Dr. René Reimann  

We report on image processing techniques and experimental procedures to determine the latticesite positions of single atoms in an optical lattice with high reliability, even for limited acquisition time or optical resolution. Determining the positions of atoms beyond the diffraction limit relies on parametric deconvolution in close analogy to methods employed in superresolution microscopy. We develop a deconvolution method that makes effective use of the prior knowledge of the optical transfer function, noise properties, and discreteness of the optical lattice. We show that accurate knowledge of the image formation process enables a dramatic improvement on the localization reliability. This allows us to demonstrate superresolution of the atoms' position in closely packed ensembles where the separation between particles cannot be directly optically resolved. Furthermore, we demonstrate experimental methods to precisely reconstruct the point spread function with subpixel resolution from fluorescence images of single atoms, and we give a mathematical foundation thereof. We also discuss discretized image sampling in pixel detectors and provide a quantitative model of noise sources in electron multiplying CCD cameras. The techniques developed here are not only beneficial to neutral atom experiments, but could also be employed to improve the localization precision of trapped ions for ultra precise force sensing.
We report on the observation of cooperative radiation of exactly two neutral atoms strongly coupled to the single mode field of an optical cavity, which is close to the losslesscavity limit. Monitoring the cavity output power, we observe constructive and destructive interference of collective Rayleigh scattering for certain relative distances between the two atoms. Because of cavity backaction onto the atoms, the cavity output power for the constructive twoatom case (N=2) is almost equal to the singleemitter case (N=1), which is in contrast to freespace where one would expect an N^2 scaling of the power. These effects are quantitatively explained by a classical model as well as by a quantum mechanical model based on Dicke states. We extract information on the relative phases of the light fields at the atom positions and employ advanced cooling to reduce the jump rate between the constructive and destructive atom configurations. Thereby we improve the control over the system to a level where the implementation of twoatom entanglement schemes involving optical cavities becomes realistic.
We demonstrate cooling of the motion of a single neutral atom confined by a dipole trap inside a highfinesse optical resonator. Cooling of the vibrational motion results from electromagnetically induced transparency (EIT)–like interference in an atomic lambdatype configuration, where one transition is strongly coupled to the cavity mode and the other is driven by an external control laser. Good qualitative agreement with the theoretical predictions is found for the explored parameter ranges. Further, we demonstrate EIT cooling of atoms in the dipole trap in free space, reaching the ground state of axial motion. By means of a direct comparison with the cooling inside the resonator, the role of the cavity becomes evident by an additional cooling resonance. These results pave the way towards a controlled interaction among atomic, photonic, and mechanical degrees of freedom.
We experimentally realize an enhanced Raman control scheme for neutral atoms that features an intrinsic suppression of the twophoton carrier transition, but retains the sidebands which couple to the external degrees of freedom of the trapped atoms. This is achieved by trapping the atom at the node of a blue detuned standing wave dipole trap, that acts as one field for the twophoton Raman coupling. The improved ratio between cooling and heating processes in this configuration enables a five times lower fundamental temperature limit for resolved sideband cooling. We apply this method to perform Raman cooling to the twodimensional vibrational ground state and to coherently manipulate the atomic motion. The presented scheme requires minimal additional resources and can be applied to experiments with challenging optical access, as we demonstrate by our implementation for atoms strongly coupled to an optical cavity.
We experimentally demonstrate realtime feedback control of the joint spinstate of two neutral Caesium atoms inside a high finesse optical cavity. The quantum states are discriminated by their different cavity transmission levels. A Bayesian update formalism is used to estimate state occupation probabilities as well as transition rates. We stabilize the balanced twoatom mixed state, which is deterministically inaccessible, via feedback control and find very good agreement with MonteCarlo simulations. On average, the feedback loops achieves near optimal conditions by steering the system to the target state marginally exceeding the time to retrieve information about its state.
We experimentally demonstrate the elementary case of electromagnetically induced transparency with a single atom inside an optical cavity probed by a weak field. We observe the modification of the dispersive and absorptive properties of the atom by changing the frequency of a control light field. Moreover, a strong cooling effect has been observed at twophoton resonance, increasing the storage time of our atoms twentyfold to about 16 seconds. Our result points towards alloptical switching with single photons.
We report the observation of manybody interaction effects for a homonuclear bosonic mixture in a threedimensional optical lattice with variable state dependence along one axis. Near the superfluidtoMott insulator transition for one component, we find that the presence of a second component can reduce the apparent superfluid coherence, most significantly when the second component either experiences a strongly localizing lattice potential or none at all. We examine this effect by varying the relative populations and lattice depths, and discuss the observed behavior in view of recent proposals for atomicdisorder and polaroninduced localization.
We study KapitzaDirac diffraction of a BoseEinstein condensate from a standing light wave for a square pulse with variable pulse length but constant pulse area. We find that for sufficiently weak pulses, the usual analytical shortpulse prediction for the RamanNath regime continues to hold for longer times, albeit with a reduction of the apparent modulation depth of the standing wave. We quantitatively relate this effect to the Fourier width of the pulse, and draw analogies to the Rabi dynamics of a coupled twostate system. Our findings, combined with numerical modeling for stronger pulses, are of practical interest for the calibration of optical lattices in ultracold atomic systems.