corresponds
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to an axial distance of less than 1 pum in position space, the transport efficiency
may suffer from drifts of the quadrupole field with respect to the optical lattice
during the transport. This does not hold for drifts appearing in the time interval
between repetitions of the transport sequence, as long as the initial position and
transition frequency of the atom are previously defined by the patterning sequence.
Finally, for two atoms transported to a common lattice site, a m-pulse adjusted for
one atom may unintentionally affect the qubit state of the adjacent atom, unless
efficient and selective m-pulses with single-site resolution can be ensured. Since the
current status of the experiment cannot ensure such resolution, the above approach
is not suitable for bringing two atoms into contact.

For this reason, another approach is followed in this thesis: Instead of using
regular m-pulses, broadband composite pulses, namely 90¢225159315g-pulses are
employed in the transport sequence, see Sec. 3.5 and also Sec. 4.6. By this, the
frequency of these pulses does not need to be changed and can be kept fixed for the
entire transport sequence. The maximum number of transport steps in the sequence
depends on the axial gradient strength B’(I) and is limited by the bandwidth of
the pulses. This approach, however, allows us to operate the RF signal generator
in the stable fixed frequency mode. Furthermore, due to an extended bandwidth
of the 90¢2251893159-pulse, the transport efficiency is less sensitive to drifts of the
quadrupole field relative to the optical lattice.

The center frequency of the composite pulses has to be adjusted to the desired
transport distance. For transporting a single atom over a distance of K\/2, it is
ideally preset to

wep(K) = wo(r,I) £ K -w'(I)\/4. (7.2)

For B'(45A), the bandwidth of the 900225180315¢-pulse currently permits a trans-
port within a region comprising up to K =7 lattice sites, see Sec. 3.5. Since for
efficiency reasons large transport distances are anyway avoided, the size of this re-
gion suffices for our purpose. The initial separation between two atoms which have
to be brought together to a single site should therefore be smaller than 7\ /2 ~ 3 pym.

7.1.1. Experimental sequence

To investigate the transport efficiency of the composite pulses approach for the max-
imum available axial field gradient strength B’/(45A) = —123 G/cm, we prepare a
single atom with a preset position and transition frequency wg in the optical lattice
using the patterning technique, see Sec. 3.4.4. The preparation is typically per-
formed in a lattice depth of kg x 80 uK and an axial gradient strength of B/(45A)
using a single Gaussian 7-pulse with the frequency wg, a 1/y/e pulse half-width of
or = 15 us and a pulse duration of ¢ = 100 us. To improve the effective selectivity of
the pulse, we repeat the inner sequence core of the patterning sequence by a total of
M = 3 times, yielding a 1//e spectral half-width of 0,,(3) = (4.34 + 0.03) kHz. By
this, in most cases only a single or no atom at all remains on the desired position.
Only in very rare cases two neighboring atoms will remain. The magnetic field gra-
dient is then temporarily switched off and the lattice depth raised for fluorescence
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imaging to kg x 0.4mK. After acquiring an initial image of the atom with an ex-
posure time of 800 ms, the lattice depth is lowered to kg x 80 uK and the magnetic
field gradient is switched on again. The atom is then optically pumped into the
qubit state |0) before the state-selective transport is applied, see Sec. 4.5.

The transport sequence comprises 909225189315g-pulses and 2K transport steps
with K = {1,2,...,9} corresponding to a transport distance of K\/2. The pulse
frequency is preset to

wep(K) = (7.3)

wo(r, I) + Kw'(I)\/4 for K even,
wo(r,I)+ (K — 1)’ (I)A/4 for K odd.

For each transport step, a linear driving ramp with an optimum ramp time of
Ty/2 = 19 us and a settling time of 6t = 2 us is employed. Finally, we switch off the
field gradient, rise the lattice depth and acquire a final fluorescence image of the
atom. For each preset value of K, the entire sequence is repeated 500 — 1000 times.

7.1.2. Revealing drifts of the magnetic quadrupole field

From the initial images of the atoms, long-term drifts of the selectivity region of
the patterning pulse arising from drifts of the quadrupole field can be deduced. For
this, the initial positions of the atoms with respect to the imaging optics are plotted
as a function of sequence shot (sequence repetition).

In Figure 7.1, the resulting plot is exemplarily shown. The initial positions of
the atoms are approximately distributed along equidistant parallel stripes, the sep-
aration of which corresponds to the periodicity of the optical lattice. These stripes
thus represent positions of the lattice sites which obviously drift linearly in time
with respect to the imaging optics from shot to shot. The drift velocity, however, is
negligible on the timescale of a single sequence repetition with a duration of ~ 2.7s.
Furthermore, we observe alternating regions with atoms distributed almost over a
single lattice site and over two neighboring sites. The former regions correspond to
the case in which the selectivity region of the patterning pulse overlaps with a single
site. In between, the selectivity region is spread over two neighboring lattice sites,
affecting atoms on both sites so that each of them may remain in the lattice with a
finite probability after patterning. By connecting the overlap regions, a drift of the
selectivity region with respect to the optical lattice and the imaging optics can be
revealed. This drift is attributed to a drifting quadrupole field arising from thermal
expansion of the anti-Helmholtz coils, since it is only observable when the coils
are operated with high currents for a long time. The drift of the quadrupole field,
however, is also negligible on the relevant timescale of a single transport sequence
with a duration of less than 1ms.

