This thesis deals with the digital manipulation of the position and spin of neutral Caesium atoms in an optical lattice. I investigate coherent phenomena based on interferences between the trajectories of a single atom. Individual atoms are split by making use of our state-dependent lattice to shift different spin states in opposite directions, leading to coherent superpositions of spin and position state. This offers many possibilities; in this work, we chose to investigate atom interferometry and quantum walks in potential gradients.
Chapter 1 is a brief introduction to the importance of phase in quantum mechanics.
In chapter 2, I provide an introduction to our experimental apparatus with particular focus on state-dependent shifting and correct alignment procedures. Our model for decoherence in the lattice is also presented, with emphasis on the polarization state of the lattice lasers.
Chapter 3 presents the first of two measurement campaigns, which employs a single atom interferometer with a flexible geometry. We investigate a laser intensity gradient present in the system and demonstrate how several interferometer geometries can be compared to glean extra information about the symmetries of a potential gradient, such as its spin state dependence. A deliberately applied inertial force serves as a proof-of-principle for accelerometry and is correctly measured.
Chapter 4 contains the results of the second measurement campaign, which focussed on quantum walks. Quantum walks are a quantum analog to classical random walks and possess remarkable spreading properties. A theoretical model is presented, including a band structure picture of the walk. Unlike previous experiments, the walk can now be performed in a potential gradient, giving rise to new physics, in particular Bloch oscillations, which manifest as oscillations of the distribution width. Experimental results first confirm the predictions made by our model and show quantum walks of up to 100 steps with coherent behaviour. Walks in potential gradients are measured and indeed show clear signatures of Bloch oscillations. This is particularly remarkable because the quantum walk is effectively mimicking an electron in a solid, forming a basic quantum simulator.
Chapter 5 is a conclusion and a preview on ongoing technical improvements that stand to significantly extend the experimental capabilities.