Boson sampling with ultracold atoms in a programmable optical lattice
C. Robens, I. Arrazola, W. Alt, D. Meschede, L. Lamata, E. Solano, A. Alberti
Phys. Rev. A 110 012615 (2024)
Abstract
Sampling from a quantum distribution can be exponentially hard for classical computers and yet could be performed efficiently by a noisy intermediate-scale quantum device. A prime example of a distribution that is hard to sample is given by the output states of a linear interferometer traversed by N identical boson particles. Here, we propose a scheme to implement such a boson sampling machine with ultracold atoms in a polarization-synthesized optical lattice. We experimentally demonstrate the basic building block of such a machine by revealing the Hong-Ou-Mandel interference of two bosonic atoms in a four-mode interferometer. To estimate the sampling rate for large N, we develop a theoretical model based on a master equation that accounts for particle losses, but not include technical errors. Our results show that atomic samplers have the potential to achieve quantum advantage over today's best supercomputers with N≳40.