IAP logo UniBonn logo
  • Increase font size
  • Default font size
  • Decrease font size

Quantum technologies

Dieter Meschede's research group
Home Group members Thorsten Groh
Group members
Thorsten Groh
Position: Master student
Field of research: Digital quantum simulators
Institut für Angewandte Physik
Wegelerstr. 8
D-53115 Bonn
Office room: 224
Laboratory room: 214b
E-mail: This e-mail address is being protected from spam bots, you need JavaScript enabled to view it.
Office: +49 228 73-3128
Laboratory: +49 228 73-3454
Fax: +49 228 73-3474


  • T. Groh, S. Brakhane, W. Alt, D. Meschede, J. Asbóth and A. Alberti
    Robustness of topologically protected edge states in quantum walk experiments with neutral atoms, Phys. Rev. A (editor's suggestion) 94, 013620 (2016)arXivBibTeXPDF

    Discrete-time quantum walks allow Floquet topological insulator materials to be explored using controllable systems such as ultracold atoms in optical lattices. By numerical simulations, we study the robustness of topologically protected edge states in the presence of decoherence in one- and two-dimensional discrete-time quantum walks. We also develop a simple analytical model quantifying the robustness of these edge states against either spin or spatial dephasing, predicting an exponential decay of the population of topologically protected edge states. Moreover, we present an experimental proposal based on neutral atoms in spin-dependent optical lattices to realize spatial boundaries between distinct topological phases. Our proposal relies on a new scheme to implement spin-dependent discrete shift operations in a two-dimensional optical lattice. We analyze under realistic decoherence conditions the experimental feasibility of observing unidirectional, dissipationless transport of matter waves along boundaries separating distinct topological domains.

  • T. Groh
    Dekohärenzeffekte in topologischen Phasen von Quantenwalks, (2015), Bachelor thesisBibTeXPDF
    Die Klassifizierung von Quantenwalks über topologische Phasen ermöglicht die Erklärung der Existenz geschützter Zustände an räumlichen Phasengrenzen. In dieser Arbeit wird die Einwirkung von Dekohärenzeffekten auf die Existenz und Form dieser topologisch geschützten Zuständen in Quantenwalks mit diskreter Zeit auf ein- und zweidimensionalen diskreten Gittern simuliert und untersucht. Für die zeitliche Entwicklung topologisch geschützter, lokalisierter Randzustände wird im eindimensionalen System ein einfaches Modell gefunden. Die Grenzen des verwendeten Dekohärenzmodells werden durch die Konstruktion eines dekohärenzfreien Quantenwalk-Protokolls aufgezeigt. Außerdem wer- den die Möglichkeiten und Einschränkungen einer experimentellen Realisierung von topologischen Effekten in Quantenwalks mit neutralen Atomen in optischen Gittern simuliert und analysiert.