IAP logo UniBonn logo
  • Increase font size
  • Default font size
  • Decrease font size

Quantum technologies

Dieter Meschede's research group
Home Group members Sebastian Reick
Group members
Sebastian Reick
Last position
in our group:
PhD student
Field of research
in our group:
Cavity QED

Publications(up to 2010)

  • S. Reick, K. Mølmer, W. Alt, M. Eckstein, T. Kampschulte, L. Kong, R. Reimann, A. Thobe, A. Widera and D. Meschede
    Analyzing quantum jumps of one and two atoms strongly coupled to an optical cavity, J. Opt. Soc. Am. B 27, A152 (2010)arXivBibTeXPDF
    We induce quantum jumps between the hyperfine ground states of one and two Cesium atoms, strongly coupled to the mode of a high-finesse optical resonator, and analyze the resulting random telegraph signals. We identify experimental parameters to deduce the atomic spin state nondestructively from the stream of photons transmitted through the cavity, achieving a compromise between a good signal-to-noise ratio and minimal measurement-induced perturbations. In order to extract optimum information about the spin dynamics from the photon count signal, a Bayesian update formalism is employed, which yields time-dependent probabilities for the atoms to be in either hyperfine state. We discuss the effect of super-Poissonian photon number distributions caused by atomic motion.
  • S. Reick
    Internal and external dynamics of a strongly-coupled atom-cavity system, (2009), PhD thesisBibTeXPDF
  • M. Khudaverdyan, W. Alt, T. Kampschulte, S. Reick, A. Thobe, A. Widera and D. Meschede
    Quantum jumps and spin dynamics of interacting atoms in a strongly coupled atom-cavity system , Phys. Rev. Lett. 103, 123006 (2009)arXivBibTeXPDF
    We experimentally investigate the spin dynamics of one and two neutral atoms strongly coupled to a high finesse optical cavity. We observe quantum jumps between hyperfine ground states of a single atom. The interaction-induced normal-mode splitting of the atom-cavity system is measured via the atomic excitation. Moreover, we observe the mutual influence of two atoms simultaneously coupled to the cavity mode.
  • M. Khudaverdyan, W. Alt, I. Dotsenko, T. Kampschulte, K. Lenhard, A. Rauschenbeutel, S. Reick, K. Schörner, A. Widera and D. Meschede
    Controlled insertion and retrieval of atoms coupled to a high-finesse optical resonator, New J. Phys. 10, 073023 (2008)arXivBibTeXPDF
    We experimentally investigate the interaction between one and two atoms and the field of a high-finesse optical resonator. Laser-cooled caesium atoms are transported into the cavity using an optical dipole trap. We monitor the interaction dynamics of a single atom strongly coupled to the resonator mode for several hundred milliseconds by observing the cavity transmission. Moreover, we investigate the position-dependent coupling of one and two atoms by shuttling them through the cavity mode. We demonstrate an alternative method, which suppresses heating effects, to analyze the atom-field interaction by retrieving the atom from the cavity and by measuring its final state.
  • L. Förster, W. Alt, I. Dotsenko, M. Khudaverdyan, D. Meschede, Y. Miroshnychenko, S. Reick and A. Rauschenbeutel
    Number-triggered loading and collisional redistribution of neutral atoms in a standing wave dipole trap, New J. Phys. 8, 259 (2006)BibTeXPDF
    We implement a technique for loading a preset number of up to 19 atoms from a magneto-optical trap into a standing wave optical dipole trap. The efficiency of our technique is characterized by measuring the atom number before and after the loading process. Our analysis reveals details of the trap dynamics that are usually masked when working with larger atomic ensembles. In particular, we identify a low-loss collisional blockade mechanism. It forces the atoms to redistribute in the periodic potential until they are all stored in individual trapping sites, thereby strongly reducing site occupation number fluctuations.
  • Y. Miroshnychenko, W. Alt, I. Dotsenko, L. Förster, M. Khudaverdyan, D. Meschede, S. Reick and A. Rauschenbeutel
    Inserting two atoms into a single optical micropotential, Phys. Rev. Lett. 97, 243003 (2006)arXivBibTeXPDF
    We recently demonstrated that strings of trapped atoms inside a standing wave optical dipole trap can be rearranged using optical tweezers [Y. Miroshnychenko et al., Nature, in press (2006)]. This technique allows us to actively set the interatomic separations on the scale of the individual trapping potential wells. Here, we use such a distance-control operation to insert two atoms into the same potential well. The detected success rate of this manipulation is 16(+4/-3) %, in agreement with the predictions of a theoretical model based on our independently determined experimental parameters.