We induce quantum jumps between the hyperfine ground states of one and two Cesium atoms, strongly coupled to the mode of a high-finesse optical resonator, and analyze the resulting random telegraph signals. We identify experimental parameters to deduce the atomic spin state nondestructively from the stream of photons transmitted through the cavity, achieving a compromise between a good signal-to-noise ratio and minimal measurement-induced perturbations. In order to extract optimum information about the spin dynamics from the photon count signal, a Bayesian update formalism is employed, which yields time-dependent probabilities for the atoms to be in either hyperfine state. We discuss the effect of super-Poissonian photon number distributions caused by atomic motion.
S. Reick Internal and external dynamics of a strongly-coupled atom-cavity system, (2009), PhD thesisBibTeX
We experimentally investigate the spin dynamics of one and two neutral atoms strongly coupled to a high finesse optical cavity. We observe quantum jumps between hyperfine ground states of a single atom. The interaction-induced normal-mode splitting of the atom-cavity system is measured via the atomic excitation. Moreover, we observe the mutual influence of two atoms simultaneously coupled to the cavity mode.
We experimentally investigate the interaction between one and two atoms and the field of a high-finesse optical resonator. Laser-cooled caesium atoms are transported into the cavity using an optical dipole trap. We monitor the interaction dynamics of a single atom strongly coupled to the resonator mode for several hundred milliseconds by observing the cavity transmission. Moreover, we investigate the position-dependent coupling of one and two atoms by shuttling them through the cavity mode. We demonstrate an alternative method, which suppresses heating effects, to analyze the atom-field interaction by retrieving the atom from the cavity and by measuring its final state.
We implement a technique for loading a preset number of up to 19
atoms from a magneto-optical trap into a standing wave optical dipole trap. The
efficiency of our technique is characterized by measuring the atom number before
and after the loading process. Our analysis reveals details of the trap dynamics that
are usually masked when working with larger atomic ensembles. In particular,
we identify a low-loss collisional blockade mechanism. It forces the atoms to
redistribute in the periodic potential until they are all stored in individual trapping
sites, thereby strongly reducing site occupation number fluctuations.
We recently demonstrated that strings of trapped atoms inside a standing wave optical dipole trap can be rearranged using optical tweezers [Y. Miroshnychenko et al., Nature, in press (2006)]. This technique allows us to actively set the interatomic separations on the scale of the individual trapping potential wells. Here, we use such a distance-control operation to insert two atoms into the same potential well. The detected success rate of this manipulation is 16(+4/-3) %, in agreement with the predictions of a theoretical model based on our independently determined experimental parameters.