7.1.3. Transport efficiency in a magnetic field gradient

Analogous to the previous analysis of the state-selective transport, we infer the
transport efficiency P in a magnetic field gradient from the probability histograms
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Figure 7.1.: Initial position of an atom prepared using the patterning technique with a fixed
frequency as a function of sequence shot. The distribution of atomic positions reveals
the relative drift between the imaging optics (reference system), sites of the optical
lattice (shaded stripes) and the selectivity region of the patterning pulse (dashed line).
Encircled regions approximately indicate an overlap between the selectivity region and
a single lattice site.

of relative positions of the atoms for different number of transport steps, see Sec. 4.6.
The transport efficiency stepwise decreases with the number of transport steps, see
Fig. 7.2. For K <7, it reveals a similar decay behavior to that of a transport
in absence of the field gradient, whereas the abrupt drop for K > 7 arises from
the transport distance which exceeds the region limited by the bandwidth of the
composite pulses. The decay behavior is assumed to arise from the limited transfer
efficiency of the microwave pulses Pm,gr. This transfer efficiency can be inferred
from a fit of the model function

2K—1
P5E = Puyge - | Poylwe —wer(K)), (7.4)
k=1

where wy, and wep (K) are defined in Egs. (3.60) and (7.3), respectively, and Py (6)
denotes the theoretical microwave spectrum of the 9002251893150-pulse (see e.g.
Fig. 3.24) as inferred from solving the optical Bloch equations. This model function
fits well to the measured data, confirming our assumption and yielding

Py gr = (96.0 £ 0.5)%, (7.5)
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Figure 7.2.: Transport efficiency Pog as a function of number of transport steps 2K in a
magnetic field gradient for a linear driving ramp with 7,0 = 19 us and Tirans = 21 ps,
employing 900225180315¢-pulses in the transport sequence. The solid line shows a fit of
the model function of Eq. (7.4) to the data. For comparison, the dashed lines indicate
the decay of the transport efficiency in absence of a magnetic field gradient, see Fig. 4.10.

which even slightly exceeds the corresponding value inferred in absence of the mag-
netic field gradient, see Eq. (4.54). We conclude from this fact, that the magnetic
field gradient does not noticeably affect the efficiency of displacing atoms from one
lattice site to another. So far, no statements can yet be made regarding the co-
herence properties of the transport in the gradient. Such statements would require
further investigations relying on single atom interferometry (see Sec. 5.1), which
are planed in the future.

7.2. Transporting atoms to a common lattice site

The experimental sequence to bring two atoms together to a single lattice site
basically comprises three stages: preparation of an atom pair with a predefined
separation, addressing of atoms in orthogonal qubit basis states and finally applying
the state-selective transport with a proper number of steps, defined by the initial
separation of the atoms. To determine the success rate of this approach, an initial
and final fluorescence image is acquired before the second and after the third stage,
respectively. The lattice depths for preparation, transport and fluorescence imaging
are similar to those used in previous section.

In contrast to previous experiments presented in this thesis, we now use two
RF signal generators: one for frequency modulated pulses, used in the patterning
sequence (secondary signal generator, see Sec. 3.2.2), the other for the composite
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7.2. Transporting atoms to a common lattice site

pulses, i.e. phase modulated pulses (primary signal generator).

The atom pair is prepared using the patterning sequence in a magnetic field
gradient with B/(45A) = —123 G/cm. We choose an atom pair separation of 4\/2,
so that on the one hand, efficient selective manipulation of the qubit states of both
individual atoms is ensured, while on the other hand, only four transport steps
are required to bring both atoms into contact. The patterning sequence comprises
two subsequently applied Gaussian pulses separated by a dwell time of 40 us. Each
Gaussian pulse has a 1/4/e pulse half-width of o, = 15 us and a pulse duration of
t = 100 pus. The preset pulse frequencies are given by

woL =we+ 2w (45A)\/2 (7.6)
for the left hand atom in the image plane, and
WoR = we — 2w (45 A)N/2 (7.7)

for the right hand atom, respectively. The center frequency w. has been previously
adjusted so that patterning of both atoms is performed in a lattice region, in which
high filling factors are expected. The inner sequence core of the patterning sequence
is repeated by a total of M = 3 times.

After the patterning sequence, the magnetic field gradient is temporarily switched
off while the lattice depth is raised to acquire the initial fluorescence image of the
atoms with an exposure time of 800 ms. We subsequently lower the lattice depth,
switch on the magnetic field gradient and optically pump the atoms into the qubit
state [0). Then, a Gaussian 7-pulse with the frequency wor, a 1/y/e pulse half-
width of o; = 6 us and a pulse duration of ¢ = 100 us is applied to flip the qubit
state of the right hand atom from |0) to |1).! Since both atoms are expected to
be separated by a distance of 4\/2, we intentionally use a less selective m-pulse
for this operation which provides a slightly higher population transfer efficiency
(]5|1> = (96 + 1)%) compared to the m-pulses employed in the patterning sequence,
see Eq. (3.65).

