IAP logo UniBonn logo
EnglishDeutsch
  • Increase font size
  • Default font size
  • Decrease font size

Quantum technologies

Dieter Meschede's research group
Home Optical microfibres People Ulrich Wiedemann
Print
People - Optical microfibres
Dr. Ulrich Wiedemann
Contact
Last position
in our group:
Postdoc
Field of research
in our group:
Optical microfibres
 

Publications(up to 2012)

  • U. Wiedemann, W. Alt and D. Meschede
    Switching photochromic molecules adsorbed on optical microfibres, Opt. Express 20, 12710-12720 (2012)BibTeXPDF
    ABSTRACT »
    The internal state of organic photochromic spiropyran molecules adsorbed on optical microfibres is optically controlled and measured by state-dependent light absorption. Repeated switching between the states is achieved by exposure to the evanescent field of a few nanowatts of light guided in the microfibre. By adjusting the microfibre evanescent field strength the dynamic equilibrium state of the molecules is controlled. Time-resolved photoswitching dynamics are measured and modelled with a rate equation model. We also study how many times the photochromic system can be switched before undergoing significant photochemical degradation.
  • U. Wiedemann
    Control of photochromic molecules adsorbed to optical microfibres, (2011), PhD thesisBibTeXPDF
    ABSTRACT »
    The high light intensity in an optical microfibre and the resulting nonlinear effects were applied to develop a new method to precisely determine the microfibre diameter. The evanescent field of these optical microfibres was then used to control the internal state of surface-adsorbed photochromic molecules. I start with a brief sketch of the mathematical description of light propagation in step-index optical fibres. From the results the main properties of optical microfibres are derived. Then, I describe the fabrication of optical microfibres with special requirements for the experiments presented later in the thesis. A new technique to measure the submicrometre diameter of optical microfibres with an accuracy of better than 2 % is presented. This method is based on second- and third-harmonic generation. It is found that the fibre diameter can be unambiguously deduced from the peak wavelength of the harmonic light. High-resolution scanning electron microscope imaging is used to verify the results. In the following, the experimental basics for the switching of photochromic molecules adsorbed to optical microfibres are described. I present the technique to deposit and detect the molecules and show their basic behaviour due to light exposure. The internal state of the molecules is measured via their state-dependent light absorption. Repeated switching between the states is achieved by exposure to the evanescent field of a few nanowatts of light guided in the microfibre. The photochromic processes are then quantitatively analysed. Time-resolved photoswitching dynamics are measured and mathematically modelled with a rate equation model. By adjusting the microfibre evanescent field strength the dynamic equilibrium state of the molecules is controlled. I also study how many times the photochromic system can be switched before undergoing significant photochemical degradation.
  • R. Garcia-Fernandez, W. Alt, F. Bruse, C. Dan, K. Karapetyan, O. Rehband, A. Stiebeiner, U. Wiedemann, D. Meschede and A. Rauschenbeutel
    Optical nanofibers and spectroscopy, Applied Physics B 105, 3–15 (2011)arXivBibTeXPDF
    ABSTRACT »
    We review our recent progress in the production and characterization of tapered optical fibers with a sub-wavelength diameter waist. Such fibers exhibit a pronounced evanescent field and are therefore a useful tool for highly sensitive evanescent wave spectroscopy of adsorbates on the fiber waist or of the medium surrounding. We use a carefully designed flame pulling process that allows us to realize preset fiber diameter profiles. In order to determine the waist diameter and to verify the fiber profile, we employ scanning electron microscope measurements and a novel accurate in situ optical method based on harmonic generation. We use our fibers for linear and non-linear absorption and fluorescence spectroscopy of surface-adsorbed organic molecules and investigate their agglomeration dynamics. Furthermore, we apply our spectroscopic method to quantum dots on the surface of the fiber waist and to caesium vapor surrounding the fiber. Finally, towards dispersive measurements, we present our first results on building and testing a single-fiber bi-modal interferometer.
  • U. Wiedemann, K. Karapetyan, C. Dan, D. Pritzkau, W. Alt, S. Irsen and D. Meschede
    Measurement of submicrometre diameters of tapered optical fibres using harmonic generation, Opt. Express 18, 7693–7704 (2010)BibTeXPDF
    ABSTRACT »
    Applications of subwavelength-diameter optical fibres in nonlinear optics require precise knowledge of the submicrometre fibre waist diameter. We demonstrate a new technique for optical measurement of the diameter based on second- and third-harmonic generation with an accuracy of better than 2%. To generate the harmonic light, inter-modal phase matching must be achieved. We find that the phase-matching condition allows us to unambiguously deduce the fibre diameter from the wavelength of the harmonic light. High-resolution scanning electron microscope imaging is used to verify the results.

Colloquia