IAP logo UniBonn logo
EnglishDeutsch
  • Schrift vergrößern
  • Standard-Schriftgröße
  • Schriftgröße verkleinern

Quantentechnologie

Dieter Meschedes Forschungsgruppe
Home Gruppenmitglieder Sebastian Hild
Drucken
Gruppenmitglieder
Sebastian Hild
Kontakt
Last position
in our group:
Doktorand
Field of research
in our group:
Few-atom quantum systems
 

Publications(up to 2012)

  • A. Steffen, A. Alberti, W. Alt, N. Belmechri, S. Hild, M. Karski, A. Widera and D. Meschede
    A digital atom interferometer with single particle control on a discretized spacetime geometry, PNAS 109, 9770 (2012)arXivBibTeXPDF
    ABSTRACT »

    Engineering quantum particle systems, such as quantum simulators and quantum cellular automata, relies on full coherent control of quantum paths at the single particle level. Here we present an atom interferometer operating with single trapped atoms, where single particle wave packets are controlled through spin-dependent potentials. The interferometer is constructed from a sequence of discrete operations based on a set of elementary building blocks, which permit composing arbitrary interferometer geometries in a digital manner. We use this modularity to devise a space-time analogue of the well-known spin echo technique, yielding insight into decoherence mechanisms. We also demonstrate mesoscopic delocalization of single atoms with a separation-to-localization ratio exceeding 500; this result suggests their utilization beyond quantum logic applications as nano-resolution quantum probes in precision measurements, being able to measure potential gradients with precision 5×10-4 in units of gravitational acceleration g.

  • A. Mawardi, S. Hild, A. Widera and D. Meschede
    ABCD-treatment of a propagating doughnut beam generated by a spiral phase plate, Optics Express 19, 21205-21210 (2011)BibTeXPDF
    ABSTRACT »
    We apply the Collins-Huygens integral to analytically describe propagation of a doughnut beam generated by a spiral phase plate. Measured beam profiles in free space and through an ABCD-lens system illustrate excellent agreement with theory. Applications range from the creation of optical beams with angular momentum to microscopy to trapping neutral atoms. The method extends to other beam shaping components, too.
  • S. Hild
    Resolved Raman sideband cooling in a doughnut-shaped optical trap, (2011), MasterarbeitBibTeXPDF

Vorträge