Finally, we apply four steps of the state-selective transport using 9092251803150~
pulses with a fixed pulse frequency of wcp = w.. For each transport step, a linear
driving ramp with an optimum ramp time of 7/, = 19us and a settling time of
0t = 2 us is employed. After transporting the atoms, we switch off the field gradient,
rise the lattice depth and acquire a final fluorescence image. During the imaging
process, atoms are irradiated with near-resonant laser light. Hence, we expect to
observe light-induced atom losses whenever two atoms occupy a common lattice
site after the transport. The entire sequence is repeated 7250 times.

! As presented in previous sections, the state-selective transport shifts the atoms in state |0) from
left to the right in the image plane, whereas atoms in state |1) are shifted in opposite direction.
Therefore, the right hand atom has to be initialized in state |1) to bring two atoms together
into contact.
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Figure 7.3.: (a) Initial positions and estimated qubit states of atoms as a function of se-
quence shot (left). Filled red and open green dots correspond to state |0) and |1),
respectively. The same colors are used to indicate the respective contributions to the
histogram of initial positions (right). From the stripe-like distribution of atomic posi-
tions, the positions of drifting lattices sites can be deduced. (b) Final positions of atoms
after a state-selective transport comprising four transport steps (left) and the correspond-
ing histogram (right). Dots and colors indicate the initial qubit state of the transported
atoms.

7.2.1. Experimental results

From the acquired pairs of initial and final images, in principle all relevant infor-
mation regarding the efficiency of each stage of the experimental sequence can be
directly inferred. For this, we first post-select image pairs, the initial image of which
show only a single atom. Since we expect a uniform filling of the lattice in the region
of interest prior the patterning, the probabilities of finding single left hand and right
hand atoms should be identical. This expectation is supported by the histogram
of initial positions, see Fig. 7.3(a), calculated from a subset of post-selected image
pairs, in which drifts of the selectivity region of the patterning pulses with respect
to the imaging optics are negligible. The zero position in the histogram has been
set to the position of the center frequency w. in the image plane.

The histogram in Figure 7.3(a) shows two almost identical peaks, separated by
the predefined distance of 4\/2. It reveals a proper setting of the pulse frequencies
in the patterning sequence. Since this histogram is calculated from atomic positions
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measured on a time interval of 90 min, substructures revealing the periodicity of the
optical lattice are smeared-out due to lattice drifts. Positions of the drifting lattice
sites can be determined from the stripe-like distribution of atomic positions, similar
to that in Fig. 7.1. From the slope of these stripes, we infer a drift velocity of 8 nm/s
which is negligible on the time scale of a single sequence shot with a duration of

3.7s.

State-selective detection using state-selective transport

The initial qubit basis state of atoms contributing to the histogram in Fig. 7.3(a)
can be estimated from their relative positions after the state-selective transport.
For this, we employ the fact that the transport direction of the atoms depends
on their initial states. Neglecting tunneling between lattice sites, this approach
provides in principle a detection reliability of 100% if only a single transport step is
employed. Otherwise, the detection reliability is decreased due to imperfections of
m-pulses used for transporting atoms over several sites. In that case, the reliability
can be roughly estimated from a probability histogram of relative positions inferred
from state-selectively transported atoms, see e.g. Fig. 4.9 in Sec. 4.6. Suppose that
atoms are efficiently prepared in the qubit basis state |0) prior the transport, for
2K transport steps the estimated reliability then reads

K
Fyit(2K) = Y hay, (7.8)
=1

where hg; denotes the histogram value at the relative position IA/2. For the four-step
transport in a magnetic field gradient, we typically obtain Fpit(4) ~ 92%. From the
probability histogram of relative position calculated from the post-selected image
pairs (not shown), the four-step transport efficiency is finally inferred, yielding
Py = (82 £ 2)%.

Employing the above state detection method, we estimate the qubit state of each
atom contribution to the histogram in Fig. 7.3(a). From the state-dependent con-
tributions, we deduce that pr, ~ 87% of the left hand atoms and pr ~ 85% of the
right hand atoms are initialized in the predefined qubit state |0) and |1), respec-
tively. However, since both values are estimated with a reliability of only 92%, they
should be considered with reservations.

Finally, to check whether single left hand atoms and right hand atoms are trans-
ported to a common lattice, we determine the final positions of the atoms from the
same subset of post-selected image pairs, see Fig 7.3(b). The corresponding his-
togram reveals indeed a single pronounced peak at the zero position in the vicinity
of which the common lattice site is expected. However, drifts of the optical lat-
tice and the resulting broadening of the central peak prevent a direct estimation of
the success rate of bringing two atoms from both sides together to a single lattice
site. For this reason, analogous to Ref. [186], we estimate this success rate from
light-induced atom losses.
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Figure 7.4.: Histograms of atom losses inferred for different subsets of initial atom pair
separations d; after a four-step state-selective transport and subsequent irradiation of
atoms with near-resonant laser light.

