Sorting atoms in spin-dependent optical lattices

J. Zopes

Master's thesis (2014)

PDF

Abstract

This work reports on the implementation of feedback methods for position control of single Cesium atoms in spin-dependent optical lattices. For this purpose a new control software has been developed. It encapsulates experimental control, fluorescence image acquisition and analysis into a single program. Combining the new software with spin-dependent transport and position-dependent addressing, we have developed a versatile feedback algorithm to deterministically arrange arbitrary patterns of up to 6 atoms. In addition, we have prepared two atoms in a common lattice site. We observed light-assisted collisions between both atoms and thereby characterized the preparation effciency of 83 ± 4 %. The results pave the way for the study of controlled interactions between precisely two atoms in a single well of the optical lattice potential, enabling the realization of a fundamental quantum logic gate.