Bayesian Feedback Control of a Two-Atom Spin-State in an Atom-Cavity System

S. Brakhane, W. Alt, T. Kampschulte, M. Martinez-Dorantes, R. Reimann, S. Yoon, A. Widera, D. Meschede

Phys. Rev. Lett. 109 173601 (2012)

journal PDF

Abstract

We experimentally demonstrate real-time feedback control of the joint spin-state of two neutral Caesium atoms inside a high finesse optical cavity. The quantum states are discriminated by their different cavity transmission levels. A Bayesian update formalism is used to estimate state occupation probabilities as well as transition rates. We stabilize the balanced two-atom mixed state, which is deterministically inaccessible, via feedback control and find very good agreement with Monte-Carlo simulations. On average, the feedback loops achieves near optimal conditions by steering the system to the target state marginally exceeding the time to retrieve information about its state.