Success rate of bringing two atoms together to a single lattice site

We analyze the previous data set again, this time post-selecting those image pairs
with two atoms in the initial image. From the resulting data set comprising 390
image pairs, we determine the initial separations djen between both atoms using
the parametric deconvolution, see Sec. 2.4.3. The post-selected image pairs are
then further subdivided into three subsets: The first subset D. comprises 197
image pairs, for which the initial separations obey d; < 3.5A/2. They belong to
sequence repetitions in which two atoms are separated by three or less lattice sites
prior the transport. Hence, considering the transport efficiency, there is only a
marginally probability that both atoms end up in a common lattice site. The
second subset D_, in turn, comprises 111 image pairs with 3.50/2 < d; < 4.5\/2.
The respective sequence repetitions provide two atoms properly separated by the
predefined separation of four lattice sites. In that case, we expect a noticeable
probability of bringing both atoms together to a single lattice site. Finally, the
third subset D~ comprises the remaining 82 image pairs, i.e. those with d; > 4.5)/2.
They correspond to sequence repetitions in which two atoms are too far away to be
brought into contact using only four transport steps.

From each final image of the subsets, we determine the number of atoms which
remain in the optical lattice after the state-selective transport and the subsequent
irradiation with near-resonant laser light. By this, we infer whether no atom, a
single atom or two atoms got lost during the sequence.

In Figure 7.4, the resulting histograms of atom losses are separately shown
for each of the three subsets. For D, i.e. those sequence repetitions in which
two atoms never met, the probability of losing one atom out of two is given by
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p1. = (21 £5)%. This value reasonably agrees with @)ﬁl_a(l —Dia) = (15 £3)%,
where p1., = (8 £2)% denotes the probability of uncorrelated one-atom losses in
the time interval between acquisition of the image pairs. This probability is inferred
from a previous analysis of post-selected single atom images. The probability of
losing two atoms out of two is given by p5, = (1 £ 1)% in well agreement with the
expected value (Pi-n)? = (0.6 +0.3)%, whereas in pg, = (78 £10)% of sequence
repetitions no atom losses occur.

Almost similar results are obtained for D, namely p5, = (79 £+ 6)%, py, = (18+
3)% and p5, = (3£ 1)%. The probability of two-atom losses is slightly increased
and does not agree with the expected value inferred from uncorrelated one-atom
losses within the error bars. This fact might be a first indication for light-induced
losses of atoms unintentionally transported to a common lattice site due to the
imperfect transport. According to the initial atom separations such cases are in
principle possible, albeit they are extremely improbable for the given transport
efficiency. Due to the statistical error, however, we cannot infer a precise statement
from this data set.

Significant deviations from previous results are obtained for D_, i.e. for atoms
properly separated to be brought together to a single lattice site. Here, the proba-
bility that no atom get lost after the transport and near-resonant irradiation drops
to a value of pg, = (48 £7)%, i.e. by &~ 38% compared to pg, and pg,, indicating
additional atom losses. We attribute this losses to light-induced on-site interac-
tions. From pg, and the probability of uncorrelated atom losses pi_,,? the success
rate of bringing two atoms to a common lattice site can be deduced

Pae=(1=p1a)> = pga = 37T £8)%. (7.9)
This value agrees reasonably well with the success rate, estimated from the prepa-
ration efficiency of the qubit states and the transport efficiency of the atoms

Pest — (1 _ ﬁl—a)Q DL * PR - (P4)2 ~ 42% . (710)

suc

Furthermore, it becomes evident that by increasing both efficiencies the success
rate can be significantly increased. Alternatively, the selectivity of the preparation
pulses could be improved, allowing us to perform the same sequence with an initial
atom separation of two lattice sites instead of four, and thus employing only two
transport steps. By this, assuming the same preparation efficiency and population
transfer efficiency of the composite pulses during the transport, we could obtain
Py = (P)'? = (94 £ 1)%, yielding a success rate of P=(2) = 55%.

The histogram in Figure 7.4 reveals a further interesting detail. For D_, we ob-
serve an increase in both, the probability of losing a single atom pT, = (32 £5)%
and the probability of losing two atoms p3, = (21 £ 4)%. The respective contribu-
tions of the on-site interactions are given by

P = Pia — 2P1a(l — Pra) = (17 £6)% (7.11)

2Note that, we intentionally refer to the probability of uncorrelated atom losses pi.. rather than
to the respective histogram values from Do and D- since the former provides a smaller error.
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and
P = pia — (P1a)? = (20 £ 4)%. (7.12)

Thus, for two atoms occupying the same lattice site and being irradiated with near-
resonant laser light, the ratio between light-induced one-atom and two-atom losses
is 46 : 54. Experimental evidence that light-induced collisions can also lead to one-
atom losses have so far been observed and distinguished in a MOT [63], albeit with
a significantly lower fraction of one-atom losses. Further investigations are therefore
required to get a more detailed insight into these losses and their dependency on
experimental parameters, e.g. depth of the optical lattice, irradiation power, etc.

7.3. Conclusion

In this chapter, I have experimentally demonstrated how previously introduced
techniques, including generation of atom patterns, position-dependent manipulation
of qubit states and state-selective transport can be used to bring two atoms together
to a single lattice site. Due to technical limitations the state-selective transport has
to be performed in the presence of a magnetic field gradient. For this purpose,
two approaches have been proposed: One relying on a stepwise adjustment of the
microwave frequency during the transport, the other using broadband composite
pulses with a fixed frequency. Currently, only the latter approach allows us to bring
two atoms together into contact.

In principle, drifts of the magnetic quadrupole field during the transport may
significantly decrease its efficiency. I have demonstrated a method, which allows
us to reveal such drifts. In our case, these drifts turned out to be negligibly slow
compared to the duration of the transport sequence.

