Superradiators created atom by atom

D. Meschede

Science 359 641 (2018)

journal PDF

Abstract

High radiation rates are usually associated with macroscopic lasers. Laser radiation is “coherent”—its amplitude and phase are well-defined—but its generation requires energy inputs to overcome loss. Excited atoms spontaneously emit in a random and incoherent fashion, and for <em font-size:="font-size:" style="box-sizing: inherit; color: rgb(51, 51, 51); font-family: Roboto, ">N</em><span font-size:="font-size:" style="color: rgb(51, 51, 51); font-family: Roboto, "> such atoms, the emission rate simply increases as </span><em font-size:="font-size:" style="box-sizing: inherit; color: rgb(51, 51, 51); font-family: Roboto, ">N</em><span font-size:="font-size:" style="color: rgb(51, 51, 51); font-family: Roboto, ">. However, if these atoms are in close proximity and coherently coupled by a radiation field, this microscopic ensemble acts as a single emitter whose emission rate increases as </span><em font-size:="font-size:" style="box-sizing: inherit; color: rgb(51, 51, 51); font-family: Roboto, ">N</em>2<span font-size:="font-size:" style="color: rgb(51, 51, 51); font-family: Roboto, "> and becomes “superradiant,” to use Dicke's terminology (</span><em font-size:="font-size:" style="box-sizing: inherit; color: rgb(51, 51, 51); font-family: Roboto, ">1</em><span font-size:="font-size:" style="color: rgb(51, 51, 51); font-family: Roboto, ">). On page 662 of this issue, Kim </span><em font-size:="font-size:" style="box-sizing: inherit; color: rgb(51, 51, 51); font-family: Roboto, ">et al.</em><span font-size:="font-size:" style="color: rgb(51, 51, 51); font-family: Roboto, "> (</span><em font-size:="font-size:" style="box-sizing: inherit; color: rgb(51, 51, 51); font-family: Roboto, ">2</em><span font-size:="font-size:" style="color: rgb(51, 51, 51); font-family: Roboto, ">) show the buildup of coherent light fields through collective emission from atomic radiators injected one by one into a resonator field. There is only one atom ever in the cavity, but the emission is still collective and superradiant. These results suggest another route toward thresholdless lasing.</span>