I have investigated the efficiency of the state-selective transport in the presence
of the currently maximum available axial gradient strength B’(45A) = —123 G /cm.
Similar to the transport in absence of a magnetic field gradient, the transport
efficiency is limited by the population transfer efficiency of the employed w-pulses,
here the 9002251390315¢p-pulses. It turns out that the magnetic field gradient does
not noticeably affect the transport efficiency.

Employing the above approaches and techniques, I have experimentally demon-
strated that two atoms can indeed be deterministically brought together to a single
lattice site. I have presented how the efficiency of each stage of the experimental
sequence can be deduced just from acquired fluorescence images. Furthermore, a
new detection method of the qubit basis states |0) and |1) relying on the state-
selective transport has been introduced and the reliability of this method has been
estimated.

Finally, I have inferred the success rate of bringing two atoms together into con-
tact from atom losses due to light-induced collisions, appearing when two atoms
occupying the same lattice site are irradiated with near-resonant laser light. The
success rate is given by Py, = (37 £ 8)% and agrees reasonably well with the theo-
retical prediction. It can be in principle increased up to Py ~ 55% by decreasing
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the initial separation of the atoms from four to two lattice sites.

The experimental results reveal that our method is capable of distinguishing
between light-induced one-atom losses and two-atom-losses, opening up new oppor-
tunities for investigation of on-site interaction on a two-atom level.

213






8. Perspectives

In this thesis, I have presented the realization and investigation of the state-selective
transport of single neutral cesium atoms in a one-dimensional optical lattice and its
applications, including a single atom interferometer, a quantum walk and controlled
two-atom collisions. Further methods to determine the atomic positions with sub-
micrometer precision, reliably infer the separation of atoms down to neighboring
lattice sites and individually manipulate and detect their internal states have been
discussed in detail. The methods and results presented in this thesis pave the way
for a wide range of interesting applications. In the following, I briefly outline some
future prospects and suggestions.

8.1. Anderson localization in disordered quantum walks

The one-dimensional quantum walk of a single atom in an optical lattice can be
used to observe localization phenomena similar to those described by Anderson in
Ref. [188], in which imperfect crystals are modeled by an independent and identi-
cally distributed random potential. Investigation of such walks may be classified as
a kind of quantum simulation of simple transport phenomena in solid-state physics.
For this purpose, the walker has to be subjected to disorder induced by a random
position-dependent coin [189]. Such coin can be realized by applying a sequence of
microwave pulses in the presence of a magnetic field gradient, by stepwise adjusting
the pulse frequency to the position-dependent |0) <> |1) transition frequency of each
lattice site in the walking region. Spatial randomness can be introduced by alter-
nating pulse phases during the pulse sequence, which are read from a previously
generated list of random values with a predefined distribution. However, since for N
time steps the walking region comprises 2N + 1 lattice sites, a sequence of 2N — 1
microwave pulses have to be applied in each time step of the walk, significantly ex-
tending the duration of the single repetition of the sequence far above our current
homogeneous dephasing time. Such quantum walk would therefore increasingly
suffer from decoherence, resulting in a classical distribution.

For this reason, we rather prefer another approach: Instead of using a sequence of
randomized coins in a magnetic field gradient and thus a well-defined environment, a
single coin in a (quasi-)random spatially distorted environment can be equivalently
used, suppose that this distortion translates into a random position-dependent
|0) <> |1) transition frequency or the accumulated phase of the matter wave com-
ponents during coin operations. Such random spatially distorted environment can
be formed by superimposing the optical lattice with additional standing wave light
fields generated by far-detuned counterpropagating laser beams (Aaqq > A). The
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amount of spatial randomness can be increased by intentionally introducing optical
aberrations in the incident beams before they are coupled in along the lattice axis
and retro-reflected. The magnitude of the resulting potential distortion can be ad-
justed by the power of these beams. The additional standing wave light fields can
be fast switched on whenever distortion is required, i.e. prior to each coin operation
of the walk, and switched off during the transport or preparation of the walker’s
initial qubit state. Since drifts of the optical lattice have been proven to be neg-
ligible on the time scale of a single repetition of a quantum walk sequence, the
interference patterns of the additional light fields must not be necessarily stabilized
with respect to the optical lattice. Drifts from one sequence repetition to another
would give rise to inhomogeneous dephasing, which however is expected to play a
marginal role in the localization phenomena [190].

8.2. Implementation of a two-qubit gate

One of the most interesting applications of the state-selective transport is the real-
ization of a fundamental two-qubit gate relying on coherent cold collisions between
matter wave components [37,41]. Besides improving coherence properties of our
system, full control over accumulation of phases is required. For this reason, atoms
have to be prepared in the purest possible quantum state by cooling them to the
motional ground state. Cooling of atoms to the ground state of axial motion has
recently been implemented in our experimental setup [68,129]. Further steps fo-
cusing on cooling to the ground state of radial motion are underway. Once we are
able to prepare the atoms in the motional ground state, the following scheme can
be applied to experimentally realize fundamental two-qubit gates.

Consider two neighboring atoms at positions kg = 41 in the lattice, each initial-
ized into qubit basis state |0), i.e. atom “1” in state |0, —1); and atom “2” in state
|0,1),. This initial configuration can be written as a product state |0, —1),]0,1),.
Using a 7/2-pulse both atoms are brought into an superposition of the qubit basis
states |0) and |1), resulting in the initial state

’\Ijini> = (‘07 _1>1‘07 1>2 + 1’07 _1>1‘17 1>2 + 1’17 _1>1’07 1>2 - ‘17 _1>1‘17 1>2) :
(8.1)
By successively applying a single step of the state selective transport (here 5},
see Eq. (4.43)), the matter wave components of both atoms are delocalized, each
accumulating a state-dependent phase ;) (j = {0, 1}) during the shift! until finally
two components are brought together to common lattice site k = 0, see Fig. 8.1(a).

Due to collisional interaction [37], they acquire an additional distinct phase, given

N |

Since we consider both atoms in the motional ground state, the multiple index vector m = 0 in
the phase has been dropped.
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Figure 8.1.: (a) Schematic sequence of a two-qubit gate employing state-selective trans-
port and coherent cold collisions [37] resulting in a collisional phase @i, see Eq. (8.2).
Symbols, paths and colors are identical to those in Fig. 3.7. (b) Extension for generation
of entangled clusters of neighboring atoms, which form the basis of a quantum cellular
automata [17,18].
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where 7y,; denotes the interaction time and
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the time-dependent energy shift with the s-wave scattering length a5 and the ground
state wave functions 11 (r) and 15 (7) of atoms in the common potential well of the
lattice. Finally, by recombining the delocalized matter waves of both atoms on
the initial lattice sites, the respective contributions to the initial state transform as
follows

0, —1),]0,1), — €10 |0, —1),1]0,1), (8.4a)
10, —1)4 |1, 1)y — €0 +2em)Fivme |0 —1),]1,1), (8.4b)
11,—1),]0,1)y — €20 Fem)|1,—1),]0,1), (8.4c)
11, =1)1|1,1)y — ¥ |1, —1),[1,1),. (8.4d)

This transformation corresponds to a fundamental two-qubit gate [191]. The single
qubit phases ¢);y can be precompensated either in the preparation of the initial state
or by extending the shift operation by a spin-echo rephasing m-pulse (see Eq. (6.14))
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while starting the sequence with next-nearest neighboring atoms (kg = £2). Alter-
natively, other qubit basis states can be used as proposed in Sec. 5.1.1.

The above scheme is scalable to a larger number of qubits (see Fig. 8.1(b)),
paving the way for generation of multi-particle entangled clusters of neighboring
atoms. Sequential operations of one and two-qubit gate operations with prede-
fined interaction phases can be used to experimentally realize a quantum cellular
automata [17,18] in the future.
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A. Software

A part of this thesis has been devoted to the development of computer software
which has to deal with different types of tasks, ranging from control of experimental
processes over acquisition of fluorescence images up to real-time or post-analysis
of the acquired data. In the following sections, a short overview over the most
important self-developed software is given.

A.1. Control Center

Menu bar Sequence tabs  Sequence table Analog output rows

Direct access Status bar Sequence toolbar Limits table
(analog output)

B'Conti ol Center

File Sed@ence Help
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Figure A.1l.: Graphical user interface of the software “Control Center”. For details, see text.

Most experimental parameters or processes are voltage controlled by multiple analog
or digital signals which are joined together in complex sequences. To rapidly design
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and precisely control any arbitrary sequence, a software called “Control Center”
has been developed. The software is written in ANSI C using LabWindows/CVI
8.5 (National Instruments) — an integrated development environment (IDE) which
provides a set of programming tools for graphical user interface (GUI) and the
DAQmx function library (National Instruments) to access the multifunction data
acquisition boards, see Sec. 1.3. The Control Center provides a graphical user
interface for sequence design which consists of a main window containing a menu
bar, a toolbar, a status bar, several buttons, fields and parameter tables and finally
a spreadsheet panel, see Fig. A.1. In the following, functions of the respective GUI
elements are shortly summarized.

Sequence toolbar The sequence toolbar contains buttons and fields for accessing

common commands and global parameters of the sequence. Details are shown
in Fig. A.2.

New Save Stop Outer loop Timebase Start trigger source Pause trigger source
Open | Start (enableidlsable) @75 i 10 ps) Start trigger edge Pause trigger when
| | |
Halzi=lcio)l 200 | (2] [ T E3a ) e I T I e e
! !
Number of repetitions Loop repetitions Sequence preview

Figure A.2.: Sequence toolbar for accessing common commands and global parameters of
the sequence.

Sequence table The columns of the spreadsheet panel define the sequence blocks,

which subdivide the experimental sequence into separate logical parts of si-
multaneous output signals from the 8 analog and 64 digital channels. The
signal of each channel is defined in the respective row of the spreadsheet,
which for overview reason can be individually labeled. The subdivision of
the sequence into blocks depends primarily on the digital signals, which can
either be set to a high or to a low level for the total duration of the block,
whereas analog signals are arbitrarily defined using mathematical expressions
entered in the respective fields of the spreadsheet and parsed by a mathemat-
ical parser. A built-in preview function, allows to directly check the parsed
signal, see Fig. A.3.

The mathematical parser supports numbers, arbitrary self-defined constants’
with up to 5 characters entered in fields of the constants table (see Fig. A.1)
and the four basic arithmetic operations (+, -, *, /) evaluated in the order
of precedence. It is case-insensitive and supports parenthesis and standard
mathematical expressions, including the square-root function sqrt (), the ab-
solute value abs(), the sign function sign(), the natural logarithm 1n(Q),
the exponential function exp(), the trigonometric functions sin(), cos(),
tan(), cot() and their inverses asin(), acos(), etc. Hyperbolic functions
sinh(), cosh(), tanh(), coth() and their inverses asinh(), acosh(), etc.,

!Some constants are already predefined, e.g. the mathematical constant pi.
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Figure A.3.: Parser preview. The preview window shows a signal parsed from a mathemat-
ical expression of a selected field in the spreadsheet panel.

are also supported. The parser comprises a list of predefined variables which
are dynamically adjusted during sequence design or a running sequence, in-
cluding the block duration dur, the current sequence repetition rep and the
total number of sequence repetitions numrep. The control variable in each
block is t, defining the time in milliseconds elapsed since the beginning of the
block (t € [0, dur]).

In the spreadsheet panel, blocks can be added, deleted, duplicated, copied
and pasted at any position. The same holds for any entry in their fields.
Furthermore, simultaneous selection and manipulation of multiple fields are
permitted, allowing for instance, to change the level of several digital channels
over multiple sequence blocks at once.

Once the sequence is precompiled, loaded into computer’s memory and started,
the sequence blocks are successively played from left to right. Optionally, for
each sequence block, a “jump to” operation and its number of repetitions
can be defined, permitting jumps to any previous sequence block. By this,
arbitrary inner sequence loops with a preset number of loop repetitions can
be defined. Such loops, for instance, have been employed in the patterning
sequence, see Sec. 3.4.4. It should be noted that the duration of a single
sequence repetition is limited by the computer’s memory.

Sequence tabs The Control Center provides a tabbed sequence interface, allowing
to work with multiple sequences in a single window.

Status bar The status bar displays the status of a running sequence, including
the number of sampling points, current sequence repetition, total sequence
duration and an estimation of remaining sequence time.

Limits table In the limits table, upper and lower voltage limits for each analog
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output channel can be defined. These limits are usually used to prevent the
controlled devices from overvoltage. Analog signals, the output voltage of
which lie outside the respective limits are just clipped at the level of the
limits.

Direct access panels Direct access panels permit a direct access to any analog or
digital channel without starting the sequence, switching them on and off or
setting the required voltage.

A.2. iXacq

To acquire, analyze, display and store fluorescence images of atoms in real-time,
a self-developed software called “iXacq” is used. This software is also written in
ANSI C using LabWindows/CVI 8.5 and a software development kit (SDK, Andor,
version 2.77%) which provides a suite of functions to access our EMCCD camera, see
Sec. 2.2.1. The imaging software provides a multiple document interface (MDI) with
freely scalable windows within a single parent window, see Fig. A.4. It is modularly
designed to be easily extended in the future. Similar to the Control Center, the
imaging software also provides typical user interface elements, including menu bars,
toolbars, status bars and parameter tables. In the following, functions of the most
important elements are shortly summarized.

Device settings The most common settings to configure and control the EMCCD
camera are gathered and clearly structured in a settings table embedded in a
side-panel of the parent window. The setting table can be saved to and loaded
from a predefined configuration file, employing the standard INI format.

Device information The device information side-panel provides all relevant infor-
mation, parts of which are regularly read out from the camera, e.g. detector
temperature, but also information about the CCD chip, the controller, the
firmware and driver version. They are all gathered in a clearly structured
table.

Deconvolution settings The deconvolution settings side-panel comprises a table
with all relevant settings used for the parametric deconvolution, see Sec. 2.3.5.

Imaging widow The freely movable and resizable imaging window displays acquired
images and the respective horizontal and vertical intensity distributions either
binned or determined along both orthogonal lines of a cross line cursor in
real-time. It provides a build-in zoom in, zoom out and zoom selection func-
tion and can optionally display results of image segmentation, atom number
estimation and positions of the atoms obtained from the parametric deconvo-
lution.

2Note that there are some incompatibility issues with newer versions of the Andor SDK, which
could not be solved so far.
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Figure A.4.: Multiple document interface of the imaging software “iXacq”. For details, see

text.
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Figure A.5.: Imaging window toolbar.

Besides a status bar displaying the intensity level of a pixel at the cursor
position, the imaging window provides a separate toolbar with buttons and
fields for accessing display and image analysis settings. Details of this toolbar
are shown in Fig. A.5.

Counter window The counter window displays the total fluorescence signal in the
region of interest as a function of acquired image. This features is typically
used for investigations employing a large number of atoms providing a high
fluorescence signal level, e.g. atoms in a MOT. It can be also used to monitor
drifts in the background signal level.

The acquired images are usually stored in an Andor SIF multi-channel image file
which can be opened and converted into other file formats using “Andor Solis” —
a software supplied with the EMCCD camera, or the self-developed software called
“Post Deconvolution”, see App. A.4. The latter provides additional features to
post-analyze fluorescence images of atoms. Results of real-time analyzed data are
optionally stored into dedicated, separated files in ASCII? format, together with
device settings and additional information which allow to easily reconstruct the
acquisition process afterwards.

A.3. WaveGen

Timing-critical applications require that driving ramps of the EOM amplifier (see
Sec. 4.3) and microwave pulse triggers (see Sec. 3.2.2) are rather controlled by
arbitrary waveform generators than by multifunction data acquisition boards of
the computer, since the former provide a higher bandwidth (80 MHz for Agilent
33250A) or (20MHz for Agilent 33220A) compared to the latter (500kHz). To
rapidly design, modify and transfer arbitrary waveforms and pulse sequences, and
control the generators from the computer, a software called “WaveGen” has been
developed. It is written in ANSI C using LabWindows/CVI 8.5, employing standard
commands for programmable instruments (SCPI) for the data transfer over GPIB.

3 ASCII: American Standard Code for Information Interchange.
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The software provides a graphical user interface containing a spreadsheet panel,
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Figure A.6.: Graphical user interface of the software “WaveGen”.

see Fig. A.6. Analogous to the Control Center, the waveform is compiled from
sequence blocks which are defined in rows of the spreadsheet (waveform table) using
mathematical expressions. The latter are then parsed by a mathematical parser,
which supports the same functions as that of the Control Center, albeit with some
differences arising from the operation principle of the generators: First, the control
variable in each block s and the block duration variable smpl are entered in units
of samples. The duration of a sample is defined by

1

As =
y N v

(A1)

where N denotes the total number of samples and v the operating frequency of
the generator entered in a dedicated numeric field. Second, the codomain of a
parameterized waveform function f(s) is restricted to the interval [—1,1] C R, i.e.
f:SCR—[-1,1], s = f(s). For f(s)>1 and f(s) < —1 the function value
is clipped, i.e. it is subsequently set to +1 and —1, respectively. The parameter
function is then transformed into an output voltage signal according to

Upg — UL
U(S) _ m(f(s) - fmin) + UL for fmax ?é fmin, (A2)
0

else,

where fiax = max{f(s)|s € S}, fmin = min{f(s)|s € S}, while Uy, and Uy denote
the lower and upper voltage level, respectively. Both voltage levels can be preset
in the respective fields of the generator settings, see Fig. A.6. Finally, only eight
predefined parser constants ci,...,c8 are supported.

Waveforms can be saved to and loaded from a file in ASCII format, together with
the configuration of the generator and the respective GPIB address. Furthermore,
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the software provides a build-in feature allowing to generate an output signal with
precompensated influence of the transfer function of a linear, time-invariant system.
A list of transfer functions can be directly loaded from multiple ASCIT files.

A.4. Post Deconvolution

In most cases, it is more advantageous to post-analyze the acquired fluorescence
images rather then inferring the results in real-time. This is especially important
when the line spread function or other deconvolution parameters are not precisely
known before the acquisition process and need to be inferred from the images after-
wards. For this purpose a software called "Post Deconvolution” has been developed.
Just like any other software in this thesis, this software is also written in ANSI C us-
ing LabWindows/CVI 8.5, whereas parts of numerical algorithms are adopted from
Numerical Recipes [109]. The software provides a graphical user interface with a
display panel for results of the parametric deconvolution. This is particularly use-
ful for adjusting the threshold level and the wings of each atom’s distribution, see
Sec. 2.3.1. Furthermore, it provides a preview of the estimated baseline, the regions
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Image slider
Figure A.7.: Graphical user interface of the software “Post Deconvolution”.

of interest (ROIs), the number of atoms and the atomic positions, see Fig. A.7.
The deconvolution settings are clearly structured in a dedicated parameter table.
An image slider allows to browse between the acquired images. In addition, the
software permits to automatically analyze transport data, calculating the relative
positions of the atoms while considering uniqueness issues discussed in Sec. 4.5.3.
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The post-deconvolution software supports the Andor SIF multi-channel image file
format, allowing to directly access the raw data as inferred from the EMCCD cam-
era. Besides the analysis of a single selected file, it also provides a batch operation
mode which permits to successively analyze multiple files at different locations. For
this, the names and paths of the SIF files have to be entered in a batch file, which
is then processed by the software. Results of the analyzed data are stored at the
same location as the original SIF file in dedicated ASCII files with a characteristic
suffix:

[SIF file]_num_post.dat In this file, the estimated numbers of atoms are stored.

[SIF file]_ppos_post.dat This file contains the calculated positions of atoms in units
of pixels. Each result is preceded with comment lines starting with the char-
acter #. These comment lines provide information on the image number, the
background baseline value, positions and sizes of the ROIs from which the
atom positions have been inferred and the chi-squared fitting error. Besides
positions of the atoms, their fluorescence contributions are also stored. Er-
roneous results, which fail the reliability criterion (see Sec. 2.3.7) are marked
with a preceding comment #ERROR, so that they can be easily found in the
file for root cause analysis.

[SIF file]_dist_post.dat In this file, calculated separations between atoms in units
of pixels are stored. Results are preceded with a comment line which indicates
the respective image number.

[SIF file]_trans.dat This file contains the relative positions of transported atoms
in both, units of pixels and lattice sites as inferred from successively acquired
image pairs. A preceded comment line indicates the image numbers of the
respective image pair.

[SIF file]_settings.log In this file, settings from the parameter table (see Fig. A.7)
are stored, to easily reconstruct the deconvolution process afterwards.

Note that names, formats and contents of files stored by the real-time analysis
module of the software “iXacq” are similar to those presented above, only the suffix
“_post” is missing for distinction purposes.
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